
Lecture Notes on
Linear Logic

15-317: Constructive Logic
Frank Pfenning André Platzer

Lecture 24
November 29, 2016

In previous lectures we saw a computational interpretation of constructive
proofs as functional programming as well as a computational interpreta-
tion of proof search as logical programming. While state-change can be
understood indirectly in both paradigms as well, today’s lecture develops
a direct handle on a logical account of state change, thereby forming the
basis of a logical understanding of imperative programming.

In this lecture we will examine ways of writing logic programs for state
change (such as in peg solitaire) in a way that treats state logically, rather
than as an explicit data structure. In order to allow this we need to gen-
eralize the logic to handle state intrinsically, something provided by linear
logic. We provide an introduction to linear logic as a sequent calculus, which
generalizes our previous way of specifying truth. The sequent calculus is a
bit too general to allow an immediate operational interpretation to obtain a
logic programming language, so we postpone this step to the next lecture.

24.1 State-Passing Style

The canonical logic programming way of representing state change is in a
separate data structure that is managed manually via some custom defini-
tion:

activate(A, OldState, NewState) :-

deactivate(A, OldState, NewState) :-

And then an activation of something called a with a subsequent deactiva-
tion of something called b works like this:

LECTURE NOTES NOVEMBER 29, 2016

L24.2 Linear Logic

transformation(InputState, OutputState) :-

activate(a, InputState, State2),

deactivate(b, State2, OutputState).

This pattern of code is called state-passing or store-passing.
In functional programming, the related store-passing style usually arises

in the opposite way: if we want to turn a functional program that uses mu-
table storage into a pure functional program we can pass the store around
as an explicit argument.

24.2 State-Dependent Truth

In a peg solitaire logic program, state would be represented as a list of items
peg(ij) and hole(ij) for locations ij. Stepping back from this particular
representation, it is easy to interpret peg and hole as predicates, and peg(ij)
and hole(ij) as propositions. For example, we say the proposition peg(ij)
is true if there is a peg in location ij on the board.

What makes this somewhat unusual, from the perspective of the logic
we have considered so far, is that the notion of truth depends on the state.
In some states, peg(ij) is true, in some it is false. In fact, the state of the
board is completely characterized by the peg and hole propositions.

In mathematical logic, truth is normally invariant and does not depend
on state. This is because the mathematical objects we deal with, such as
natural numbers, are themselves invariant and considered universal. In
philosophical logic, however, the concept of truth depending on the state
of the world is central and has been investigated under the name modal
logic, of which temporal logic is a particular branch. In temporal logic, for
example, a proposition peg(ij) may be true now at the current state of the
current time but may become false at a state in the future, for example when
another peg jumped over it so that it turned into a hole.

Linear logic provides an elegant and logical approach, which does not
suffer from the frame problem that some modal or temporal logics may
suffer from.

24.3 Linear Logic by a Chemistry Example

Linear logic is a logic of state or a resource-aware logic.1 Any logic needs
to track its current assumptions in a proof carefully (just recall the two-

1The term linear is connected to its use in algebra, but the connection is not easy to
explain. For this lecture just think of “linear” as denoting “must be used exactly once”.

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.3

dimensional notation for natural deduction). Unlike in other logics, though,
linear logic not just needs to meticulously keep track of what is true but any
use of a truth will also consume that truth. It is this consumption of truth
that makes it possible for linear logic to change what holds true in a well-
defined way.

Before initiating a formal treatment of the connectives of linear logic,
we will intuitively develop an example of some of its operators. The most
crucial connective is linear implication A (B. Just like the implication
A ⊃ B from intuitionistic propositional logic, A(B says something about
B being true if A is true. In linear logic, though, the linear implication
A (B consumes the fact that A is true to produce a fact that B is true. It
is, thus, better to think of the linear implication A(B as saying that it can
convert a resource A into a resource B, but the resource A is then consumed
and gone.

