
Lecture Notes on
Prolog

15-317: Constructive Logic
Frank Pfenning

Lecture 15
October 24, 2017

1 Introduction

Prolog is the first and still standard backward-chaining logic programming
language. While it is somewhat dated, it contains many interesting ideas
and is appropriate for certain types of applications that natural involve
symbolic representations, backtracking, or unification. On the other, it has
more than its typical share of pitfalls and problems, due to its dynamically
typed nature, the prevalence of failure and backtracking, and the interac-
tions between logical and extralogical predicates.

In this lecture we give a somewhat nonstandard introduction to Prolog
by introducing a number of critical features using two examples: (1) basic
computation on binary numbers in little endian representation, and (2) a
proof checker based Lecture 13 on certifying theorem provers.

2 Binary Numbers

Unary numbers, such as used in the Peano’s axioms, are foundationally
adequate, but not useful for practical computation due to the size of their
representation. Instead, we use binary numbers. Representing them as
terms in logic is straightforward, we just have to decide on the particulars.
It turns out a so-called “little endian” representation where the least signif-
icant bits is the outermost constructor is most convenient. This is because
when defining and operation on two numbers, say, the least significant bits

LECTURE NOTES OCTOBER 24, 2017

http://www.cs.cmu.edu/~fp/courses/15317-f17/lectures/13-certifying.pdf

L15.2 Prolog

of both numbers line up correctly, and then we can recurse on the remain-
der of the numbers representing the higher bits.

Binary numbers M ::= b0(M) | b1(M) | e

where the (mathematical) translations between (mathematical) values and
their representations are given by

p0q = e xey = 0
p2nq = b0(pnq) for n > 0 xb0(M)y = 2 xMy
p2n+ 1q = b1(pnq) xb1(M)y = 2 xMy + 1

Now we can specify the successor relation inc(M,N) such thatN represents
the success of M by the following three rules:

inc(e, b1(e))
ince

inc(b0(M), b1(M))
inc0

inc(M,N)

inc(b1(M), b0(N))
inc1

In these rule, we use upper case variables for schematic variables in the
rules, which is consistent with the Prolog syntax. We use lower case identi-
fiers for predicates (inc, so far), constants (e), and function symbols (b0 and
b1). In Prolog syntax, we write a rule

J1 . . . Jn

J

as
J :- J1, . . . , Jn.

which we read as “J if J1 through Jn”. We call the rule a clause, J the head
of the clause and J1, . . . , Jn the body of the clause. If there are zero premises,
the rules is simply written as ‘J.’. Transcribing the rules then yields the
following Prolog program. We call the predicate inc_ (with a trailing un-
derscore) to distinguish it from the predicate inc which fixes some of its
problems.

inc_(e,b1(e)).
inc_(b0(M),b1(M)).
inc_(b1(M),b0(N)) :- inc_(M,N).

As we will see, there are some problems with this program. But first, let’s
fire up the Gnu Prolog interpreter to run this program on some inputs. The
first line after the prompt | ?- is Prolog’s notation for loading a program
from a file, here bin.pl.

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.3

% gprolog
GNU Prolog 1.4.4 (64 bits)
Compiled Apr 23 2013, 17:26:17 with /opt/local/bin/gcc-apple-4.2
By Daniel Diaz
Copyright (C) 1999-2013 Daniel Diaz
| ?- [’bin.pl’].
...
(1 ms) yes
| ?-

At the prompt we can now type queries and have the interpreter simul-
taneously search for a proof and an instantiation of the free variables in the
query. Once a solution has been found, the interpreter may give you the
opportunity to search for other solutions, or simply return to the prompt if
it can see no further solutions are possible. For example, we can increment
5 to get 6.

| ?- inc_(b1(b0(b1(e))),N).

N = b0(b1(b1(e)))

yes
| ?-

We can also give several goals conjunctively, and they will be solved in
sequence. The following increments 5 three times to obtain 8.

| ?- inc_(b1(b0(b1(e))),N1), inc_(N1,N2), inc_(N2,N3).

