Lecture Notes on
Proofs as Programs

15-317: Constructive Logic
Frank Pfenning*

Lecture 3
September 5, 2017

1 Introduction

In this lecture we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional frag-
ment of logic this is called the Curry-Howard isomorphism [How80]. From
the very outset of the development of constructive logic and mathematics, a
central idea has been that proofs ought to represent constructions. The Curry-
Howard isomorphism is only a particularly poignant and beautiful real-
ization of this idea. In a highly influential subsequent paper, Per Martin-
Lof [ML80] developed it further into a more expressive calculus called type
theory.

2 Propositions as Types

In order to illustrate the relationship between proofs and programs we in-
troduce a new judgment:

M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We
will also interpret M : A as “M is a program of type A”. These dual inter-
pretations of the same judgment is the core of the Curry-Howard isomor-
phism. We either think of M as a syntactic term that represents the proof of

*Edits by André Platzer

LECTURE NOTES SEPTEMBER 5, 2017

L3.2 Proofs as Programs

A true, or we think of A as the type of the program M. As we discuss each
connective, we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A
for some appropriate proof term). But we want something more: every
deduction of M : A should correspond to a deduction of A true with an
identical structure and vice versa. In other words we annotate the inference
rules of natural deduction with proof terms. The property above should
then be obvious. In that way, proof term M of M : A will correspond
directly to the corresponding proof of A true.

Conjunction. Constructively, we think of a proof of A A B true as a pair
of proofs: one for A true and one for B true. So if M is a proof of A and N
is a proof of B, then the pair (M, N) is a proof of A A B.

M:A N:B
i
(M,N): AANB

The elimination rules correspond to the projections from a pair to its
first and second elements to get the individual proofs back out from a pair
M.

M:ANB M:ANB
—— AF —_— A

1 Es
fstM : A snd M : B

Hence the conjunction A A B proposition corresponds to the product type
A x B. And, indeed, product types in functional programming languages
have the same property that conjunction propositions A A B have. Con-
structing a pair (M, N) of type A x B requires a program M of type A and
a program N of type B (as in AI). Given a pair M of type A x B, its first
component of type A can be retrieved by the projection fst M (as in AE1),
its second component of type B by the projection snd M (as in AE»).

Truth. Constructively, we think of a proof of T true as a unit element that
carries no information.

— TI

(): T
Hence T corresponds to the unit type 1 with one element. There is no elim-
ination rule and hence no further proof term constructs for truth. Indeed,
we have not put any information into () when constructing it via T1, so
cannot expect to get any information back out when trying to eliminate it.

LECTURE NOTES SEPTEMBER 5, 2017

Proofs as Programs L3.3

Implication. Constructively, we think of a proof of A O B true as a func-
tion which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a func-
tion f of a variable x by writing f(z) = ... where the right-hand side “...”
depends on z. For example, we might write f(z) = 2%+ 2 — 1. In functional
programming, we can instead write f = Az. 22+ — 1, that is, we explicitly
form a functional object by A\-abstraction of a variable (z, in the example).

In the concrete syntax of our Standard ML-like programming language,
Ax. M is written and fnz = M. We will try to mostly use the concrete
syntax, but we may slip up occasionally and write the A-notation instead.

We now use the notation of M\-abstraction to annotate the rule of impli-
cation introduction with proof terms. In the official syntax, we label the ab-
straction with a proposition (writing Au:A) in order to specify the domain
of a function unambiguously. In practice we will often omit the label to
make expressions shorter—usually (but not always!) it can be determined
from the context.

u

u: A

M:B ;
fnru=M:ADB

u

The hypothesis label u acts as a variable, and any use of the hypothesis la-
beled u in the proof of B corresponds to an occurrence of u in M. Notice
how a constructive proof of B true from the additional assumption A true
to establish A D B true also describes the transformation of a proof of A true
to a proof of B true. But the proof term fnu = M explicitly represents this
transformation syntactically as a function, instead of leaving this construc-
tion implicit by inspection of whatever the proof does.
As a concrete example, consider the (trivial) proof of A O A true:

u
A true

- DO
A D A true

If we annotate the deduction with proof terms, we obtain

u

u:A 5
(fnru=u):ADA

[u

LECTURE NOTES SEPTEMBER 5, 2017

L3.4 Proofs as Programs

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with the identity function id(u) = u
orid = (fnu = w).

Constructively, a proof of A D B true is a function transforming a proof
of A true to a proof of B true. Using A D B true by its elimination rule
DFE, thus, corresponds to providing the proof of A true that A O B true
is waiting for to obtain a proof of B true. The rule for implication elim-
ination corresponds to function application. Following the convention in
functional programming, we write M N for the application of the function
M to argument N, rather than the more verbose M ().