Medieval alchemists were trying to solve the chemical holy grail of con-
verting other substances into gold. For example they were trying to estab-
lish ways of turning water into gold, which would have established:

water (gold

That is, if one has a drop of water, the above linear implication would turn
it into solid gold. Such a chemical reaction would consume the water and
instead produce gold. Modern chemistry discovered that that would be too
good to be true, but found other interesting chemical reactions. For exam-
ple that two hydrogen molecules (H2) can react with one oxygen molecule
(O2) to yield two water molecules (and energy):

H2 ⊗H2 ⊗O2 (water⊗ water

Representing this needs the simultaneous conjunction A⊗B, which is true
if we simultaneously have A and B. The chemical reaction modeled by the
above linear logic formula simultaneously needs two hydrogens and one
oxygen, consumes all three of them, and turns that into two simultaneous
water molecules.

With a nontrivial chemical process (anthraquinone), hydrogen with oxy-
gen can also turn into hydrogen peroxide (H2O2):

H2 ⊗O2 (HydrogenPeroxide

By combining the latter chemical reactions, if we have two hydrogen molecules
and an oxygen molecule, we could either get two water molecules or one

LECTURE NOTES NOVEMBER 29, 2016

L24.4 Linear Logic

hydrogen peroxide molecule and retain a hydrogen molecule:

H2 ⊗H2 ⊗O2 ((water⊗ water) & (HydrogenPeroxide⊗H2)

The alternative conjunction A & B expresses that we can either obtain A or
obtain B, but not both, and get to choose which one. While we can choose
which side of the & we want, we cannot choose both, because the oxygen
molecule can only either split into two water molecules or turn into one
hydrogen peroxide molecule, not both.

The above linear logical formulas with & models the case where our
experimental conditions get to determine whether we want water or hy-
drogen peroxide. Disjunction A ⊕ B would be used to model that A or B
are true but we do not get to choose which one, say because chemistry may
surprise us:

H2 ⊗H2 ⊗O2 ((water⊗ water)⊕ (HydrogenPeroxide⊗H2)

In the presence of platinum (Pt) as a catalyzer, two hydrogen peroxide
molecules will split to two water molecules and an oxygen molecule freeing
energy:

HydrogenPeroxide⊗HydrogenPeroxide⊗platinum(water⊕water⊕O2⊗platinum

In all of these cases the assumptions on the left of (are consumed and
converted into the resources on the right of (. Note, however, how the
presence of platinum (or other catalyzers) is required to enable this cat-
alytic reaction, but the platinum remains present. In the above linear logical
formula, platinum is consumed on the left yet reproduced on the right to
model that its presence is required to activate the reaction, but the platinum
does not vanish.

If we would like to prevent the above reaction, we would have to get
rid of all platinum by using the following explicit disposal

platinum (1

The empty truth 1 holds only if there are no resources, such that the linear
implication platinum (1 can be used to consume one platinum molecule
and convert it into no resources, thereby removing one platinum from the
world (which is in fact a bit difficult to implement chemically except by
having your platinum stolen).

Looking back, the above reactions are of slightly different kinds. Some
of them nature provides for free, others require a lot of effort and careful

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.5

experimental setup to even enable. And in fact, if linear logical formu-
las ought to be thought of as resources, then the above linear implications
themselves are resources as well and could either be available or absent.
That is what the exponential connective !A is good for, which means that
we can obtain any number of copies of A. With this, the following would
indicate that we can always turn two hydrogen and an oxygen into two
water molecules:

!(H2 ⊗H2 ⊗O2 (water⊗ water)

But the following has no exponential, since we have to invest nontrivial
effort to make this reaction possible:

H2 ⊗O2 (HydrogenPeroxide

The simultaneous conjunction of both would then describe the available
linear implication or rewrite rules of chemical reactions in a system of rele-
vance:

(H2 ⊗O2 (HydrogenPeroxide)⊗ !(H2 ⊗H2 ⊗O2 (water⊗ water)

It should have become clear at this time that a formal understanding
of linear logic should be explicit about understanding propositions as re-
sources that are explicitly tracked in a sequent calculus while enabling ex-
plicit ways of consuming and creating resources in accordance to the mean-
ing of the linear logical connectives.

