
Constructive Logic (15-317), Fall 2022

Assignment 9: Prolog

Constructive Logic Staff
(Instructor: Karl Crary)

Due: Wednesday, November 9, 2022, 11:59 pm

This is an Prolog coding assignment. Please submit a file named “hw.pl” to “Homework 9.”
You can find directions for running Prolog on Andrew at the end.

1 Coloring Maps

Graph coloring is an interesting problem in graph theory. A graph coloring is an assignment of
colors to each vertex such that no two adjacent vertices have the same color. Of particular interest
is a coloring using a minimum number of colors; this number is called the chromatic number of
the graph. The four-color theorem states that any planar graph1 can be colored using at most
four colors. The theorem was proved in 1976 using a computer program, and has caused much
controversy (is a computer proof really a proof?). It has since been formally verified using the Coq
theorem prover in 2005.

As a consequence of this theorem, any map can be colored with at most four colors such that
no adjacent regions have the same color. This is because every map can be represented by a
planar graph, with one vertex for each region, and an edge between two vertices if and only if their
corresponding regions are adjacent.

Figure 1: Australia (more colorful than necessary)

Consider, for example, Australia’s map in Figure 1. Observe that this map uses more colors
than necessary, although this might make it more visually appealing.

1A graph that can be drawn on the plane with no crossing edges.

1

Task 1 (40 points). Implement a predicate color graph/3, that is, a 3-argument predicate
color graph(nodes, edges, colors) that associates with the graph (nodes, edges) all of the valid
4-colorings of the graph. Submit your implementation in a file named hw.pl.

The query color graph(nodes, edges, coloring) should check if coloring is a valid coloring,
and the query color graph(nodes, edges, C) should find every valid coloring C, one at a time, by
backtracking. Note that C is a single coloring, not a list of colorings. (But each coloring is itself a
list.)

� The nodes argument will be a list that looks something like:

[node(a), node(b), node(c)]

meaning that the valid nodes are a, b, and c.

� The edges argument will be a list that looks something like:

[edge(a,b),edge(a,c), edge(b,c)]

meaning there are edges connecting a to b, a to c, and b and c.

� The coloring result that you produce should look something like:

[(a, red), (b, blue), (c, green)]

meaning that a is colored red, b is colored blue, and c is colored green.

For efficiency reasons, you may prefer to find all valid colorings without repetition, but this is
not required. Once all valid solutions have been found via backtracking, the predicate should fail.

Your implemementation should provide:

� A color predicate defined by the clauses:

color(red).

color(blue).

color(green).

color(yellow).

This is included in the starter code.

� The code for the color graph predicate, together with any helper predicates you choose
to use. The color graph predicate should have mode color graph(+nodes, +edges,
-coloring), but you do not need to prove it.

Your solution does not need to be very long. The reference solution is just 19 lines of Prolog,
including the color definitions.

For your convenience, we have provided you with a Prolog script (coloring tests.pl) to test
your implementation. You can use it by loading it into Prolog (after loading your code), and
running test.

2

2 Return of the Theorem Prover

Now that you are experts in implementing G4ip in Standard ML, it is time to try implementing it
in Prolog.

Task 2 (60 points). Implement a predicate prove/1, that is, a one-argument predicate
prove(proposition), that proves constructive logic propositions. The prove predicate should have
mode prove(+proposition), but you do not need to prove it. Include your implementation as part
of your hw.pl file.

You should represent propositions in Prolog using the following conventions. Remember, Prolog
is untyped, so misspelling an operator will not generate an error, even though your program will
fail to work properly.

connective blackboard Prolog

truth T tt

falsity F ff

and A ∧B and(A, B)

or A ∨B or(A, B)

implies A ⊃ B imp(A, B)

atomic propositions P atom(p)

We recommend that you implement your new theorem prover from scratch. Do not
translate your Standard ML implementation into Prolog! You will make the problem
much more difficult, because this problem is designed to be directly expressible as a
logic program.

For your convenience, we have provided you with a Prolog script (prover tests.pl) to test
your implementation. You can use it by loading it into Prolog (after loading your code), and
running test. Do not include the testing script in your submission.

A Running Prolog

To run Prolog on Andrew:

1. SSH into unix.andrew.cmu.edu.

2. Execute this command: /afs/andrew/course/15/317/bin/317setup

This will add a line to your .bashrc file to add the 317 bin directory to your path. If you
use a shell other than Bash, you may need to do something slightly different.

3. Run Prolog with the prolog command.

4. Load your prolog file using “consult(hw).” or just “[hw].” Do not say hw.pl here; the .pl
extension is assumed.

5. Enter queries.

6. Exit Prolog using control-D or “halt.”

3

B G4ip rules

The rules of G4ip (a.k.a. Dyckhoff’s contraction-free sequent calculus) are as follows. In these rules,
P stands for atomic propositions.

