Lecture Notes on
Heyting Arithmetic

15-317: Constructive Logic
Frank Pfenning*

Lecture 8
September 21, 2017

1 Introduction

In this lecture we discuss the data type of natural numbers. They serve as
a prototype for a variety of inductively defined data types, such as lists or
trees. Together with quantification previous lecture, this allow us to reason
constructively about natural numbers and extract corresponding functions.
The constructive system for reasoning logically about natural numbers is
called intuitionistic arithmetic or Heyting arithmetic [Hey56]. The classical ver-
sion of the same principles is called Peano arithmetic [Pea89]. Both of these
are usually introduced axiomatically rather than as an extension of natural
deduction as we do here.

2 Induction

As usual, we think of the type of natural numbers as defined by its intro-
duction form. Note, however, that nat is a type rather than a proposition. It
is possible to completely unify these concepts to arrive at type theory, some-
thing we might explore later in this course. For now, we just specify cases
for the typing judgment ¢ : 7, read term ¢ has type 7, that was introduced
in the previous lecture on quantification, but for which we have seen no
specific instances yet. We distinguish this from)M : A which has the same
syntax, but relates a proof term to a proposition instead of a term to a type.

*Edits by André Platzer.

LECTURE NOTES SEPTEMBER 21, 2017

L8.2 Heyting Arithmetic

There are two introduction rules, one for zero and one for successor.

n . nat
nat/y — natl;

0 : nat sm : nat

Intuitively, these rules express that 0 is a natural number (natly) and that
the successor sn is a natural number if n is a natural number. This def-
inition has a different character from the previous definitions. For exam-
ple, we defined the meaning of A A B true from the meanings of A true
and the meaning of B true, all of which are propositions. It is even differ-
ent from the proof term assignment rules where, for example, we defined
(M,N): AN Binterms of M : Aand N : B. In each case, the proposition
is decomposed into its parts.

Here, the types in the conclusion and premise of the nat/, rules are the
same, namely nat. Fortunately, the term n in the premise is a part of the
term sn in the conclusion, so the definition is not circular, because the judg-
ment in the premise is still smaller than the judgment in the conclusion. In
(verificationist) constructive logic truth is defined by the introduction rules.
The resulting implicit principle, that nothing is true unless the introduction
rules prove it to be true, is of deep significance here. Nothing else is a natu-
ral number, except the objects constructed via nat/s from natly. The rational
number 7 cannot sneak in claiming to be a natural number (which, by natI
would also make its successor % claim to be natural).

But what should the elimination rule be? We cannot decompose the
proposition into its parts, so we decompose the term instead. Natural num-
bers have two introduction rules just like disjunctions. Their elimination
rule, thus, also proceeds by cases, accounting for the possibility that a given
n of type nat is either 0 or sz for some z. A property C(n) is true if it holds
no matter whether the natural number n was introduced by nat/j so is zero
or was introduced by nat/; so is a successor.

u
x:nat C(x) true

n:nat C(0) true C(sx) true
C(n) true

natE*"

In words: In order to prove property C of a natural number n we have
to prove C(0) and also C(sx) under the assumption that C(x) for a new
parameter x. The scope of and w is just the rightmost premise of the rule.

LECTURE NOTES SEPTEMBER 21, 2017

Heyting Arithmetic L8.3

This corresponds exactly to proof by induction, where the proof of C(0)
is the base case, and the proof of C'(sx) from the assumption C(x) is the
induction step. That is why nat £*" is also called an induction rule for nat.

We managed to state this rule without any explicit appeal to universal
quantification, using parametric judgments instead. We could, however,
write it down with explicit quantification, in which case it becomes:

VYn:nat. C(0) D (Vz:nat. C(z) D C(sx)) D C(n)

for an arbitrary property C' of natural numbers. It is an easy exercise to
prove this with the induction rule above, since the respective introduction
rules lead to a proof that exactly has the shape of nat E**.

All natural numbers are zero or successors. To illustrate this rule in ac-
tion, we start with a very simple property: every natural number is either
0 or has a predecessor. First, a detailed induction proof in the usual mathe-
matical style and then a similar formal proof.

Theorem: Vz:nat. x = 0V dy:nat. z = sy.
Proof: By induction on z.