24.4 Linear Logic

Linear logic has been described as a logic of state or a resource-aware logic.
Formally, it arises from complementing the usual notion of logical assump-
tion with so-called linear assumptions or linear hypotheses. Unlike traditional
assumptions which may be used many times in a proof, linear assumptions
must be used exactly once during a proof. Linear assumptions then become
(consumable) resources in the course of a proof. Because linear assumptions
are consumable, they can represent ephemeral truth about the current state,
e.g., of a computation, because what is no longer true can be consumed and
is then gone. Facts that become true can be made available as resources.

This generalization of the usual mathematical standpoint may seem
slight, but as we will see it is quite expressive. We write

A1 res, . . . , An res `̀ C true

LECTURE NOTES NOVEMBER 29, 2016

L24.6 Linear Logic

for a linear hypothetical judgment with resources A1, . . . , An and goal C.
If we can prove this, it means that we can achieve that C is true, given re-
sources A1 through An. Here, all Ai and C are propositions.2 The version
of linear logic defined by this judgment is called intuitionistic linear logic,
sometimes contrasted with classical linear logic in which the sequent calcu-
lus has multiple conclusions. While it is possible to develop classical linear
logic programming it is more difficult to understand and use.

Hidden in the judgment are other assumptions, usually abbreviated as
Γ, which can be used arbitrarily often (including not at all), and are there-
fore called the unrestricted assumptions. If we need to make them explicit in
a rule we will write

Γ; ∆ `̀ C true

where ∆ abbreviates the resources. As in our development so far, unre-
stricted assumption are fixed and are carried through from every conclu-
sion to all premisses. Eventually, we will want to generalize this, but not
quite yet.

The first rule of linear logic is that if we have a resource P we can
achieve goal P , where P is an atomic proposition. It will be a consequence
of our definitions that this will be true for arbitrary propositions A, but we
need it as a rule only for the atomic case, where the structure of the propo-
sitions can not be broken down further.

P res `̀ P true
id

We call this the identity rule, it is also sometimes called the init rule, and the
sequent P `̀ P is called an initial sequent.

24.5 Connectives of Linear Logic

One of the curious phenomena of linear logic is that the ordinary connec-
tives multiply. This is because the presence of linear assumptions allows
us to make distinctions we ordinarily could not. The first example of this
kind is conjunction. It turns out that linear logic possesses two forms of
conjunction.

2In the end it will turn out that A res and A true are interchangeable in that we can go
from each one to the other. At this point, however, we do not know this yet, so the judgment
we make about our resources is not that they are true, but that they are given resources.

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.7

Simultaneous Conjunction (A ⊗ B). A simultaneous conjunction A ⊗ B
is true if we can achieve both A and B in the same state. This means we
have to subdivide our resources, devoting some of them to achieve A and
the others to achieve B.

∆ = (∆A,∆B) ∆A `̀ A ∆B `̀ B

∆ `̀ A⊗B
⊗R

The order of linear assumptions is irrelevant, so in ∆ = (∆A,∆B) the
comma denotes the multi-set union. In other words, every occurrence of
a proposition in ∆ will end up in exactly one of ∆A and ∆B .

If we name the initial state of peg solitaire ∆0, then we have ∆0 `̀
peg(33)⊗ hole(03)⊗ . . . for some “. . .” because we can achieve a state with
a peg at location 33 and hole at location 03. On the other hand, we cannot
prove ∆0 `̀ peg(33) ⊗ hole(33) ⊗ . . . because we cannot have a peg and an
empty hole at location 33 in the same state. We will make the ellipsis “. . .”
precise below as consumptive truth >.