N1 = b0(b1(b1(e)))
N2 = b1(b1(b1(e)))
N3 = b0(b0(b0(b1(e))))

yes
| ?-

The fact that Prolog is dynamically typed, leads to some unexpected
and meaningless answers:

| ?- inc_(b0(some_random_junk), N).

N = b1(some_random_junk)

LECTURE NOTES OCTOBER 24, 2017

L15.4 Prolog

This comes under the heading of “garbage-in, garbage-out”, but it is still dis-
concerting this would be claimed as true rather than meaningless.

Now let’s try to run the predicate “in reverse” to calculate the predeces-
sor of a binary number, in this case 6.

| ?- inc_(M,b0(b1(b1(e)))).

M = b1(b0(b1(e))) ? ;

no
| ?-

Indeed, we obtain 5! Prolog asks if we would like to search for another
solution, we type the semicolon verb’;’ and it confirms there are no further
solutions. So far, things look good. Let’t try the predecessor of 0, which
should not exist.

| ?- inc_(M,e).

no
| ?-

Once again correct. Let’s try the predecessor of 1:

| ?- inc_(M,b1(e)).

M = e ? ;

M = b0(e) ? ;

no
| ?-

Here we have a surprise: we get two answers! The second one also
morally represents the number 2 · 0 = 0, but it is not in standard form since
it has a leading bit b0. The problem is that both the first and second rules
apply to this query

inc_(e,b1(e)).
inc_(b0(M),b1(M)).
inc_(b1(M),b0(N)) :- inc_(M,N).

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.5

Returning an answer not in standard form is a problem only if we want
to always maintain standard form (which seems like a good idea). But
even if we do not, the fact that the innocuous looking predicate returns a
second answer upon backtracking will almost certainly lead to unintended
consequences wherever this predicate is used.

If we want to run this predicate with the mode inc_(-std, +std)
then we need to prevent the second solution by distinguishing the cases
for M in the middle clause.

inc(e,b1(e)).
inc(b0(b0(M)),b1(b0(M))).
inc(b0(b1(M)),b1(b1(M))).
inc(b1(M),b0(N)) :- inc(M,N).

Now b0(e) is ruled out, and the problem disappears:

| ?- inc(M,b1(e)).

M = e ? ;

no
| ?-

Here is one way to define what it means to be in standard form

std(e).
% no case for std(b0(e))
std(b0(b0(N))) :- std(b0(N)).
std(b0(b1(N))) :- std(b1(N)).
std(b1(N)) :- std(N).

We will see another way in the next lecture.

3 Checking Proof Terms

We now move on to another example, which introduces a number of other
features of Prolog: proof checking. The rules were introduced in Lecture
13 and we only summarize the fragment with implication and conjunction
here.

Checkable terms M,N ::= (M,N) | (fn u⇒M) | R
Synthesizing terms R ::= u | fstR | sndR | RM

Ordered contexts Ω ::= . | (u : A ↓) · Ω

LECTURE NOTES OCTOBER 24, 2017

http://www.cs.cmu.edu/~fp/courses/15317-f17/lectures/13-certifying.pdf
http://www.cs.cmu.edu/~fp/courses/15317-f17/lectures/13-certifying.pdf

L15.6 Prolog

We use the ordered context so we can check terms such as

` (fn x⇒ fn x⇒ x) : a⊃ (b⊃ b)

where x refers to the innermost binding of x, but not to any other ones:

6` (fn x⇒ fn x⇒ x) : a⊃ (b⊃ a)

We have the following rules.