Case: = = 0. Then the left disjunct is true.

Case: = = s2’. Then the right disjunct is true: pick y = 2’ and
observe r = sz’ = sv.

Next we write this in the formal notation of inference rules. We sug-
gest the reader try to construct this proof step-by-step; we show only the
final deduction. We assume there is either a primitive or derived rule of
inference called refl expressing reflexivity of equality on natural numbers
(n = n). We use the same names as in the mathematical proof.

refl
a7

/

2 :nat sa’ =sa

true

0= 0 true refl Jy:nat. sz’ = sy true

VI Vi
z:nat 0=0VJymnat. 0 = sy true sz’ =0V Jy:nat. sa’ = sy true

2’ u
x =0V Jy:nat. x = sy true natl

Vax:nat. x = 0V Jy:nat. x = sy true

This is a simple proof by cases and, in this particular proof, does not even
use the induction hypothesis ' = 0 V Jy:nat. 2/ = sy true, which would

LECTURE NOTES SEPTEMBER 21, 2017

L8.4 Heyting Arithmetic

have been labeled . It is also possible to finish the proof by eliminating
from that induction hypothesis, but the proof then ends up being more
complicated. At our present level of understanding, the computational
counterpart for the above proof might be a zero-check function for natu-
ral numbers. It takes any natural number and provides the left disjunct if
that number was 0 while providing the right disjunct if it was a successor.
Making use of the witness, we will later discover more general computa-
tional content once we have a proof term assignment.

In the application of the induction rule natE we used the property C(z),
which is a proposition with the free variable = of type nat. To write it out
explicitly:

C(z) = (z =0V Jymat. x =sy)

While getting familiar with formal induction proofs it may be a good idea
to write out the induction formula explicitly.

3 Equality

We already used equality in the previous example, without justification, so
we now introduce it into our formal system. It is certainly a central part of
Heyting (and Peano) arithmetic.

There are many ways to define and reason with equality. The one we
choose here is the one embedded in arithmetic where we are only con-
cerned with numbers. Thus we are trying to define x = y only for natu-
ral numbers x and y. Of course, x = y must be a proposition, not a term.
As a proposition, we will use the techniques of the course and define it by
means of introduction and elimination rules!

The introduction rules are straightforward.!

x =1y true

0 =0 true 00 st = sy true

If we take this as our definition of equality on natural numbers, how can
we use the knowledge that n = k? If n and k are both zero, we cannot learn
anything. If both are successors, we know their argument must be equal.
Finally, if one is a successor and the other zero, then this is contradictory

! As a student observed in lecture, we could also just state x = x true as an inference rule
with no premise. However, it is difficult to justify the elimination rules we need for Heyting
arithmetic from this definition.

LECTURE NOTES SEPTEMBER 21, 2017

Heyting Arithmetic L8.5

and we can derive anything.

no rule Ey C true ’ C true 3 x =y true

0 = sx true sz =0 true sx = sy true

Local soundness is very easy to check, but what about local completeness?
It turns out to be a complicated issue so we will not discuss it here.

4 Equality is Reflexive

As a simple inductive theorem we now present the reflexivity of equality.

Theorem 1 Vz:nat.z =z

Proof: By induction on z.
Base: z = 0. Then 0 = 0 by rule =Ij
Step: Assume z = x. We have to show sz = sz, which follows by =I;.

O

This proof is small enough so we can present it in the form of a natural
deduction. For induction, we use C(n) = (n = n).

—_— U
x = x true

=l —— =1

00
n:nat 0=0 true sx = sux true
nat %Y

n = n true

vIm
Vz:nat.x = x true

The hypothesis z : nat introduced by nat E** is implicitly used to establish
that = z is a well-formed proposition, but is otherwise not explicit in the
proof.

Now we can define a derived rule of inference:

x . nat

by using VE with the theorem just proved. We usually suppress the premise
x : nat since we already must know z : nat for the proposition + = z to be
well-formed. This is the rule we used in Section 2.