In a linear sequent calculus, the right rules show when we can conclude
a proposition. The left rules show how we can use a resource. In this case,
the resource A⊗B means that we have A and B simultaneously, so the left
rule reads

∆, A res, B res `̀ C true

∆, A⊗B res `̀ C true
⊗L.

Alternative Conjunction (A & B). An alternative conjunction is true if
we can achieve both conjuncts, separately, with the current resources. This
means if we have a linear assumption A & B we have to make a choice:
either we use A or we use B, but we cannot use them both since A true and
B true are formed from the same resources in &R.

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

It looks like the right rule duplicates the assumptions, but this does not
violate linearity because in a use of the assumption A & B res we have to
commit to one or the other.

Returning to the solitaire example, we have ∆0 `̀ peg(33)⊗hole(03)⊗. . .
and we also have ∆0 `̀ hole(33) ⊗ hole(03) ⊗ . . . because we can certainly

LECTURE NOTES NOVEMBER 29, 2016

L24.8 Linear Logic

reach states with these properties. However, we cannot reach a single state
with both of these, because the two properties of location 33 clash. If we
want to express that both are reachable, we can form their alternative con-
junction

∆0 `̀ (peg(33)⊗ hole(03)⊗ . . .) & (hole(33)⊗ hole(03) . . .).

Consumptive Truth (>). We have seen two forms of conjunction, which
are distinguished because of their resource behavior. There are also two
truth constants, which correspond to zero-ary conjunctions. The first is
consumptive truth >. A proof of it consumes all current resources. As such
we can extract no information from its presence as an assumption.

∆ `̀ > true
>R no >L rule

∆,> res `̀ C true

Consumptive truth is important in applications where there is an as-
pect of the state we do not care about, because of the stipulation of linear
logic that every linear assumption must be used exactly once. In the ex-
amples above so far we cared about only two locations, 33 and 03. The
state will have a linear assumption for every location, which means we can
not prove, for example, ∆0 `̀ peg(33) ⊗ hole(03). However, we can prove
∆0 `̀ peg(33) ⊗ hole(03) ⊗ >, because the consumptive truth matches the
remaining state.

Consumptive truth is the unit of alternative conjunction in that A & >
is equivalent to A.

Empty Truth (1). The other form of truth holds only if there are no re-
sources. If we have this as a linear hypothesis we can transform it into the
empty set of resources.

∆ = (·)

∆ `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

Empty truth can be useful to dispose explicitly of specific resources (for
example D(1 with the linear implication (discussed next would allow
the disposal of resource D).

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.9

Linear Implication (A(B). A linear implication A(B is true if we can
achieve B given resource A.

∆, A res `̀ B true

∆ `̀ A(B true
(R

Conversely, if we have A(B as a resource, it means that we could trans-
form the resource A into the resource B. We capture this in the following
left rule:

∆ = (∆A,∆B) ∆A `̀ A true ∆B, B res `̀ C true

∆, A(B res `̀ C true
(L.

An assumption A (B therefore represents a means to transition from a
state with A to a state with B.

Unrestricted Assumptions Γ. The left rule for linear implication points at
a problem: the linear implication is itself linear and therefore consumed in
the application of that rule. If we want to specify via a linear logic program
how state may change, we will need to reuse the clauses over and over
again. This can be accomplished by a copy rule which takes an unrestricted
assumption and makes a linear copy of it.3

A ures ∈ Γ Γ; ∆, A res `̀ C true

Γ; ∆ `̀ C true
copy

We label the unrestricted assumptions as unrestricted resources, A ures . In
the logic programming interpretation, the whole program will end up in Γ
as unrestricted assumptions, since the program clauses can be used arbi-
trarily often during a computation.

Resource Independence (!A). The proposition !A is true if we can prove
A without using any resources. This means we can produce as many copies
of A as we need (since it costs nothing) and a linear resource !A licenses us
to make the unrestricted assumption A.

