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1 Introduction

The sequent calculus we have introduced so far maintains a close corre-
spondence to natural deductions or, more specifically, to verifications. One
consequence is persistence of antecedents: once an assumption has been intro-
duced in the course of a deduction, it will remain available in any sequent
above this point. While this is appropriate in a foundational calculus, it is
not ideal for proof search since rules can be applied over and over again
without necessarily making progress. We therefore develop a second se-
quent calculus and then a third in order to make the process of bottom-
up search for a proof more efficient by reducing unnecessary choices in
proof search. By way of the previous link of the sequent calculus with
verification-style natural deductions, this lecture will, thus, give rise to a
more efficient way of coming up with natural deduction proofs.

This lecture marks the begin of a departure from the course of the lec-
tures so far, which, broadly construed, focused on understanding what a
constructive proof is and what can be read off or done once one has such a
proof. Now we begin to move toward the question of how to find such a
proof in the first place.

More ambitiously, we are looking for a decision procedure for intuitionis-
tic propositional logic. Specifically, we would like to prove that for every
proposition A, either =⇒ A or not =⇒ A. Based on experience, we sus-
pect this could be proved by induction on A, but this will fail for various
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L11.2 Propositional Theorem Proving

reasons. We somehow need to generalize it to prove that for every sequent,
either Γ =⇒ A or not. That, however, has its own problems because the
premises of the rules are more complex than the conclusion so it is not clear
how one might apply an induction hypothesis.

First order of business then is to find a new, more restrictive system
that eliminates redundancy and makes the premises of the rules smaller
than the conclusion. This restricted sequent calculus will not quite satisfy
our goal yet, but be useful nonetheless.

The second step will be to refine our analysis of the rules to see if we
can design a calculus were all premises are smaller than the conclusion in
some well-founded ordering. Dyckhoff [Dyc92] noticed that we can make
progress by considering the possible forms of the antecedent of the im-
plication. In each case we can write a special-purpose rule for which the
premises are smaller than conclusion. The result is a beautiful calculus
which Dyckhoff calls contraction-free because there is no rule of contraction,
and, furthermore, the principal formula of each left rule is consumed as
part of the rule application rather than copied to any premise, so we never
duplicate reasoning (which we could if there were a contraction rule).

2 A More Restrictive Sequent Calculus1

Ideally, once we have applied an inference rule during proof search (that is,
bottom-up), we should not have to apply the same rule again to the same
proposition. Since all rules decompose formulas, if we had such a sequent
calculus, we would have a simple and clean decision procedure. As it turns
out, there is a fly in the ointment, but let us try to derive such a system.

We write Γ −→ C for a sequent whose deductions try to eliminate
principal formulas as much as possible. We keep the names of the rules,
since they are largely parallel to the rules of the original sequent calculus,
Γ =⇒ C.

Conjunction. The right rule works as before; the left rule extracts both
conjuncts so that the conjunction itself is no longer needed.

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

1This calculus was mentioned in an earlier lecture, without proof. We show it here as a
starting point for the contraction-free calculus, as we did in lecture.
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Observe that for both rules, all premises have smaller sequents than the
conclusion if one counts the number of connectives in a sequent. So apply-
ing either rule obviously made progress toward simplifying the sequent.

It is easy to see that these rules are sound with respect to the ordinary
sequent calculus rules. Soundness here is the property that if Γ −→ C then
Γ =⇒ C. This is straightforward since ∧R is the same rule and ∧L is the
same as ∧L1 followed by ∧L2 followed by weakening the original A ∧ B
away. Completeness if generally more difficult. What we want to show is
that if Γ =⇒ C then also Γ −→ C, where the rules for the latter sequents
are more restrictive, by design. The proof of this will eventually proceed by
induction on the structure of the given deduction D and appeal to lemmas
on the restrictive sequent calculus. For example:

Case: (of completeness proof)