LECTURE NOTES SEPTEMBER 21, 2017

L8.6 Heyting Arithmetic

5 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we can notice that
we exploit the knowledge that n : nat, but we only do so when we are try-
ing to establish the truth of a proposition, C'(n). However, we are equally
justified in using n : nat when we are trying to establish a typing judgment
of the form ¢ : 7. The rule, also called rule of primitive recursion for nat, then
becomes

x : nat r.T

n:nat ty: 7 te: T

R(n,to,x.1.ts) : T

natE*"

Here, R is a new term constructor,? the term ¢, is the zero case where n = 0,
and the term ¢, captures the successor case where n = sn’. In the latter case
x is a new parameter introduced in the rule that stands for n’. And r stands
for the result of the function R when applied to n’, which corresponds to
an appeal to the induction hypothesis. The notation ..t indicates that
occurrences of z and r in ¢, are bound with scope t;. The fact that both are
bound corresponds to the assumptions x : nat and r : 7 that are introduced
to prove ¢, : 7 in the rightmost premise.

The local reduction rules may help explain this. We first write then
down just on the terms, where they are computation rules.

R(O,to,x.?”.ts) —pr to
R(sn/,to,x.r.ts) =g [R(N, to,x.7r.ts)/r][n' /]| ts

The second case reduces to the term ¢; with parameter « instantiated to the
number n’ of the inductive hypothesis and parameter r instantiated to the
value of R at n’. So the argument ¢y of R indicates the output to use for
n = 0 and ¢, indicates the output to use for n = sx as a function of the
smaller number z and of r for the recursive outcome of R(n, to, z.7.ts).

These are still quite unwieldy, so we consider a more readable schematic
form, called the schema of primitive recursion. If we define f by cases

f0) =+t
flsz) = ts(z, f())

2R suggests recursion

LECTURE NOTES SEPTEMBER 21, 2017

Heyting Arithmetic L8.7

where the only occurence of f on the right-hand side is applied to x, then
we could have defined f explicitly with

f=fnn= R(n,ty,z.r.ts(z,7))

To verify this, apply f to 0 and apply the reduction rules and also apply f
to sn for an arbitrary n and once again apply the reduction rules.

f(0) =r R(0,ty,z.7.ts(x,1))
—pr to

noting that the x in z.r.t,(...) is not a free occurrence (indicated by the
presence of the dot in z.) since it corresponds to the hypothesis x : nat in
natE®". Finally

f(sn) =g R(sn,to,z.r.ts(x,r))
=g ts(n,R(n,to,x.7.ts(x,7)))

= ts (n, f(n))

The last equality is justified by a (meta-level) induction hypothesis, because
we are trying to show that f(n) = R(n, to, z. 7. ts(x, 1))

We also reuse the notion of functional abstraction (already used to de-
scribe proof terms of A D B and Vz:7. A(x) to describe functions at the level
of data.’> We write 7 — o for types 7 and o and present them here without
further justification since they just mirror the kinds of rules we have seen
multiple times already.

TT

S:0 s:T—oc t:T
—] —F
ALT.S:T—0 st:o

The local reduction is
(Ax:r. s)t =g [t/x]s
Now we can define double via the schema of primitive recursion.

double(0) = 0
double(sxz) = s(s(doublex))

*The case for unifying all these notions in type theory looks pretty strong at this point.

LECTURE NOTES SEPTEMBER 21, 2017

L8.8 Heyting Arithmetic

We can read off the closed-form definition if we wish:
double = An. R(n,0,x.r.s(sr))

After having understood this, we will be content with using the schema
of primitive recursion. We define addition and multiplication as exercises.

plus(0) = Ay.y
plus(sz) = Ay.s((plusz)y)
Notice that plus is a function of type nat — (nat — nat) that is primitive
recursive in its (first and only) argument.

times(0) = Ay.0
times(s z) Ay. (plus ((timesz) y))y

6 Proof Terms
With proof terms for primitive recursion in place, we can revisit and make

a consistent proof term assignment for the elimination form with respect to
the truth of propositions.

u

x:nat wu:C(x)

n:nat My : C(0) M, : C(sx)
R(n, My, z.u. M) : C(n)

nat %Y

Except for the type of judgment (proof terms and propositions versus typ-
ing judgments), this elimination rule natE*" is essentially the same as the
(primitive) recursion rule nat ", just on propositions instead of data.

The local reductions we discussed before for terms representing data,
also work for these proofs terms, because they are both derived from slightly
different variants of the elimination rules (one with proof terms, one with
data terms).