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures); ∆ `̀ C true

Γ; ∆, !A res `̀ C true
!L

3It is actually very much like the focusing rule in a focused calculus.

LECTURE NOTES NOVEMBER 29, 2016

L24.10 Linear Logic

A transition from a state with A to a state with B that is always allowed
(as opposed to being consumed upon use) is represented by !(A(B). For
example, !(peg(22) (hole(22)) ⊗ peg(22) (hole(22) would represent the
(admittedly silly) question whether position 22 could ever have a hole on
a broken peg solitaire board that has an actual hole at position 22 through
which all pegs could possibly fall through any number of times.

Disjunction (A ⊕ B). The familiar conjunction from logic was split into
two connectives in linear logic: the simultaneous and the alternative con-
junction. Disjunction does not split the same way unless we introduce an
explicit judgment for falsehood (which we will not pursue). The goal A⊕B
can be achieved if we can achieve either A or B.

∆ `̀ A true

∆ `̀ A⊕B true
⊕R1

∆ `̀ B true

∆ `̀ A⊕B true
⊕R2

Conversely, if we are given A ⊕ B as a resource, we do not know which
of the two is true, so we have to account for both eventualities. Our proof
splits into cases, and we have to show that we can achieve our goal in either
case.

∆, A res `̀ C true ∆, B res `̀ C true

∆, A⊕B res `̀ C true
⊕L

Again, it might appear as if linearity is violated due to the duplication of
∆ and even C. However, only one of A or B will be true, so only one
part of the plan represented by the two premisses really applies, preserving
linearity.

Falsehood (0). There is no way to prove falsehood 0, so there is no right
rule for it. On the other hand, if we have 0 as an assumption we know we
are really in an impossible state so we are permitted to succeed.

no 0R rule
∆ `̀ 0 true ∆,0 res `̀ C true

0L

We can also formally think of falsehood as a disjunction between zero al-
ternatives and arrive at the same rule.

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.11

24.6 Resource Management

The connectives of linear logic are generally classified into multiplicative,
additive, and exponential.4

The multiplicative connectives, when their rules are read from conclu-
sion to the premisses, split their resources between the premisses. The con-
nectives ⊗, 1, and (have this flavor.

The additive connectives, when their rules are read from conclusion to
premisses, propagate their resources to all premisses. The connectives &,
>, ⊕, and 0 have this flavor.

The exponential connectives mediate the boundary between linear and
non-linear reasoning. The connective ! has this flavor.

During proof search (and therefore in the logic programming setting), a
significant question is how to handle the resources. It is clearly impractical,
for example, in the rule

∆ = (∆A,∆B) ∆A `̀ A true ∆B `̀ B true

∆ `̀ A⊗B true
⊗R

to simply enumerate all possibilities and try to prove A and B in each com-
bination until one is found that works for both.

Instead, we pass in all resources ∆ into the first subgoal A and keep
track which resources are consumed. We then pass the remaining ones to
the proof of B. Of course, if B fails we may have to find another proof of
A which consumes a different set of resources and then retry B, and so on.
In the logic programming setting this is certainly an issue the programmer
has to be aware of, just as the programmer has to know which subgoal is
solved first, or which clause is tried first.

We will return to this question in the next lecture where we will make
resource-passing explicit in the operational semantics.

24.7 Historical Notes

Linear logic in a slightly different form than we present here is due to Gi-
rard [2]. He insisted on a classical negation in his formulation, which can
get in the way of an elegant logic programming formulation. The judg-
mental presentation we use here was developed for several courses on Lin-
ear Logic [3] at CMU. Some additional connectives, and some interesting
connections between the two formulations in linear logic are developed by

4Again, we will not try to explain the mathematical origins of this terminology.

