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1 Introduction

The goal of this chapter is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Löf [ML96, Page 27]:

The meaning of a proposition is determined by [. . . ] what counts as a
verification of it.

A verification may be understood as a certain kind of proof that only ex-
amines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].

In this chapter we apply Martin-Löf’s approach, which follows a rich
philosophical tradition, to explain the basic propositional connectives. We
will see later that universal and existential quantifiers and types such as
natural numbers, lists, or trees naturally fit into the same framework.

∗Edits by André Platzer
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L2.2 Natural Deduction

We will define the meaning of the usual connectives of propositional
logic (conjunction, implication, disjunction) by rules that allow us to infer
when they should be true, so-called introduction rules. From these, we de-
rive rules for the use of propositions, so-called elimination rules. The result-
ing system of natural deduction is the foundation of intuitionistic logic which
has direct connections to functional programming and logic programming.

2 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence
for it. In everyday life, such evidence is often immediate: we may look out
the window and see that it is raining. In logic, we are concerned with sit-
uation where the evidence is indirect: we deduce the judgment by making
correct inferences from other evident judgments. In other words: a judg-
ment is evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “A is true at time t” (from temporal logic), “A is neces-
sarily true” (from modal logic), “program M has type τ” (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of con-
junction. We writeA true for the judgment “A is true” (presupposing thatA
is a proposition. Given propositions A and B, we can form the compound
proposition “A and B”, written more formally as A ∧ B. But we have not
yet specified what conjunction means, that is, what counts as a verification
of A ∧B. This is accomplished by the following inference rule:

A true B true
A ∧B true

∧I

Here the name ∧I stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A ∧B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,
and ∧I is the name of the rule. Intuitively, the ∧I rule says that a proof of
A ∧B true consists of a proof of A true together with a proof of B true.
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Natural Deduction L2.3

The general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, the judgment J is
called the conclusion. In general, we will use letters J to stand for judg-
ments, while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A ∧ B
completely. So what can be deduced if we know that A ∧ B is true? By the
above rule, to have a verification for A ∧ B means to have verifications for
A and B. Hence the following two rules are justified:

A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

The name ∧E1 stands for “first/left conjunction elimination”, since the
conjunction in the premise has been eliminated in the conclusion. Simi-
larly ∧E2 stands for “second/right conjunction elimination”. Intuitively,
the ∧E1 rule says that A true follows if we have a proof of A ∧ B true,
because “we must have had a proof of A true to justify A ∧B true”.

We will later see what precisely is required in order to guarantee that
the formation, introduction, and elimination rules for a connective fit to-
gether correctly. For now, we will informally argue the correctness of the
elimination rules, as we did for the conjunction elimination rules.

As a second example we consider the proposition “truth” written as
>. Truth should always be true, which means its introduction rule has no
premises.

> true
>I

Consequently, we have no information if we know > true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero correspond-
ing elimination rules. This is precisely what we wrote out above.
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L2.4 Natural Deduction

3 Hypothetical Judgments

Consider the following derivation, for arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true

B ∧ C true
∧E2

B true
∧E1

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A ∧ (B ∧ C) true has not been justified. We
can extract the following knowledge:

From the assumption thatA∧(B∧C) is true, we deduce thatB must
be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

J1 · · · Jn...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judg-
ment J is the conclusion. All instances of the inference rules are hypothet-
ical judgments as well (albeit possibly with 0 assumptions if the inference
rule has no premises).

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we will write
J1, . . . , Jn ` J for the hypothetical judgment which is established by the hy-
pothetical deduction above. We may refer to J1, . . . , Jn as the antecedents
and J as the succedent of the hypothetical judgment. For example, the hy-
pothetical judgment A ∧ (B ∧ C) true ` B true is proved by the above
hypothetical deduction that B true indeed follows from the hypothesis
A ∧ (B ∧ C) true using inference rules.