P ∈ ∆
∆ −→ P

init

∆, A,B −→ C

∆, A ∧B −→ C
∧L ∆ −→ A ∆ −→ B

∆ −→ A ∧B
∧R

∆, A −→ C ∆, B −→ C

∆, A ∨B −→ C
∨L ∆ −→ A

∆ −→ A ∨B
∨R1

∆ −→ B
∆ −→ A ∨B

∨R2

∆ −→ C
∆, T −→ C

TL
∆ −→ T

TR
∆, F −→ C

FL

∆, A −→ B

∆ −→ A ⊃ B
⊃R

The rules above are the same as in the reduced sequent calculus. The following are the strange
rules of G4ip that replace ⊃L:

∆, A −→ D

∆,T ⊃ A −→ D
T⊃L

∆ −→ D
∆,F ⊃ A −→ D

F⊃L

∆, A ⊃ B ⊃ C −→ D

∆, (A ∧B) ⊃ C −→ D
∧⊃L

∆, A ⊃ C,B ⊃ C −→ D

∆, (A ∨B) ⊃ C −→ D
∨⊃L

P ∈ ∆ ∆, A −→ D

∆, P ⊃ A −→ D
P⊃L

∆, B ⊃ C,A −→ B ∆, C −→ D

∆, (A ⊃ B) ⊃ C −→ D
⊃⊃L

The rules ∧L, ∧R, ∨L, TL, TR, FL, ⊃R, T⊃L, F⊃L, ∧⊃L, and ∨⊃L are asynchronous. The
rules init , ∨R1, ∨R2, P⊃L, and ⊃⊃L are synchronous.

4

C G4ip in the Inversion Calculus

Three judgements indicate different states in the proof-search process. First decompose A on the
right, then decompose members of Ω on the left, then search through synchronous rules:

right inversion ∆;Ω
R−→ A

left inversion ∆;Ω
L−→ C+

search ∆
S−→ C+

Here, P refers only to atomic propositions, A+ (etc.) refers to right synchronous propositions,
A− (etc.) refers to left synchronous propositions, ∆ contains only left synchronous propositions,
and Ω contains arbitrary propositions. Left and right synchronous propositions are given by the
grammar:

left synchronous A− ::= P | P ⊃ B | (B ⊃ C) ⊃ D
right synchronous A+ ::= P |B ∨ C | F

Right Inversion

∆;Ω
R−→ A ∆;Ω

R−→ B

∆;Ω
R−→ A ∧B

∧R
∆;Ω

R−→ T
TR

∆;Ω, A
R−→ B

∆;Ω
R−→ A ⊃ B

⊃R

Switch

∆;Ω
L−→ P

∆;Ω
R−→ P

LRP
∆;Ω

L−→ A ∨B

∆;Ω
R−→ A ∨B

LR∨
∆;Ω

L−→ F

∆;Ω
R−→ F

LRF

Left Inversion

∆;Ω, A,B
L−→ C+

∆;Ω, A ∧B
L−→ C+

∧L
∆;Ω

L−→ C+

∆;Ω, T
L−→ C+

TL
∆;Ω, A

L−→ C+ ∆;Ω, B
L−→ C+

∆;Ω, A ∨B
L−→ C+

∨L

∆;Ω, F
L−→ C+

FL
∆;Ω, A

L−→ D

∆;Ω,T ⊃ A
L−→ D

T⊃L ∆;Ω −→ D

∆;Ω,F ⊃ A −→ D
F⊃L

∆;Ω, A ⊃ B ⊃ C
L−→ D

∆;Ω, (A ∧B) ⊃ C
L−→ D

∧⊃L
∆;Ω, A ⊃ C,B ⊃ C

L−→ D

∆;Ω, (A ∨B) ⊃ C
L−→ D

∨⊃L

Shift

∆, P ; Ω
L−→ C+

∆;Ω, P
L−→ C+

shiftP
∆, P ⊃ B; Ω

L−→ C+

∆;Ω, P ⊃ B
L−→ C+

shiftP⊃
∆, (A ⊃ B) ⊃ C; Ω

L−→ D+

∆;Ω, (A ⊃ B) ⊃ C
L−→ D+

shift⊃⊃

Search

∆
S−→ C+

∆; · L−→ C+
search

P ∈ ∆

∆
S−→ P

init
∆; · R−→ A

∆
S−→ A ∨B

∨R1
∆; · R−→ B

∆
S−→ A ∨B

∨R2

P ∈ ∆ ∆;A
L−→ D+

∆, P ⊃ A
S−→ D+

P⊃L
∆;B ⊃ C,A

R−→ B ∆;C
L−→ D+

∆, (A ⊃ B) ⊃ C
S−→ D+

⊃⊃L

5