Ω `M : A ↑ Ω ` N : B ↑

Ω ` (M,N) : A ∧B ↑
∧I

(u : A ↓) · Ω `M : B ↑

Ω ` (fn u⇒M) : A⊃B ↑
⊃Iu

Ω ` R : A ↓
Ω ` R : A ↑

↓↑

(u : A ↓) · Ω ` u : A ↓
var=

w 6= u Ω ` u : A ↓

(w : B ↓) · Ω ` u : A ↓
var 6=

Ω ` R : A ∧B ↓
Ω ` fstR : A ↓

∧E1

Ω ` R : A ∧B ↓
Ω ` sndR : B ↓

∧E2

Ω ` R : A⊃B ↓ Ω `M : A ↑
Ω ` RM : B ↓

⊃E

We have the intuition that these rules describe an algorithm, but now the
(almost) really do describe a program, in Prolog! We have two predicates,
one (check/3, which means check with 3 arguments) in which Ω, M , and
A must all be given and it succeeds or fails, and synth/3 in which Ω and
R are given and it synthesizes A or fails.

check(+O, +M, +A)
synth(+O, +R, -A)

The first rule is easy to translate, using the constructors pair(M,N) for
(M,N) and and(A,B) for A ∧B:

check(O, pair(M,N), and(A,B)) :-
check(O, M, A),
check(O, N, B).

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.7

In the second rule,⊃I , we have to add a variable and its type to the front of
the list Ω. The syntax for lists in Prolog allows several different notations.
We have the empty list [], and we have a constructor which takes an ele-
ment X and adds it to the front of the list Xs with ’.’(X,Xs) Here, use of
“dot” requires single quotes so it is not confused with the end-of-clause pe-
riod. An alternative notation for ’.’(X,Xs) is [X | Xs], which is com-
monly used. Finally we can also write out lists as with [1,2,3,4]. All of
the following denote the same list:

[1,2,3,4] [1|[2,3,4]] [1,2|[3,4]]
’.’(1,[2,3,4]) ’.’(1,’.’(2,’.’(3,’.’(4,[]))))
[1|[2|[3|[4|[]]]]]

We use the most common syntax to add tp(X,A) to the front of the context
O, where tp/2 is a new Prolog term constructor.

check(O, fun(X,M), imp(A,B)) :-
check([tp(X,A)|O], M, B).

If neither of these two clauses match, we could be looking at a synthesizable
term R, so we should try to synthesize a type for it and compare it to the
given one.

check(O, R, A) :- synth(O, R, B), A = B.

Here we use the built-in equality predicate to unifyA andB. In this case, for
a mode-correct query,A is given and input to check andB will be returned
by synth, so the comparison is just an equality test, not full unification.

The synthesis judgment is again straightforward for pairs.

synth(O, fst(M), A) :- synth(O, M, and(A,B)).
synth(O, snd(M), B) :- synth(O, M, and(A,B)).

We can see this is mode-correct for synth(+, +, -). In the head of the
clause, we know O and fst(M) and therfore M. Now we can appeal to the
hypothesis that and(A,B) will be known if the subgoal succeeds, which
means A is known, which is what we needed to show.

In the case of application app(R,M) we just need to be careful to solve
the two subgoals in the right order.

synth(O, app(R,M), B) :-
synth(O, R, imp(A,B)),
check(O, M, A).

LECTURE NOTES OCTOBER 24, 2017

L15.8 Prolog

If we had switched them, as in

synth(O, app(R,M), B) :-
check(O, M, A), % bug here!
synth(O, R, imp(A,B)).

it would not be mode correct: when we call check(O, M, A) we do not
yet know A, which is required for check/3.

Finally we have two rules for variables, where we either find X at the
head of the list, or look for it in the tail.

% warning: these have a bug!
synth([tp(X,A)|O], X, A).
synth([tp(Y,B)|O], X, A) :- synth(O, X, A).

Let’s run some examples with this code to test it. The first one checks
the identity function, then we check the first and second projections. All
succeed and fail as expected.

| ?- check([], fun(x,x), imp(a,a)).

true ? ;

no
| ?- check([], fun(x,fun(y,x)), imp(a,imp(b,a))).

true ? ;

no
| ?- check([], fun(x,fun(y,y)), imp(a,imp(b,b))).

true ? ;

no
| ?- check([], fun(x,fun(y,y)), imp(a,imp(b,a))).

no
| ?-

However, there is a bug in the program. Consider

| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,b))).

true ? ;

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.9

no
| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,a))).

true ? ;

no
| ?-

The first query succeeds as expected, because x should refer to its inner-
most enclosing binder. The second query shows that we incorrectly allow
x to also refer to the outer binder!