M:A>DB N:A
MN :B

DF

What is the meaning of A O B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A — B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction fnu = M and application M N.
Forming a functional abstraction fnu = M corresponds to a function that
accepts input parameter u of type A and produces M of type B (as in D).
Using a function M : A — B corresponds to applying it to a concrete input
argument N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A A B) D (B A A) true.

—_— U —_— U
ANDBt ANDBt
rue A, rue A
B true A true
B A A true 5
(AANB) D (BAA)true

u

When we annotate this derivation with proof terms, we obtain the swap
function which takes a pair (M, N) and returns the reverse pair (N, M).

— —
u:ANB u:ANDB
—— NEy —— AE;
sndu: B fstu: A
(sndu,fstu) : BA A

(fnu = (sndu, fstu)): (AANB) D (BAA)

DI

LECTURE NOTES SEPTEMBER 5, 2017

Proofs as Programs L3.5

Disjunction. Constructively, we think of a proof of A V B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A + B that either store something of type A or something of type
B. The two introduction rules correspond to the left and right injection into
a sum type.

M:A 7 N:B

-V} ———— VI
inlM: AV B intN: AV B

In the official syntax, we have annotated the injections inl and inr with
propositions B and A, again so that a (valid) proof term has an unam-
biguous type. In writing actual programs we usually omit this annotation.
When using a disjunction A V B true in a proof, we need to be prepared to
handle A true as well as B true, because we don’t know whether VI or VIy
was used to prove it. The elimination rule corresponds to a case construct
which discriminates between a left and right injection into a sum types.

u: A w: B

M:AVB N:C 0:C
case M of inlu = N |intw = O : C

Vv Bww

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable v is N, while the scope
of the variable w is O.

Falsehood. There is no introduction rule for falsehood (). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of L to stand for an expression of any type when wrapped with
abort. However, there is no computation rule for it, which means during
computation of a valid program we will never try to evaluate a term of the
form abort M.

M:1

— 1F
abort M : C

As before, the annotation C' which disambiguates the type of abort M will
often be omitted.

Interaction Laws. This completes our assignment of proof terms to the
logical inference rules. Now we can interpret the interaction laws we intro-

LECTURE NOTES SEPTEMBER 5, 2017

L3.6 Proofs as Programs

duced early as programming exercises. Consider the following distributiv-
ity law:
(L11a) (AD(BAC))D(ADB)A(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B A C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:
fnu = ((fnw = fst(uw)), (fnv = snd (uv)))

The following deduction provides the evidence:

U w U v
u:AD(BAC) w: A u:AD(BAC) v:A
DF DF
uw: BAC uv:BAC
— AEj NEs
fst(vw) : B snd (uv) : C

w

fnw:>fst(uw):ADBD fnv:snd(uv):ADCDIU
(fnw = fst(uw)), (fnv = snd (uv))): (ADB)AN(ADC) M
fnu = ((fnw = fst(uw)), (fnv = snd (uv))) : (AD(BAC))D((ADB)A(ADC))

DI

Programs in constructive propositional logic are somewhat uninterest-
ing in that they do not manipulate basic data types such as natural num-
bers, integers, lists, trees, etc. We introduce such data types later in this
course, following the same method we have used in the development of
logic.

Summary. To close this section we recall the guiding principles behind the
assignment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms A and deductions of A true
is a bijection.

LECTURE NOTES SEPTEMBER 5, 2017

Proofs as Programs L3.7

3 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain how
proofs are to be executed, and which results may be returned by a compu-
tation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction written M = M’ and
read “M reduces to M'”. In the second step, a computation then proceeds
by a sequence of reductions M =pr M; =g M>..., according to a fixed
strategy, until we reach a value which is the result of the computation. In
this section we cover reduction; we may return to reduction strategies in a
later lecture.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduc-
tion rules as the constructors and the proof terms corresponding to the elim-
ination rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst(M,N) —p M
snd (M,N) = N

These (computational) reduction rules directly corresponds to the proof
term analogue of the logical reductions for the local soundness from the
previous lecture. For example:

M:A N:B
\vi
(M,N): AANB
AV
fst(M,N) : A =r M:A

Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.

LECTURE NOTES SEPTEMBER 5, 2017

L3.8 Proofs as Programs

Implication. The constructor forms a function by A-abstraction, while the
destructor applies the function to an argument. In general, the application
of a function to an argument is computed by substitution. As a simple ex-
ample from mathematics, consider the following equivalent definitions

flx)=2>+2 -1 f=Xr.2?+x—1
and the computation
fB) =0z 2+ -1)3)=[3/z](z* +2-1) =3 +3-1=11

In the second step, we substitute 3 for occurrences of x in 22 4+ x — 1, the
body of the \-expression. We write [3/z](z® + v — 1) =32 + 3 — 1.

