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1 Introduction

In this lecture, we introduce universal and existential quantification, mak-
ing the transition from purely propositional logic to first-order intuitionistic
logic. As usual, we follow the method of using introduction and elimina-
tion rules to explain the meaning of the connectives. An important aspect of
the treatment of quantifiers is that it should be completely independent of
the domain of quantification. We want to capture what is true of all quanti-
fiers, rather than those applying to natural numbers or integers or rationals
or lists or other type of data. We will therefore quantify over objects of
an unspecified (arbitrary) type τ . Whatever we derive, will of course also
hold for specific domain (for example, τ = nat). The basic judgment con-
necting objects t to types τ is t : τ . We will refer to this judgment here, but
not define any specific instances until later in the course when discussing
data types. What emerges as a important judgmental principle is that of a
parametric judgment and the associated substitution principle for objects.

2 Universal Quantification

First, universal quantification, written as ∀x:τ. A(x) and pronounced “for
all x of type τ , A(x)”. Here x is a bound variable and can therefore be
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L5.2 Quantification

renamed so that ∀x:τ. A(x) and ∀y:τ. A(y) are equivalent. When we write
A(x) we mean an arbitrary proposition which may depend on x.

For the introduction rule we require that A(a) be true for arbitrary a. In
other words, the premise contains a parametric judgment, explained in more
detail below.

a : τ...
A(a) true

∀x:τ. A(x) true
∀Ia

It is important that a be a new parameter, not used outside of its scope,
which is the derivation between the new hypothesis a : τ and the conclu-
sion A(a) true. In particular, it may not occur in ∀x:τ. A(x). The rule makes
sense: A proof that A(x) holds for all x of type τ considers any arbitrary a
of type τ and shows thatA(a) true. But it is important that awas indeed ar-
bitrary and not constrained by anything other than its type τ . Observe that
the parameter a is of a different kind than the label for the assumption a in
the implication introduction rule⊃I , because a is a parameter for objects of
type τ while u is a label of a proposition, and in fact the rules use different
judgments. As a notational reminder for this difference, we not only use
different names but also do not attach the parameter a to the rule bar.

If we think of this rule as the defining property of universal quantifi-
cation, then a verification of ∀x:τ. A(x) describes a construction by which
an arbitrary t : τ can be transformed into a proof of A(t) true. The corre-
sponding elimination rule ∀E, thus, accepts some t:τ and concludes that
A(t) true:

∀x:τ. A(x) true t : τ

A(t) true
∀E

We must verify that t : τ so that A(t) is a well-formed proposition. The
elimination rule makes sense: if A(x) is true for all x of type τ , and if t is
a particular term of type τ , then A(t) is true as well for this particular t of
type τ .

The local reduction uses the following substitution principle for parametric
judgments:

If

a : τ
D
J(a) and

E
t : τ then

E
t : τ
[t/a]D
J(t)
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Quantification L5.3

That is, if D is a deduction deducing J(a) from the judgment a : τ about
parameter a, and if E is a deduction that term t is of type τ , we can substi-
tute the term t for parameter a throughout the derivation D to obtain the
derivation on the right that no longer depends on parameter a and uses
the deduction E to show that t has the appropriate type. The right hand
side is constructed by systematically substituting t for a in D and the judg-
ments occurring in it. As usual, this substitution must be capture avoiding to
be meaningful. It is the substitution into the judgments themselves which
distinguishes substitution for parameters from substitution for hypotheses.
The substitution into the judgments is necessary here since the propositions
in the judgments in D may still mention parameter a, which needs to be
substituted to become t instead.

The local reduction showing local soundness of universal quantification
then exploits this substitution principle.

a : τ
D

A(a) true

∀x:τ. A(x) true
∀Ia E

t : τ

A(t) true
∀E =⇒R

E
t : τ
[t/a]D
A(t) true

The local expansion showing local completeness of universal quantifi-
cation introduces a parameter which we can use to eliminate the universal
quantifier.

D
∀x:τ. A(x) true =⇒E

D
∀x:τ. A(x) true a : τ

A(a) true
∀E

∀x:τ. A(x) true
∀Ia

As a simple example, consider the proof that universal quantifiers dis-
tribute over conjunction.

