
Dcheck: A Derivation Checker

Karl Crary

September 22, 2022

1 Overview

Dcheck provides a simple, text-based framework for writing and checking logic derivations. Consider the
(blackboard-style) natural-deduction derivation:

A true
u

A true
u

A ∧A true
∧I

A ⊃ (A ∧A) true
⊃Iu

In Dcheck the same derivation is written:

system ND

deriv simple =

A => (A /\ A) true

by ImpI(u)

>>

A /\ A true

by AndI

>>

{

A true

by u

}

{

A true

by u

}

The first line indicates that the system we are working in is natural deduction (“ND”). Following that is
the derivation. In it, we can see one of the main ways in which Dcheck derivations differ from blackboard
derivations (apart from being written in ASCII): Dcheck derivations grow downward, not upward.

A derivation consists of:

� a judgement (e.g., A => (A /\ A) true),

1

� the keyword “by” followed by a reason, which is usually a rule or a hypothesis name (e.g., ImpI(u)
or u), and

� zero or more premises, each of which is a derivation.

If a rule has one or more premises, the symbol “>>” separates the reason from the premises. If a rule has
two or more premises, each premise must be enclosed in curly braces. If a rule has one premise, the braces
are optional (in the example above they are omitted).

A Dcheck program is a sequence of clauses, each one of either:

� defines a derivation, written deriv 〈name〉 = 〈derivation〉

� defines a proposition abbreviation, written prop 〈name〉 = 〈proposition〉.

� sets the current logical system, written system 〈system-name〉.

Comments can be included using the SML comment convention (that is, (* ignored text *)).

2 Propositions and Judgements

The syntax of propositions is given in the following table. Each group has greater precedence than the groups
below it. (Don’t worry if you aren’t familiar with all these connectives yet.)

connective blackboard Dcheck
truth T T

falsity F F

positive truth T+ T+

negative truth T− T-

top > T

one 1 1

zero 0 0

equality1 = =

not2 ¬ ~

upshift ↑ up

downshift ↓ down

bang ! !

box 2 []

diamond 3 <>

and ∧ /\

positive and ∧+ /\+

negative and ∧− /\-

tensor ⊗ *

or ∨ \/

plus ⊕ +

with & &

implies ⊃ =>

lolli (-o

universal quantifier ∀ All

existential quantifier ∃ Exist

2

Any upper-case proposition identifier (other than T or F) is taken to be a metavariable. In systems where
atomicity matters (e.g., sequent calculus), any metavariable beginning with the letter P, Q, R, or S is taken to
be atomic. Any lower-case proposition identifier refers to a proposition abbreviation that was defined earlier
(for example, by the clause prop t_and_t = T /\ T). In focused logic, a metavariable should end with a
plus or minus to indicate polarity (such as P- for a negative atomic proposition). In predicate logic (e.g.,
Heyting arithmetic), a predicate applied to a term is written A(n).

The syntax of judgements is given in the following table:

system (system-name) blackboard Dcheck
natural deduction (ND) A true A true

natural deduction A1 true, ..., An true ` B true A1 true, ..., An true |- B true

with contexts (NDC)
proof terms (PT) M : A M :: A

verifications & uses (VU) A ↑ A ver

A ↓ A use

Heyting arithmetic (AR) A true A true

sequent calculus (SC) A1, . . . , An =⇒ B A1, ..., An ==> B

classical logic (CL) A true A true

A false A false

#

focused logic (FL) A1, . . . , An;B1, . . . Bm
R−→ C A1,..., An ; B1,..., Bm -r-> C

A1, . . . , An;B1, . . . Bm
L−→ C A1,..., An ; B1,..., Bm -l-> C

A1, . . . , An −→ C A1,..., An --> C

A1, . . . , An; [B] −→ C A1,..., An ; [B] --> C

A1, . . . , An −→ [C] A1,..., An --> [C]

linear logic (LL) A1 valid, ..., Am valid; A1 valid, ..., Am valid,

B1 true, ..., Bn true C true B1 true, ..., Bn true |- C true

modal logic (ML) A1 valid, ..., Am valid; A1 valid, ..., Am valid,

B1 true, ..., Bn true ` C true B1 true, ..., Bn true |- C true

A1 valid, ..., Am valid; A1 valid, ..., Am valid,

B1 true, ..., Bn true ` C poss B1 true, ..., Bn true |- C poss

For the proof-term system, the syntax of proof terms is given by:

form blackboard Dcheck
variable x x

pair 〈M,N〉 (M, N)

first component fstM fst M

second component sndM snd M

lambda λx.M lambda x . M

application M N M N

left injection inlM inl M

right injection inrM inr M

case case(M,x.N, y.P) case(M, x . N, y . P)

unit 〈〉 ()

abort abortM abort M

1An atomic proposition, not a connective, but it’s convenient to list it here.
2This is the defined not (¬P = P ⊃ F) unless the current system is classical, in which case it is classical logic’s primitive

not.

3

3 Rules and Reasons

The rule sets of the various systems are given in Figures 1–8. Each rule may be used as a reason. The name
of a defined derivation (for example, by the clause deriv foo = A /\ B true by ...) or a hypothesis can
also be used as a reason.

An important difference between blackboard derivations and Dcheck derivations is Dcheck premises must
be given in the standard order. For example, in the following fragment of a derivation, the two premises
A true and B true cannot be given in the opposite order (whereas in a blackboard derivation the order
would not matter):

...

A /\ B true

by AndI

>>

{

A true

by ...

}

{

B true

by ...