R(O,Mo,ﬂf.u.Ms) —r My
R(sn', My, x.u. Ms) =g [R(n', My, z.u. My)/u][n'/z] M

We can conclude that proofs by induction correspond to functions de-
fined by primitive recursion, and that they compute in the same way.

LECTURE NOTES SEPTEMBER 21, 2017

Heyting Arithmetic L8.9

Returning to the earlier example, we can now write the proof terms,
using _ for proofs of equality (whose computational content we do not care
about).

Theorem: Vz:nat. x = 0V Jy:nat. x = sy.
Proof: By induction on x.
Case: = = 0. Then the left disjunct is true.

Case: x = s2/. Then the right disjunct is true: pick y = 2’ and
observe x = sz’ = sy.

The extracted function is the predecessor function:
pred = Az:nat. R(x,inl_, .7 inr(z,_))

here we have suppressed the evidence for equalities, since we have not yet
introduced proof terms for them.

7 Local Proof Reduction

We would like to check that the rules for natural numbers are locally sound
and complete. For soundness, we verify that no matter how we introduce
the judgment n : nat, we can find a “more direct” proof of the conclusion.
In the case of natlj this is easy to see, because the second premise already
establishes our conclusion directly.

—u
x:nat C(x) true
0:nat 0 C(0) true C(sx) true
natE=t _ &
C(0) true R C(0) true

The case where n = sn’ is more difficult and more subtle. Intuitively,
we should be using the deduction of the second premise for this case.

LECTURE NOTES SEPTEMBER 21, 2017

L8.10 Heyting Arithmetic

u
/D x:nat C(x) true
n' :nat nat1, £ F
sn’ : nat C(0) true C(sx) true
natE*"
C(sn’) true
u
z:nat C(x) true
D & F
n’ :nat C(0) true C(sx) true
D natE*"
n’ : nat C(n') true
[n' /] F’
—R C(sn') true

It is difficult to see in which way this is a reduction: D is duplicated, £ per-
sists, and we still have an application of natE. The key is that the term we
are eliminating with the applicaton of natE becomes smaller: from sn’ to
n’. In hindsight we should have expected this, because the term is also the
only component getting smaller in the second introduction rule for natural
numbers. Fortunately, the term that natF is applied to can only get smaller
finitely often because it will ultimately just be 0, so will be back in the first
local reduction case.

The computational content of this reduction is more easily seen in a
different context, so we move on to discuss primitive recursion.

The question of local expansion does not make sense in our setting. The
difficulty is that we need to show that we can apply the elimination rules in
such a way that we can reconstitute a proof of the original judgment. How-
ever, the elimination rule we have so far works only for the truth judgment,
so we cannot really reintroduce n : nat, since the only two introduction
rules nat/y and nat/s do not apply.

8 Local Expansion

Using primitive recursion, we can now write a local expansion.

X . nat
D natly ——— natl;
n:nat 0:nat sx : nat
D nat B
n : nat R(n,0,z.7.sx) : nat

LECTURE NOTES SEPTEMBER 21, 2017

Heyting Arithmetic L8.11

A surprising observation about the local expansion is that it does not
use the recursive result, 7, which corresponds to a use of the induction
hypothesis. Consequently, a simple proof-by-cases that uses natEy when n
is zeroand uses natf/; when n is a successor would also have been locally
sound and complete.

This is a reflection of the fact that the local completeness property we
have does not carry over to a comparable global completeness. The diffi-
culty is the well-known property that in order to prove a proposition A by
induction, we may have to first generalize the induction hypothesis to some
B, prove B by induction and also prove B D A. Such proofs do not have the
subformula property, which means that our strict program of explaining
the meaning of propositions from the meaning of their parts breaks down
in arithmetic. In fact, there is a hierarchy of arithmetic theories, depending
on which propositions we may use as induction formulas.

References

[Hey56] Arend Heyting. Intuitionism: An Introduction. North-Holland Pub-
lishing, Amsterdam, 1956. 3rd edition, 1971.

[Pea89] Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita.
Fratres Bocca, 1889.

LECTURE NOTES SEPTEMBER 21, 2017

	Introduction
	Induction
	Equality
	Equality is Reflexive
	Primitive Recursion
	Proof Terms
	Local Proof Reduction
	Local Expansion