% warning: these have a bug!
synth([tp(X,A)|O], X, A).
synth([tp(Y,B)|O], X, A) :- synth(O, X, A).

If we trace the execution we can see the problem

| ?- trace.
The debugger will first creep -- showing everything (trace)

yes
{trace}
| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,a))).

1 1 Call: check([],fun(x,fun(x,x)),imp(a,imp(b,a))) ?
2 2 Call: check([tp(x,a)],fun(x,x),imp(b,a)) ?
3 3 Call: check([tp(x,b),tp(x,a)],x,a) ?
4 4 Call: synth([tp(x,b),tp(x,a)],x,_416) ?
4 4 Exit: synth([tp(x,b),tp(x,a)],x,b) ?
4 4 Redo: synth([tp(x,b),tp(x,a)],x,b) ?
5 5 Call: synth([tp(x,a)],x,_441) ?
5 5 Exit: synth([tp(x,a)],x,a) ?
4 4 Exit: synth([tp(x,b),tp(x,a)],x,a) ?
3 3 Exit: check([tp(x,b),tp(x,a)],x,a) ?
2 2 Exit: check([tp(x,a)],fun(x,x),imp(b,a)) ?
1 1 Exit: check([],fun(x,fun(x,x)),imp(a,imp(b,a))) ?

true ?

In the 5th line of the trace, we exit the query synth([tp(x,b),tp(x,a)],x,_416) ?
with _416 = b. However, this fails to unify with the a we are supposed to
check against in line 3! So Prolog backtracks (see Redo) and synthesizes an-
other type from the remainder of the context O, namely a. This now works
and the query incorrectly succeeds.

LECTURE NOTES OCTOBER 24, 2017

L15.10 Prolog

The fix requires that we only continue to look through the context if the
variable x we are trying to find is different from the variable at the head of
the list:

synth([tp(X,A)|O], X, A).
synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

The new goal Y \= X stands for “Y and X are not unifiable”, although here
both Y and X will be known and it just comes down to checking equality
between two terms.

Here is the summary of the repaired program

% check(+O, +M, +A)
% synth(+O, +R, -A)

check(O, pair(M,N), and(A,B)) :-
check(O, M, A),
check(O, N, B).

check(O, fun(X,M), imp(A,B)) :-
check([tp(X,A)|O], M, B).

check(O, R, A) :- synth(O, R, B), A = B.

synth(O, fst(M), A) :- synth(O, M, and(A,B)).
synth(O, snd(M), B) :- synth(O, M, and(A,B)).
synth(O, app(R,M), B) :-

synth(O, R, imp(A,B)),
check(O, M, A).

synth([tp(X,A)|O], X, A).
synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

Let’s run a few more queries. First the uncurrying function, which
proves (A⊃ (B ⊃C))⊃ ((A ∧B)⊃C) and then uncurrying, which goes in
the opposite direction.

| ?- check([], fun(f,fun(p,app(app(f,fst(p)),snd(p)))),
imp(imp(a,imp(b,c)),imp(and(a,b),c))).

true ? ;

no
| ?- check([], fun(f,fun(x,fun(y,app(f,pair(x,y))))),

imp(imp(and(a,b),c),imp(a,imp(b,c)))).

true ? ;

(1 ms) no

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.11

4 Unification

This has worked out extremely well so far, so now we are getting greedy.
What about running check/3 in a mode such as check(+O, +M, -A)
which amounts to type inference? Let’s try!

| ?- check([], fun(x,x), A).

A = imp(B,B) ? ;

no

The interpreter finds one solution, namely B ⊃ B for any B. In type infer-
ence we can this the most general type since any other type is an instance of
it. Let’s try something more complicated, such as fn f ⇒ fn x ⇒ fn y ⇒
f (x, y):

| ?- check([], fun(f,fun(x,fun(y,app(f,pair(x,y))))), A).