D =

D1

Γ, A ∧B,A =⇒ C

Γ, A ∧B =⇒ C
∧L1

Γ, A ∧B,A −→ C By i.h. on D1

Γ, A,B −→ A By identity for −→
Γ, A ∧B −→ A By ∧L
Γ, A ∧B −→ C By cut for −→

The induction hypothesis is applicable to D1 because, even if it is a longer
sequent, D1 is a shorter proof than D. We see that identity and cut for the
restricted sequent calculus are needed to show completeness in the sense
described above. Fortunately, they hold (see further notes at the end of this
section). We will not formally justify many of the rules, but give informal
justifications or counterexamples.

Truth. There is a small surprise here, in that, unlike in natural deduction
which had no elimination rule for >, we can have a left rule for >, which
eliminates it from the antecedents to make progress (cleanup). It is analo-
gous to the zero-ary case of conjunction.

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L
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Atomic propositions. They are straightforward, since the initial sequents
do not change.

Γ, P −→ P
id

Disjunction. The right rules to do not change; in the left rule we can elim-
inate the principal formula.

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

Intuitively, the assumption A ∨ B can be eliminated from both premises
of the ∨L rule, because the new assumptions A and B are stronger. More
formally:

Case: (of completeness proof)

D =

D1

Γ, A ∨B,A =⇒ C
D2

Γ, A ∨B,B =⇒ C

Γ, A ∨B =⇒ C
∨L

Γ, A ∨B,A −→ C By i.h. on D1

Γ, A −→ A By identity for −→
Γ, A −→ A ∨B By ∨R1

Γ, A −→ C By cut for −→

Γ, A ∨B,B −→ C By i.h. on D2

Γ, B −→ B By identity for −→
Γ, B −→ A ∨B By ∨R2

Γ, B −→ C By cut for −→

Γ, A ∨B −→ C By rule ∨L

Falsehood. There is no right rule, and the left rule has no premise, which
means it transfers directly.

no ⊥R rule Γ,⊥ −→ C
⊥L
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Implication. In all the rules so far, all premises have fewer connectives
than the conclusion. For implication, we will not be able to maintain this
property.

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

Here, the assumption A ⊃ B persists in the first premise but not in the
second. While the assumption B is more informative than A ⊃ B, so only
B is kept in the second premise, this is not the case in the first premise.
Unfortunately, A⊃B may be needed again in that branch of the proof. An
example which requires the implication more than once is−→ ¬¬(A∨¬A),
where ¬A = A⊃⊥ as usual. Without that additional assumption (marked
in red below), the proof would not work:

¬(A ∨ ¬A), A −→ A
id

¬(A ∨ ¬A), A −→ A ∨ ¬A
∨R1

A,⊥ −→ ⊥
⊥L

¬(A ∨ ¬A), A −→ ⊥
⊃L

¬(A ∨ ¬A) −→ ¬A
⊃R

¬(A ∨ ¬A) −→ A ∨ ¬A
∨R2

⊥ −→ ⊥
⊥L

¬(A ∨ ¬A) −→ ⊥
⊃L

−→ ¬¬(A ∨ ¬A)
⊃R

Now all rules have smaller premises (if one counts the number of logical
constants and connectives in them) except for the ⊃L rule. We will address
the issue with ⊃L in Section 4.

Nevertheless, we can interpret the rules as a decision procedure if we
make the observation that in bottom-up proof search we are licensed to fail
a branch if along it we have a repeating sequent. If there were a deduction,
we would be able to find it applying a different choice at an earlier sequent,
lower down in the incomplete deduction. If there is a proof with repeating
sequents, there also is a proof without repeating sequents, by applying the
proof that was used for the later occurrence of the repeating sequent al-
ready to the first occurrence of said sequent. If we also apply contraction
(which is admissible in the restricted sequent calculus) to argue that we can
remove duplicate formulas from the antecedent, then there are only finitely
many sequents because antecedents and succedents are composed only of
subformulas of our original proof goal.
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One can be much more efficient in loop checking than this [How98,
Chapter 4], but just to see that intuitionistic propositional calculus is de-
cidable, this is sufficient. In fact, we could have made this observation on
the original sequent calculus, although it would be even further from a re-
alistic implementation.