LECTURE NOTES NOVEMBER 29, 2016

L24.12 Linear Logic

Chang, Chaudhuri and Pfenning [1]. We’ll provide some references on lin-
ear logic programming in the next lecture.

24.8 Exercises

Exercise 24.1 Prove that A res `̀ A true for any proposition A.

Exercise 24.2 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A & (B ⊕ C) `̀ (A & B)⊕ (A & C)

ii. A⊗ (B ⊕ C) `̀ (A⊗B)⊕ (A⊗ C)

iii. A⊕ (B & C) `̀ (A⊕B) & (A⊕ C)

iv. A⊕ (B ⊗ C) `̀ (A⊕B)⊗ (A⊕ C)

Exercise 24.3 Repeat Exercise 24.2 by checking the reverse linear entailments.

Exercise 24.4 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A((B (C) `̀ (A⊗B) (C

ii. (A⊗B) (C `̀ A((B (C)

iii. A((B & C) `̀ (A(B) & (A(C)

iv. (A(B) & (A(C) `̀ A((B & C)

v. (A⊕B) (C `̀ (A(C) & (A(C)

vi. (A(C) & (A(C) `̀ (A⊕B) (C

Exercise 24.5 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. C `̀ 1(C

ii. 1(C `̀ C

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.13

iii. A(> `̀ >

iv. > `̀ A(>

v. 0(C `̀ >

vi. > `̀ 0(C

Exercise 24.6 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. !(A⊗B) `̀ !A⊗ !B

ii. !A⊗ !B `̀ !(A⊗B)

iii. !(A & B) `̀ !A⊗ !B

iv. !A⊗ !B `̀ !(A & B)

v. !> `̀ 1

vi. 1 `̀ !>

vii. !1 `̀ >

viii. > `̀ !1

ix. !!A `̀ !A

x. !A `̀ !!A

24.9 References

[1] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A
judgmental analysis of linear logic. Technical Report CMU-CS-03-131R,
Carnegie Mellon University, December 2003.

[2] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[3] Frank Pfenning. Linear logic. Lecture Notes for a course at Carnegie
Mellon University, 1995. Revised 1998, 2001.

LECTURE NOTES NOVEMBER 29, 2016

L24.14 Linear Logic

24.10 Appendix: Summary of Intuitionistic Linear Logic

In the rules below, we show the unrestricted assumptions Γ only where
affected by the rule. In all other rules it is propagated unchanged from the
conclusion to all the premisses. Also recall that the order of hypotheses is
irrelevant, and ∆A,∆B stands for the multiset union of two collections of
linear assumptions, which are shown here in the simpler notation.

LECTURE NOTES NOVEMBER 29, 2016

Linear Logic L24.15

Judgmental Rules

P res `̀ P true
id

A ures ∈ Γ Γ; ∆, A res `̀ C true

Γ; ∆ `̀ C true
copy

Multiplicative Connectives

∆A `̀ A ∆B `̀ B

∆A,∆B `̀ A⊗B
⊗R

∆, A res, B res `̀ C true

∆, A⊗B res `̀ C true
⊗L

· `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

∆, A res `̀ B true

∆ `̀ A(B true
(R

∆A `̀ A true ∆B, B res `̀ C true

∆A,∆B, A(B res `̀ C true
(L

Additive Connectives

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

∆ `̀ > true
>R

no >L rule

∆ `̀ A true

∆ `̀ A⊕B true
⊕R1

∆ `̀ B true

∆ `̀ A⊕B true
⊕R2

∆, A res `̀ C true ∆, B res `̀ C true

∆, A⊕B res `̀ C true
⊕L

no 0R rule ∆,0 res `̀ C true
0L

Exponential Connective

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures); ∆ `̀ C true

Γ; ∆, !A res `̀ C true
!L

Figure 1: Intuitionistic Linear Logic

LECTURE NOTES NOVEMBER 29, 2016

L24.16 Linear Logic

LECTURE NOTES NOVEMBER 29, 2016