A = imp(imp(and(B,C),D),imp(B,imp(C,D))) ? ;

no

Again, the interpreter finds a single most general solution, namely ((B ∧
C)⊃D)⊃ (B ⊃ (C ⊃D)) for any propositions (types) B, C, and D. During
the search for a proof of the goal, the interpreter accumulates constraints
on A. These are then solved by a process called unification, which fails if
there are no solutions or simplifies the constraints to a minimal form where
it is easy to read off the solution in the form of a substitution.

Unfortunately, Prolog’s algorithm for unification is unsound for reasons
of efficiency. This is really inexcusable, especially since the overhead to-
gether with other optimizations is not very high, but we now have to live
with that. To see the problem consider the term fn x ⇒ xx. There should
not be a type for this term, because after a couple of steps we are in the
situation (writing unknown types as greek letters):

(x : α ↓) ` x : α ↓
x

x : α ↓ ` x : α ↓
x

α = β

x : α ↓ ` x : β↑
↓↑

α = β ⊃ γ

x : α ↓ ` xx : γ ↓
⊃E

LECTURE NOTES OCTOBER 24, 2017

L15.12 Prolog

The reason that type inference fails is that there is no solution to the equa-
tions α = β, α = β ⊃ γ because β = β ⊃ γ has no solution.

Surprisingly, Prolog fails to notice that. Or, more precisely, it builds a
cyclic term to solve this equation.

check([], fun(x, app(x,x)), A).

cannot display cyclic term for A ? ;

no

Essentially, when it processes the equation β = B for some type B it just
sets β to be equal to B without checking if this would introduce a cyclic
term. In Prolog terminology we say that it omits the the occurs check which
would verify that B does not contain β.

Because of this shortcoming, Prolog has an explicit predicate
unify_with_occurs_check/2 that makes sure the two arguments are
unified properly, so that the problem β = β ⊃ γ fails. Wherever in the pro-
gram a variable is repeated in the head of a clause, or we call on unification,
we should call on unification with the occurs check instead. Fortunately, we
only have to consider three lines. First

check(O, R, A) :- synth(O, R, B), A = B.

Now that we have a more general mode (allowing the third argument to be
partially instantiated, but contain free variables), we can rewrite it as

check(O, R, A) :- synth(O, R, A).

Second, we look at the two lines where variables are considered

synth([tp(X,A)|O], X, A).
synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

In the first line, the two occurrences of A are unified, which could be un-
sound so we need to appeal to unify_with_occurs_check/2 instead.
There is no such problem in the second line, because B and A are unrelated.
Here is the complete revised program:

LECTURE NOTES OCTOBER 24, 2017

Prolog L15.13

check(O, pair(M,N), and(A,B)) :-
check(O, M, A),
check(O, N, B).

check(O, fun(X,M), imp(A,B)) :-
check([tp(X,A)|O], M, B).

check(O, R, A) :- synth(O, R, A).

synth(O, fst(M), A) :- synth(O, M, and(A,B)).
synth(O, snd(M), B) :- synth(O, M, and(A,B)).
synth(O, app(R,M), B) :-

synth(O, R, imp(A,B)),
check(O, M, A).

synth([tp(X,B)|O], X, A) :- unify_with_occurs_check(B, A).
synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

Now we find that self-application is not typable, as expected.

| ?- check([], fun(x, app(x,x)), A).

no

while the other, positive examples continue to work as expected.
In a future lecture we will show the specifics about how unification in

Prolog as well as sound unification works.
This particular example is a remarkable compact implementation of full

type inference for a small language. Intrinsic pattern matching is critical,
as it the built-in notion of logic variable and unification. Backtracking does
not particularly come into play here, but it will if you implement the G4ip
decision procedure based on Dyckhoff’s contraction-free sequent calculus.

An attempt to use this proof checker as a theorem prover predictably
fails:

| ?- check([], M, imp(a,a)).

Fatal Error: local stack overflow ...

LECTURE NOTES OCTOBER 24, 2017

	Introduction
	Binary Numbers
	Checking Proof Terms
	Unification