In general, the notation for the substitution of N for occurrences of u in
M is [N/u]M. We therefore write the reduction rule as

(fnru= M)N = [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term. Again, this
computational reduction directly relates to the logical reduction from the
local soundness using the substitution notation for the right-hand side:

u

u: A

M:B ..
fnru=M:ADB N:ADE
(fnru= M)N:B =r [N/uM

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

caseinl M of inlu = N |intw = O =g [M/u|N
caseinr M of inlu = N |intw = O = [M/w]O

The analogy with the logical reduction again works, for example:

u:A w:B
M:A : :
— = VL : :
inlM: AV B N:C O:C o
caseinl M of inlu = N |inrw = O : C =r [M/u]N

LECTURE NOTES SEPTEMBER 5, 2017

Proofs as Programs L3.9

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood. There is no computation rule and we will not
try to evaluate abort M.

This concludes the definition of the reduction judgment. Observe that
the construction principle for the (computational) reductions is to investi-
gate what happens when a destructor is applied to a corresponding con-
structor. This is in correspondence with how (logical) reductions for local
soundness consider what happens when an elimination rule is used in suc-
cession on the output of an introduction rule (when reading proofs top to
bottom). Next, we will prove some of properties of the reduction judgment.

Example Computations. As an example we consider a simple program
for the composition of two functions. It takes a pair of two functions, one
from A to B and one from B to C and returns their composition which
maps A directly to C.

comp : (ADB)A(BDC))D(ADC)

We transform the following implicit definition into our notation step-by-
step:
comp (f, g) (w) = g(f(w))

comp (f,g9) = fow= g(f(w))
compu = fnw = (sndu) ((fstu)(w))
comp = fnu= fnw = (sndu) ((fstu)w)

The final definition represents a correct proof term, as witnessed by the
following deduction that directly follows the proof term.

u
u:(ADB)A(BDC(C)
u ANE, ——w
u:(ADB)A(BDC) fstu: ADB w: A
AE5 OF
sndu: BD>C (fstu)w : B

(snd u) ((fstw) w) : C b

fnw = (sndu) ((fstu)w) : ADC -
(fnu = fnw = (sndu) (fstu)w)) : (ADB)A(BDC))D(ADC)

w

DI

This proof can be read off directly from the proof term we constructed
above, since it directly describes the shape of the proof and the rule to ap-
ply. For example sndu indicates that AE> has been used on u. We could
also have first conducted the proof of (AD B)A (B> C)) D> (ADC) truein

LECTURE NOTES SEPTEMBER 5, 2017

L3.10 Proofs as Programs

the same way that the above proof works and then annotate the proof with
proof terms.

We now verify that the composition of two identity functions reduces
again to the identity function. First, we verify the typing of this application.

(fnu = fnw = (sndu) ((fstu) w)) (fnx = z),(fny=1y)) : ADA

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(fnu = fnw = (sndu) ((fstu) w)) ((fnzx = z), (fny = y))
=—=r fnw= (snd{(fnzx = 2),(fny = y))) (fst{(fnx =), (fny = y))) w)
—=r fnw= (fny=y)(fst((fnz=z),(fny = y))) w)
=g fnw= (fny=y) ((fnz = 2)w)
—r fnw=(fny=yw
—r fnw=w

We see that we may need to apply reduction steps to subterms in order
to reduce a proof term to a form in which it can no longer be reduced. We
postpone a more detailed discussion of this until we discuss the operational
semantics in full.

4 Summary of Proof Terms

Judgments.
M:A M is a proof term for proposition A, see Figure 1
M = M’ M reduces to M’, see Figure 2

References

[How80] W. A. Howard. The formulae-as-types notion of construction.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 479—
490. Academic Press, 1980. Hitherto unpublished note of 1969,
rearranged, corrected, and annotated by Howard.

[ML80] Per Martin-Lof. Constructive mathematics and computer pro-
gramming. In Logic, Methodology and Philosophy of Science VI,
pages 153-175. North-Holland, 1980.

LECTURE NOTES SEPTEMBER 5, 2017

Proofs as Programs L3.11

Constructors Destructors
M:AANB
7/\/\E1

M:A N:B s fstM : A
AN
(M,N): A\B
M:ANB
— AEy
snd M : B
— T
(): T no destructor for T
U
u: A
M:B M:A>B N:A
oI DF
fnru=M:ADB MN : B
u — W
u: A w: B

M: A : :

— = v . .

inlM: AV B M:AvB N:C O:C

VE®

case M of inlu = N |intrw = O : C
N:B

— VI
intN: AV B

M : L

no constructor for L abort M : C

Figure 1: Proof term assignment for natural deduction

LECTURE NOTES SEPTEMBER 5, 2017

L3.12

Proofs as Programs

fst (M, N)
snd (M, N)

no reduction for ()
(fnru= M)N

caseinl M of inlu = N |inrw = O
caseinr M of inlu = N |inrw = O

no reduction for abort

:>R
:>R

:>R

:>R
zR

Figure 2: Proof term reductions

LECTURE NOTES

SEPTEMBER 5, 2017

	Introduction
	Propositions as Types
	Reduction
	Summary of Proof Terms