}

Additionally, some rules require an assumption number (notably sequent-calculus left rules). In such rules,
assumptions are counted from right to left (with the rightmost being assumption zero). For example:

system SC

deriv another_simple =

==> P /\ Q => P

by ImpR

>>

P /\ Q ==> P

by AndL1(0)

>>

P /\ Q, P ==> P

by AndL2(1)

>>

P /\ Q, P, Q ==> P

by Init(1)

In modal logic, where multiple sorts of hypothesis can appear in the context, a hypothesis’s index is based
only on hypotheses of the same sort. For example, if the context is A valid, B true, the location of the A

hypothesis is validity hypothesis zero, not as (overall) hypothesis one. (Multiple sorts of hypotheses can also
appear in the context in linear logic, but it turns out this counting issue never arises. Can you see why?)

As usual in sequent calculus, assumptions are taken to be unordered. Also, unneeded assumptions can be
silently dropped. For example, the following derivation fragment is legal:

4

...

A /\ B, C, D ==> E

by AndL1(2)

>>

D, A, C ==> E

by ...

This also applies to focused logic, except assumptions in the stoup3 cannot be reordered or dropped.

When quantifiers have introduced a term parameter, say a : T , the judgement a : T can be derived using a

as the reason. For example:

deriv all_expand =

(All x:T. A(x)) => (All x:T. A(x)) true

by ImpI(u)

>>

All x:T. A(x) true

by AllI(a)

>>

A(a) true

by AllE

>>

{

All x:T. A(x) true

by u

}

{

a : T

by a

}

4 Using the checker, and additional resources

When you submit your solution to Gradescope, the autograder will first run a set of sanity checks. These
ensure that your solution parses correctly and passes some other elementary checks. If your solution passes
the sanity checks, the autograder will grade it and produce output for any problems with instant feedback.
The full results will be visible when the assignment is over.

� You can run the sanity checks by themselves on Andrew by executing ~crary/bin/dsanity <filename>.

� You can visualize your program in blackboard-style structure (i.e., derivations growing upward, hori-
zontal lines to separate premises from conclusion) by running ~crary/bin/dvis <filename>. (Note
that the visualizer only visualizes the derivation; it does not run any sanity checks.)

� There is a set of examples at cs.cmu.edu/~crary/dcheck/example.deriv.

3the second group of assumptions in inversion stages

5

blackboard Dcheck
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI(〈name〉)
⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE(〈name〉, 〈name〉)
TI TI

FE FE

Figure 1: Natural Deduction (ND) Rules

blackboard Dcheck
Hyp Hyp(〈number〉)
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI

⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE

TI TI

FE FE

Figure 2: Natural Deduction with Contexts (NDC) Rules

blackboard Dcheck
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI(〈name〉)
⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE(〈name〉, 〈name〉)
TI TI

FE FE

(Note: The hypothesis names must be
the same as the bound variables.)

Figure 3: Proof Term (PT) Rules

6

blackboard Dcheck
∧↑ AndI

∧↓1 AndE1

∧↓2 AndE2

⊃↑ ImpI(〈name〉)
⊃↓ ImpE

∨↑1 OrI1

∨↑2 OrI2

∨↓ OrE(〈name〉, 〈name〉)
T↑ TI

F↓ FE

↓↑ UV

Figure 4: Verifications and Uses (VU) Rules

blackboard Dcheck
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI(〈name〉)
⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE(〈name〉, 〈name〉)
TI TI

FE FE

∀I AllI(〈name〉)
∀E AllE

∃I ExistI

∃E ExistE(〈name〉, 〈name〉)
natI0 NatI0

natIs NatIs

natE NatE(〈name〉, 〈name〉)
=I00 EqI00

=Iss EqIss

=Ess EqEss

=E0s EqE0s

=Es0 EqEs0

Figure 5: Heyting Arithmetic (AR) Rules

7

blackboard Dcheck
∧T AndT

∧F1 AndF1

∧F2 AndF2

⊃T ImpT(〈name〉)
⊃F ImpF

∨T1 OrT1

∨T2 OrT2

∨F OrF

TT TT

FF FF

¬T NotT

¬F NotF

T# ContraT(〈name〉)
F# ContraF(〈name〉)
Contra

Figure 6: Classical Logic (CL) Rules

blackboard Dcheck
Init Init(〈number〉)
∧R AndR

∧L1 AndL1(〈number〉)
∧L2 AndL2(〈number〉)
⊃R ImpR

⊃L ImpL(〈number〉)
∨R1 OrR1

∨R2 OrR2

∨L OrL(〈number〉)
TR TR

FL FL(〈number〉)

Figure 7: Sequent Calculus (SC) Rules

8

blackboard Dcheck
PR PR

↑R UpR

⊃R ImpR

∧−R AndmR

T−R TmR

PL PL

↓L DownL

∧+L AndpL

T+L TpL

∨L OrL

FL FL

Stable Stable

FocusL FocusL(〈number〉)
FocusR FocusR

Init− Initm

↑L UpL

⊃L ImpL

∧−L1 AndmL1

∧−L2 AndmL2

Init+ Initp(〈number〉)
↓R DownR

∧+R AndpR

T+R TpR

∨R1 OrR1

∨R2 OrR2

Figure 8: Focused Logic (FL) Rules

blackboard Dcheck
Hyp Hyp

Hypv Hypv(〈number〉)
⊗I TensI

⊗E TensE

&I WithI

&E1 WithE1

&E2 WithE2

⊕I1 PlusI1

⊕I2 PlusI2

⊕E PlusE

(I LolI

(E LolE

!I BangI

!E BangE

>I TopI

1I OneI

1E OneE

0E ZeroE

Figure 9: Linear Logic (LL) Rules

9

blackboard Dcheck
Hyp Hyp(〈number〉)
Hypv Hypv(〈number〉)
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI

⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE

TI TI

FE FE

2I BoxI

2E BoxE

2Ep BoxEp

3I DiaI

Here Here

3E DiaE

Figure 10: Modal Logic (ML) Rules

10

