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ABSTRACT

Our goal is to develop and apply scalable parallel algorithms for the optimization of systems governed by
viscous incompressible flows. To facilitate parallel implementation, we would like to build these algorithms
from components of such parallel PDE solver toolkits as PETSC and SUNDANCE. Target application classes
include optimal control and optimal design. In both settings, a major challenge is the development of numer-
ical optimization algorithms for solving the first-order conditions characterizing optimality. A further major
challenge, specific to the shape optimization problem, is the development of algorithms that overcome the
difficulties of moving boundaries and shape sensitivities, which are particularly vexing on parallel comput-
ers. Below we describe algorithms we have developed that target these problems, and their application to
the solution of some viscous flow control and shape optimization problems.

In the first half of our presentation, we review some of our work on fast solvers for optimization problems
that are governed by PDEs [1,2,3], and their implementation using components from PETSC, a parallel
PDE solver library developed at Argonne National Lab. The method we have developed, which we refer
to as Lagrange-Newton-Krylov-Schur (LNKS), solves the full optimality system consisting of state, adjoint,
and control equations using an inexact preconditioned Newton-QMR method. The preconditioner is a block
factorization that emulates a reduced quasi-Newton SQP method: it approximates the reduced Hessian
via suitably-initialized limited memory BFGS updates while discarding other second derivative terms, and
replaces the exact state and adjoint solves with application of appropriate preconditioners, e.g. additive
Schwarz or multigrid. If sufficient descent cannot be obtained with a line search, then we drop down to
the reduced space and take a quasi-Newton step. Experiments with this method on some problems of
optimal control of three-dimensional steady Navier-Stokes flows via boundary suction/injection demonstrate
high parallel scalability, mesh-independence of Newton iterations, mesh-independence of Krylov iterations
(provided an optimal state preconditioner is available), and solution to optimality in four times the cost of a
flow solution, for a problem with over 600,000 state and 9000 control variables. This small constant multiple
of the state solve cost is due to iterating in the full space, which hides the iterations (linear and nonlinear)
needed to converge the flow behind those required for optimization. LNKS is most effective when the state
equations are difficult to solve, requiring many iterations.



In the second half of the presentation, we turn our attention to the remaining challenges posed by shape
optimization problems. These include difficulties in maintaining a differentiable shape representation, in
determining derivatives of response quantities with respect to the shape representation, and in maintaining
a mesh that smoothly resolves the changing geometry. All of these are particularly challenging in 3D and
on parallel computers. The geometry modeling and meshing complexities of the Lagrangian approach have
lead us to pursue an Eulerian formulation, which solves the shape optimization problem with respect to a
fixed spatial description. This greatly facilitates parallel implementation.

Our approach integrates several contemporary ideas from scientific computing. From level set methods we
borrow the idea of implicit shape representation by the zero isocontour of a level set function. But unlike
level set methods, we avoid solving the Hamilton-Jacobi equation that evolves the level set function in “time”
(which amounts to a steepest descent optimization method), in favor of direct Newton-Krylov solution of
the nonlinear PDEs representing first-order optimality with respect to state, adjoint, and level set variables.
Because there exist an infinite number of level set functions for a given shape, the optimization problem
is ill-posed, and we must therefore employ a regularization functional to render the solution unique. As in
phasefield methods, we use a characteristic function to denote interior and exterior regions. But because the
exterior region is represented by boundary conditions, we appeal to distributed Lagrange multiplier variants
of fictitious domain methods to incorporate the effect of these conditions.

Several shape optimization model problems, including ones in which the topology of the optimal shape
differs from that of the initial, are solved on regular grids to demonstrate the method. Numerical solution
is effected through Galerkin finite element approximation of weak statements of the infinite dimensional
Newton step. The implementation is done via SUNDANCE, a C++ finite element toolkit for solution of vari-
ational problems developed by Kevin Long at Sandia. The blending of ideas from level set/phasefield sur-
face representation, fictitious domain enforcement of boundary conditions, and full-space Newton-Krylov
optimization solvers leads to a purely Eulerian method that avoid dynamic mesh (re)generation and shape
(re)parameterization. The tradeoff is that the convergence rate of the numerical approximation is suboptimal,
but we believe this is a small price to pay for avoiding the significant geometry and parallelism difficulties
of Lagrangian methods.
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