Constructive Logic (15-317), Fall 2022 Assignment 4: Quantifiers and Arithmetic

Constructive Logic Staff (Instructor: Karl Crary)

Due: Wednesday, September 28, 2022, 11:59 pm

This assignment is coding only, using Dcheck. Please submit a file named "hw.deriv" to "Homework 4."

You can find documentation on Dcheck at cs.cmu.edu/~crary/dcheck/dcheck.pdf and a sample file at cs.cmu.edu/~crary/dcheck/example.deriv. (Be aware that the sample file uses several logics that we have not seen yet in class.)

1 Quantifiers

Using Dcheck, give derivations of the following judgements, if they are derivable. For the ones that are not derivable, simply put:

deriv $\langle name \rangle$ = omitted

Use system "AR" (even though you are not using arithmetic in this section), and name your derivations task1, task2, etc. Note: to avoid revealing the answer, the autograder will not provide feedback on any problem for which you answer omitted.

Distributivity

Task 1 (6 points).	$(\exists x:\tau. A(x) \lor B(x)) \supset (\exists x:\tau.A(x)) \lor (\exists x:\tau.B(x))$ true
Task 2 (6 points).	$(\exists x{:}\tau.A(x)) \lor (\exists x{:}\tau.B(x)) \supset (\exists x{:}\tau.A(x) \lor B(x)) \text{ true }$

DeMorgan

These judgements are true in classical logic, but may or may not be true constructively.

Task 3 (4 points). $\neg(\forall x:\tau. A(x)) \supset \exists x:\tau. \neg A(x)$ true

 $\textbf{Task 4} (4 \text{ points}). \quad \neg(\exists x : \tau. A(x)) \supset \forall x : \tau. \neg A(x) \text{ true}$

Forall/Exists

Task 5	(3 points)). $(\forall x:\tau. A(x))$	$\supset (\exists x : \tau. A(x))$ true
--------	-------------	-----------------------------	---

Task 6 (5 points). $(\forall x:\tau. A(x)) \land (\exists x:\tau. \mathsf{T}) \supset (\exists x:\tau. A(x))$ true

2 Arithmetic

Task 7 (12 points). $\forall x: \mathsf{nat.} \forall y: \mathsf{nat.} \forall z: \mathsf{nat.} x = y \supset y = z \supset x = z \mathsf{ true}$

Use system "AR" and name your derivation task7. (Caution: Many students find this proof challenging, so we recommend you start early.)

3 Context Mastery

Task 8 (4 points). Using Dcheck, give a derivation of the following judgement using contexts (*i.e.*, using the NDC system):

$$\vdash \neg A \lor \neg B \supset \neg (A \land B)$$
 true

Name your derivation task8. Instant feedback is turned off for this task, so be extra careful.

4 Verifications and Uses Mastery

Task 9 (4 points). Using Dcheck, give a derivation of the following judgement:

$$\neg P \lor \neg Q \supset \neg (P \land Q) \uparrow$$

Name your derivation task9. (Remember that Dcheck takes the propositions P and Q to be atomic.) Instant feedback is turned off for this task, so be extra careful.