∀x:τ. (A(x) ∧B(x)) true
u

a : τ

A(a) ∧B(a) true
∀E

A(a) true
∧E1

∀x:τ. A(x) true
∀Ia

∀x:τ. (A(x) ∧B(x)) true
u

b : τ

A(b) ∧B(b) true
∀E

B(b) true
∧E2

∀x:τ. B(x) true
∀Ib

(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
∧I

(∀x:τ. (A(x) ∧B(x)))⊃ (∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
⊃Iu
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Note how crucial it is that the parameter a in ∀Ia is new, otherwise,
the rules would unsoundly prove that a predicate C that is reflexive (i.e.,
C(x, x) holds for all x) holds for all x, y, which is clearly not the case:

∀x:τ. C(x, x) true
u

a : τ

C(a, a) true
∀E

∀y:τ. C(a, y) true
∀Ia??

∀x:τ. ∀y:τ. C(x, y) true
∀Ia

(∀x:τ. C(x, x))⊃ (∀x:τ. ∀y:τ. C(x, y)) true
⊃Iu

3 Existential Quantification

The existential quantifier is more difficult to specify, although the introduc-
tion rule seems innocuous enough. If there is a t of type τ for which a proof
of A(t) true succeeds, then there is a proof of ∃x:τ. A(x) true witnessed by
said t.

t : τ A(t) true

∃x:τ. A(x) true
∃I

The elimination rules creates some difficulties. We cannot write
∃x:τ. A(x) true

A(t) true
∃E?

because we do not know for which t is is the case that A(t) holds. It is easy
to see that local soundness would fail with this rule, because we would
prove ∃x:τ. A(x) with one witness t and then eliminate the quantifier using
another object t′ about which we have no reason to believe it would satisfy
A(t′) true.

The best we can do is to assume that A(a) is true for some new param-
eter a that, because it is new, we do not know anything about. The scope
of this assumption is limited to the proof of some conclusion C true which
does not mention a (which must be new).

∃x:τ. A(x) true

a : τ A(a) true
u

...
C true

C true
∃Ea,u
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Here, the scope of the hypotheses a and u is the deduction on the right,
indicated by the vertical dots. In particular, C may not depend on a since a
would otherwise escape its scope. We use this crucially in the local reduc-
tion for local soundness to see that C is unaffected when substituting t for
a in the proof.

D
t : τ

E
A(t) true

∃x:τ. A(x) true
∃I

a : τ A(a) true
u

F
C true

C true
∃Ea,u

=⇒R

D
t : τ

E
A(t) true

u

[t/a]F
C true

The reduction requires two substitutions, one for a parameter a and one for
a hypothesis u.

The local expansion showing local completeness is patterned after the
disjunction, which also—somewhat surprisingly—uses the elimination rule
below the introduction rule.

D
∃x:τ. A(x) true =⇒E

D
∃x:τ. A(x) true

a : τ A(a) true
u

∃x:τ. A(x) true
∃I

∃x:τ. A(x) true
∃Ea,u

As an example of quantifiers we show the equivalence of ∀x:τ. A(x)⊃C
and (∃x:τ. A(x)) ⊃ C, where C does not depend on x. Generally, in our
propositions, any possible dependence on a bound variable is indicated by
writing a general predicate A(x1, . . . , xn). We do not make explicit when
such propositions are well-formed, although appropriate rules for explicit
A could be given.

When looking at a proof, the static representation on the page is an in-
adequate image for the dynamics of proof construction. As we did earlier,
we give two examples where we show the various stages of proof construc-
tion.

...
((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true

The first three steps can be taken without hesitation, because we can always
apply implication and universal introduction from the bottom up without
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possibly missing a proof.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

...
C true

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

At this point the conclusion is atomic, so we must apply an elimination
to an assumption if we follow the strategy of introductions bottom-up and
eliminations top-down. The only possibility is implication elimination, since
a : τ and A(a) true are atomic. This gives us a new subgoal.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

...
∃x:τ. A(x)

C true
⊃E

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

At this point it is easy to see how to complete the proof with an existential
introduction.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

∃x:τ. A(x)
∃I

C true
⊃E

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

We now consider the reverse implication.

...
(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
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From the initial goal, we can blindly carry out two implication introduc-
tions, bottom-up, which yields the following situation.