3 Metatheory of the Restricted Sequent Calculus

We only enumerate the basic properties.

Theorem 1 (Weakening) If Γ −→ C then Γ, A −→ C with a structurally iden-
tical deduction.

Theorem 2 (Atomic contraction) If Γ, P, P −→ C then Γ, P −→ C with a
structurally identical deduction

Theorem 3 (Identity) A −→ A for any proposition A.

Proof: By induction on the structure of A. �

Theorem 4 (Cut) If Γ −→ A and Γ, A −→ C then Γ −→ C

Proof: Analogous to the proof for the ordinary sequent calculus in Lecture
8. In the case where the first deduction is initial, we use atomic contraction.
�

Theorem 5 (Contraction) If Γ, A,A −→ C then Γ, A −→ C.

Proof: Γ, A −→ A by identity and weakening. Therefore Γ, A −→ C by
cut. �

Theorem 6 (Soundness wrt. =⇒) If Γ −→ A then Γ =⇒ A.

Proof: By induction on the structure of the given deduction. �

Theorem 7 (Completeness wrt. =⇒) If Γ =⇒ A then Γ −→ A.

Proof: By induction on the structure of the given deduction, appealing to
identity and cut in many cases. See the cases for∧L1 and∨L in the previous
section. �
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We repeat the rules of the restrictive sequent calculus here for reference.

Γ, P −→ P
id

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

4 Refining the Left Rule for Implication

In order to find a more efficient form of the problematic rule ⊃L, we con-
sider each possibility for the antecedent of the implication in turn. We will
start with more obvious cases to find out the principles behind the design
of the rules.

Truth. Consider a sequent

Γ,>⊃B −→ C

Can we find a simpler proposition expressing the same as > ⊃ B? Yes,
namely just B, since (> ⊃ B) ≡ B. So we can propose the following spe-
cialized rule:

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

This rule derives from ⊃L and >R, which are both sound.
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Falsehood. Consider a sequent

Γ,⊥⊃B −→ C.

Can we find a simpler proposition expressing the same contents? Yes,
namely >, since (⊥ ⊃ B) ≡ >. But > on the left-hand side can be elimi-
nated by >L, so we can specialize the general rule as follows:

Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Soundness of this rule also follows from weakening. Are we losing infor-
mation compared to applying ⊃L here? No because that would require a
proof of Γ,⊥⊃B −→ ⊥which will succeed if ⊥ can be proved from Γ, but
then there also is a direct proof without using ⊥⊃B.

Disjunction. Now we consider a sequent

Γ, (A1 ∨A2)⊃B −→ C

Again, we have to ask if there is a simpler equivalent formula we can use
instead of (A1 ∨ A2) ⊃ B. If we consider the ∨L rule, we might consider
(A1 ⊃B) ∧ (A2 ⊃B). A little side calculation confirms that, indeed,

((A1 ∨A2)⊃B) ≡ ((A1 ⊃B) ∧ (A2 ⊃B))

The computational intuition is that getting a B out of having either a A1 or
an A2 is equivalent to separate ways of getting a B out of a A1 as well as a
way of getting a B out of an A2. We can exploit this, playing through the
rules as follows

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, (A1 ⊃B) ∧ (A2 ⊃B) −→ C
∧L

Γ, (A1 ∨A2)⊃B −→ C
equiv

This suggests the specialized rule

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, (A1 ∨A2)⊃B −→ C
∨⊃L

The question is whether the premise is really smaller than the conclusion
in some well-founded measure. We note that both A1 ⊃ B and A2 ⊃ B are
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smaller than the original formula (A1 ∨ A2) ⊃ B. Replacing one element
in a multiset by several, each of which is strictly smaller according to some
well-founded ordering, induces another well-founded ordering on multi-
sets [DM79]. So, the premises are indeed smaller in the multiset ordering.
Operationally, the effect of ∨⊃L is to separately consider the smaller impli-
cations A1 ⊃B and A2 ⊃B.