Substitution Principle for Hypotheses: We can always substitute a
proof for any hypothesis Ji to eliminate the assumption. Into the above
hypothetical deduction, a proof of its hypothesis Ji

K1 · · · Km...
Ji
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Natural Deduction L2.5

can be substituted in for Ji to obtain the hypothetical deduction

J1 · · ·

K1 · · · Km...
Ji · · · Jn...
J

This hypothetical deduction concludes J from the unproven assumptions
J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn and justifies the hypothetical judgment

J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn ` J

That is, into the hypothetical judgment J1, . . . , Jn ` J , we can always sub-
stitute a derivation of the judgment Ji that was used as a hypothesis to
obtain a derivation which no longer depends on the assumption Ji. A hy-
pothetical deduction with 0 assumptions is a proof of its conclusion J .

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A ∧B true
B true

∧E2
A ∧B true
A true

∧E1

B ∧A true
∧I

can be seen a hypothetical derivation ofA∧B true ` B∧A true. Similarly, a
minor variation of the first proof in this section is a hypothetical derivation
for the hypothetical judgment A ∧ (B ∧ C) true ` B ∧ A true that uses the
hypothesis twice.

With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A⊃ B). The intro-
duction rule reads: A ⊃ B is true, if B is true under the assumption that A
is true.

A true
u

...
B true

A⊃B true
⊃Iu

The tricky part of this rule is the label u and its bar. If we omit this annota-
tion, the rule would read

A true...
B true

A⊃B true
⊃I
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L2.6 Natural Deduction

which would be incorrect: it looks like a derivation of A ⊃ B true from
the hypothesis A true. But the assumption A true is introduced in the pro-
cess of proving A ⊃ B true; the conclusion should not depend on it! Cer-
tainly, whether the implication A⊃B is true is independent of the question
whether A itself is actually true. Therefore we label uses of the assumption
with a new name u, and the corresponding inference which introduced this
assumption into the derivation with the same label u.

The rule makes intuitive sense, a proof justifying A ⊃ B true assumes,
hypothetically, the left-hand side of the implication so that A true, and uses
this to show the right-hand side of the implication by proving B true. The
proof ofA⊃B true constructs a proof ofB true from the additional assump-
tion that A true.

As a concrete example, consider the following proof ofA⊃(B⊃(A∧B)).

A true
u

B true
w

A ∧B true
∧I

B ⊃ (A ∧B) true
⊃Iw

A⊃ (B ⊃ (A ∧B)) true
⊃Iu

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled u is discharged in the last in-
ference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A⊃B true means that
we have a hypothetical proof of B true from A true. By the substitution
principle, if we also have a proof of A true then we get a proof of B true.

A⊃B true A true
B true

⊃E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties con-

cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

LECTURE NOTES AUGUST 31, 2017



Natural Deduction L2.7

A ∧B true
u

B true
∧E2

A ∧B true
u

A true
∧E1

B ∧A true
∧I

(A ∧B)⊃ (B ∧A) true
⊃Iu

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a dis-
tributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences
of steps in proof constructions are also possible.

...
(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true

First, we use the implication introduction rule bottom-up.

A⊃ (B ∧ C) true
u

...
(A⊃B) ∧ (A⊃ C) true

(A⊃ (B ∧ C)⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Next, we use the conjunction introduction rule bottom-up, copying the
available assumptions to both branches in the scope.

A⊃ (B ∧ C) true
u

...
A⊃B true

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

We now pursue the left branch, again using implication introduction
bottom-up.
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L2.8 Natural Deduction

A⊃ (B ∧ C) true
u

A true
w

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Note that the hypothesis A true is available only in the left branch and
not in the right one: it is discharged at the inference ⊃Iw. We now switch
to top-down reasoning, taking advantage of implication elimination.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.
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A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

A true
v

B ∧ C true
⊃E

C true
∧E2

A⊃ C true
⊃Iv

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

4 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implica-
tion. The disjunction “A or B” (written as A∨B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A ∨B is true, if either A or B is true.