∃x:τ. A(x) true
w
∀x:τ. A(x)⊃ C true

u

...
C true

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

No we have two choices: existential elimination applied to w or universal
elimination applied to u. However, we have not introduced any terms, so
only the existential elimination can go forward.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

At this point we need to apply another elimination rule to an assumption.
We don’t have much to work with, so we try universal elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ

A(a)⊃ C true
∀E

A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu
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Now we can fill the gap with an implication elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ

A(a)⊃ C true
∀E

A(a) true
v

C true
⊃E

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

Finally, note again how crucial it is that the parameter a is actually new
and does not occur in the conclusionC, otherwise we could prove unsound
things:

∃x:τ. C(x) true
u

a : τ C(a) true
w

C(a) true
∀Ea,w??

(∃x:τ. C(x))⊃ C(a) true
⊃Iu

4 Verifications and Uses

In order to formalize the proof search strategy, we use the judgments A has
a verification (A ↑) and A may be used (A ↓) as we did in the propositional
case. Universal quantification is straightforward:

a : τ...
A(a) ↑

∀x:τ. A(x) ↑
∀Ia

∀x:τ. A(x) ↓ t : τ

A(t) ↓
∀E

We do not assign a direction to the judgment for typing objects, t : τ .
Verifications for the existential elimination are patterned after the dis-

junction: we translate a usable ∃x:τ. A(x) into a usable A(a) with a limited
scope, both in the verification of some C.

t : τ A(t) ↑

∃x:τ. A(x) ↑
∃I

∃x:τ. A(x) ↓

a : τ A(a) ↓
u

...
C ↑

C ↑
∃Ea,u
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As before, the fact that every true proposition has a verification is a kind
of global version of the local soundness and completeness properties. If we
take this for granted (since we do not prove it until later), then we can use
this to demonstrate that certain propositions are not true, parametrically.

For example, we show that (∃x:τ. A(x)) ⊃ (∀x:τ. A(x)) is not true in
general. After the first two steps of constructing a verification, we arrive at

∃x:τ. A(x) ↓
u

a : τ
...

A(a) ↑

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃ (∀x:τ. A(x)) ↑
⊃Iu

At this point we can only apply existential elimination, which leads to

∃x:τ. A(x) ↓
u

b : τ A(b) ↓
v

a : τ
...

A(a) ↑

A(a) ↑ ∃Eb,v

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃ (∀x:τ. A(x)) ↑
⊃Iu

We cannot close the gap, because a and b are different parameters. We can
only apply existential elimination to assumption u again. But this only cre-
ates c : τ and A(c) ↓ for some new c, so have made no progress. No matter
how often we apply existential elimination, since the parameter introduced
must be new, we can never prove A(a).

5 Proof Terms

Going back to our very first lecture, we think of an intuitionistic proof of
∀x:τ.∃y:σ.A(x, y) as exhibiting a function that, for every x:τ constructs a
witness y:σ and a proof that A(x, y) is true.

So the proof term for a universal quantifier should be a function and for
an existential quantifier a pair consisting of a witness and a proof that the
witness is correct.
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We do not invent a new notation here, but reuse the notation for func-
tions and applications.

a : τ
...

M : A(a)

(fn a⇒M) : ∀x:τ.A(x)
∀Ia

M : ∀x:τ.A(x) t : τ

M t : A(t)
∀E

Note that the proof term M can of course depend on c, but we explicitly
mark dependency only in propositions. The local reduction and expansions
straightforwardly adapt the previous rules for functions.

(fn a⇒M) t =⇒R [t/a]M

M : ∀x:τ.A(x) =⇒E (fn a⇒M a) for a not in M

You should be able to correlate these reductions with the local reductions
and expansions on proofs given earlier in this lecture.

For existential introduction the proof term is a pair, but the existen-
tial elimination is an interesting case because it does not just extract the
first and second component of this pair. Instead, we have a new form that
names the components of the pair, following the shape of the elimination
rule.

t : τ M : A(t)

(t,M) : ∃x:τ.A(x)
∃I

M : ∃x:τ.A(x)

a : τ u : A(a)
u

...
N : C

(let (a, u) =M inN) : C
∃Ea,u

The local reduction will decompose the pair as expected; the reduction
decomposes it and then puts it back together.

let (a, u) = (t,M) inN =⇒R [M/u][t/a]N

M : ∃x:τ.A(x) =⇒E let (a, u) =M in (a, u)
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6 Rule Summary

a : τ...
A(a) true

∀x:τ. A(x) true
∀Ia

∀x:τ. A(x) true t : τ

A(t) true
∀E

t : τ A(t) true

∃x:τ. A(x) true
∃I

∃x:τ. A(x) true

a : τ A(a) true
u

...
C true

C true
∃Ea,u
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