Conjunction. Next we consider

Γ, (A1 ∧A2)⊃B −→ C

In this case we can create an equivalent formula by currying using that
(A1 ∧A2)⊃B ≡ A1 ⊃ (A2 ⊃B).

Γ, A1 ⊃ (A2 ⊃B) −→ C

Γ, (A1 ∧A2)⊃B −→ C
∧⊃L

This formula is not strictly smaller, but we can make it so by giving con-
junction a weight of 2 while counting implications as 1. Fortunately, this
weighting does not conflict with any of the other rules we have. Opera-
tionally, the effect of ∧⊃L is to first consider what to make of the first as-
sumed conjunct A1 by the other rules and then subsequently consider the
second conjunct A2.

Atomic propositions. How do we use an assumption P ⊃ B? We can
conclude if we also know P , so we restrict the rule to the case where P is
already among the assumption.

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Clearly, the premise is smaller than the conclusion. If we were to use ⊃L
instead, P ⊃B would remain in the first premise. The intuitive reason why
we do not have to keep it is because the only way to make use of P ⊃ B is
to produce a P . But if we have such an atomic P , the above rule already
establishes B. Note that, unlike a premise Γ −→ P , the premise P ∈ Γ
will obviously never search for possible proof rule applications within Γ.
Indeed, those would not be useful, because we might as well apply them
first before splitting into two premises.
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Implication. Last, but not least, we consider the case

Γ, (A1 ⊃A2)⊃B −→ C

We start by playing through the left rule ⊃L for this particular case be-
cause, as we have already seen, an implication on the left does not directly
simplify when interacting with another implication.

Γ, (A1 ⊃A2)⊃B,A1 −→ A2

Γ, (A1 ⊃A2)⊃B −→ A1 ⊃A2

⊃R
Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃L

The second premise is smaller and does not require any further attention.
For the first premise, we need to find a smaller formula that is equivalent
to ((A1 ⊃ A2) ⊃ B) ∧ A1. The conjunction here is a representation of two
distinguished formulas in the context. Fortunately, we find

((A1 ⊃A2)⊃B) ∧A1 ≡ (A2 ⊃B) ∧A1

which can be checked easily since A1⊃A2 is equivalent to A2 if we already
have A1. This leads to the specialized rule

Γ, A2 ⊃B,A1 −→ A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

Indeed, all premises of ⊃⊃L are simpler now, because A2 ⊃ B has strictly
less operators than (A1⊃A2)⊃B and its operators are of the same weight.

There is a minor variation of this rule, which is also both sound and
complete, and the premises are all smaller (by the multiset ordering) than
the conclusion.

Γ, A2 ⊃B −→ A1 ⊃A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

They are equivalent because, in general, Γ −→ A1 ⊃A2 iff Γ, A1 −→ A2.
This concludes the presentation of the specialized rules so that the only

rule that kept its principal formula around, ⊃L, is no longer needed since
all forms of implications are covered. The complete set of rule is summa-
rized in Figure 1.

Even though these rules can interpreted as defining a decision proce-
dure, such a procedure would not be practical except for small examples
because there is too much nondeterminism in choosing which rule to ap-
ply when. We will discuss this in the next lecture.
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P ∈ Γ

Γ −→ P
id

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Γ, A1 ⊃ (A2 ⊃B) −→ C

Γ, (A1 ∧A2)⊃B −→ C
∧⊃L

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

Γ, A1 ⊃B,A2 ⊃B −→

Γ, (A1 ∨A2)⊃B −→ C
∨⊃L Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Γ, A2 ⊃B,A1 −→ A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

Figure 1: Contraction-free sequent calculus
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