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

Now it would be incorrect to have an elimination rule such as

A ∨B true
A true

∨E1?

because even if we know that A ∨ B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

> true
>I

A ∨ > true
∨I2

A true
∨E1?

Thus we take a different approach. If we know that A ∨ B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w
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L2.10 Natural Deduction

If we know that A ∨ B true then we also know C true, if that follows both
in the case where A ∨ B true because A is true and in the case where A ∨
B true because B is true. Note that we use once again the mechanism of
hypothetical judgments. In the proof of the second premise we may use the
assumption A true labeled u, in the proof of the third premise we may use
the assumption B true labeled w. Both are discharged at the disjunction
elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A ∨ B true. The premises of the two possible introduc-
tion rules are A true and B true. In case A true we conclude C true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled u in the hypothetical deriva-
tion. The case for B true is symmetric, using the hypothetical derivation in
the third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

...
(A ∨B)⊃ (B ∨A) true

We begin with an implication introduction.

A ∨B true
u

...
B ∨A true

(A ∨B)⊃ (B ∨A) true
⊃Iu

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption A∨
B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

A ∨B true
u

A true
v

...
B ∨A true

B true
w

...
B ∨A true

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

The assumption labeled u is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.
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Now each gap can be filled in directly by the two disjunction introduc-
tion rules.

A ∨B true
u

A true
v

B ∨A true
∨I2

B true
w

B ∨A true
∨I1

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

This concludes the discussion of disjunction. Falsehood (written as ⊥,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth
of any arbitrary proposition if we know ⊥ true. This justifies the elimina-
tion rule

⊥ true
C true

⊥E

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduc-
tion rules, and an elimination rule in which we have to consider zero cases.
This is precisely the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ¬A) asA⊃⊥. In other words, ¬A is true
precisely if the assumption A true is contradictory because we could derive
⊥ true.

5 Natural Deduction

The judgments, propositions, and inference rules we have defined so far
collectively form a system of natural deduction. It is a minor variant of a sys-
tem introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
A ∨ (A⊃B) as true for arbitrary A and B, although in the system we have
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L2.12 Natural Deduction

Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

> true
>I

no >E rule

A true
u

...
B true

A⊃B true
⊃Iu

A⊃B true A true
B true

⊃E

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

Figure 1: Rules for intuitionistic natural deduction

presented so far this would have no proof. Classical logic is based on the
principle that every proposition must be true or false. If we distinguish
these cases we see that A ∨ (A ⊃ B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and ev-
idence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see, it has a direct
connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.
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6 Notational Definition

So far, we have defined the meaning of the logical connectives by their in-
troduction rules, which is the so-called verificationist approach. Another
common way to define a logical connective is by a notational definition. A
notational definition gives the meaning of the general form of a proposi-
tion in terms of another proposition whose meaning has already been de-
fined. For example, we can define logical equivalence, written A ≡ B as
(A ⊃ B) ∧ (B ⊃ A). This definition is justified, because we already under-
stand implication and conjunction.

As mentioned above, another common notational definition in intu-
itionistic logic is ¬A = (A ⊃ ⊥). Several other, more direct definitions of
intuitionistic negation also exist, and we will see some of them later in the
course. Perhaps the most intuitive one is to say that ¬A true if A false, but
this requires the new judgment of falsehood.

Notational definitions can be convenient, but they can be a bit cumber-
some at times. We sometimes give a notational definition and then derive
introduction and elimination rules for the connective. It should be under-
stood that these rules, even if they may be called introduction or elimina-
tion rules, have a different status from those that define a connective. In
this particular case, we get the derived rules

A true
u

...
⊥ true
¬A true

¬Iu
¬A true A true

⊥ true
¬E

You should convince yourself that these are indeed derived rules under the
notational definition of ¬A. The also almost have the form of introduction
and elimination rules, except that we use ⊥ to define ¬A, while previously
we avoided using other connectives besides the one we are defining.
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