AUTOMATIC BOUNDARY SIZING FOR 2D AND 3D MESHES

Alexandre Cunha
cunha@cmu.edu

Scott Canann
scanann@cmu.edu

Sunil Saigal
saigal@cmu.edu

Department of Civil and Environmental Engineering
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

1 ABSTRACT

The numericd solution d problems in science and
engineaing via the finite dement method requires, as a first
step, the discretization o a domain into a set of simply shaped
elements. Determining the size of these dements along the
domain, including the boundary, to form well-shaped elements
isadifficult task. We present in this paper a ssimple technique,
cdled smart sizing, which automaticdly computes high quality
initial element sizing oncurves for trianguar, quadril ateral and
tetrahedral elements. Curve divisons are computed based on
curve and surface arvatures as well as feaure proximity. In
the threedimensional case, refinement of facds is performed as
needed to creae reasonably sized surface éements. Computing
a boundry mesh appropriately is a key step to successully
determine the size and distribution o new elements towards
the interior of the domain, espedally for the advancing front
and constrained Delaunay meshing techniques. The gproach
presented here is geometry based and daes not attempt to
acourt for the physics of the problem.

2 INTRODUCTION

2.1 PREVIOUS WORK

Most unstructured mesh generators apply one or more of
the following methods: quadtredoctree (2D/3D domains),
Delaunay trianguation (DT), and advancing front. Each has its
own way of asdgning element sizes along the domain to
produce amesh. In many quadtredoctree and DT approaches,
the domain is refined in a top dawvn fashion, bre&king the
elements to achieve adesired shape quality and/or target size
Many of them are not able to exadly match an initial boundary
mesh because the dement sizing is an intrinsic part of the
generation process On the other hand, advancing front mesh
generators rely on a boundry mesh to construct new elements
in the interior of the domain. They usually strictly preserve the

boundxry which is metimes needed when meshing multiple
domains in dfferent stages. This suggests the definition d a
constrained mesh generator (CMG) as one that preserves the
inpu boundxry asitis.

In quadtree and actree mesh generators, the entire domain
is enclosed by an axes-aligned redanguar boundng boxand
then reaursively subdvided urtil ead led cdl in the tree
interseds the domain in a predefined way. The cdls are then
warped and cut to conform to the boundary and a trianguation
is constructed from the remaining cdls to form a trianguar
mesh. The subdviding plase may be governed by a user
suppied spadng function a by abalance ondtionfor the tree
Algorithms basicdly differ on the subdviding criteria and the
method sed to ensure wnformity between boundry cdls (the
former being pimarily resporsible for the dement sizes).
Quadtree ad actree generators include (Yerry and Shephard,
1983 1984, (Bachmann et a., 1987, (Peruchio et al., 1989,
(Shephard and Georges, 1991, (Mitchell and Vavasis, 1992,
(Bernetal., 1994, and (Vavasis, 1996).

Some two dmensional mesh generators have made use of
constrained Delaunay triangdation (CDT) (Chew, 198%) to
construct a trianguar mesh. Most of them canna be dasdfied
as constrained mesh generators because the boundry edges are
subdvided to satisfy their shape quality criteria. Chew (198%)
was the first one to use aCDT that guaranteal the construction
of a 2D mesh with al anges in the interval [30°, 12(°],
provided that the length of al given edges are between h and
(V3)h, and notwo given vertices are doser than h, where h is
the alge length chasen by the user. Since boundiry edges not
complying with these condtions are divided, the mesher is not
a CMG. Extensions to his work have been made by (Ruppert,
1995, (Shewchuk, 1996), and (Shewchuk, 1996h. In
(Shewchuk, 19961 it is posdble to preserve the boundiry
edges to match adjacent meshes.



P. L. George and colleagues (199Q 1991, 1992 developed
aCMG using athreedimensional DT. Given a boundiry mesh,
the DT of its vertex set isfirst constructed. New paints are then
inserted into the domain and a retrianguation forms the
tetrahedral mesh. The boundrry mesh is remvered applying a
set of predefined transformations to adjust those dements
crossng it. In a final step, the nodes are smoothed and some
faces may be swapped to improve the dement quality.
Weaherill and Hassan (1992 also developed a similar CMG.
A description o improved mesh generators using this
technique can be found in (Weaherill and Hassan, 1994),
(Wedaherill et a., 1994 and (Borouchaki et al., 1995.

More recently, a mix of advancing front and DT in three
dimensions, as described above, has been proposed to take
advantage of the alvancing front high quality paint placement
strategy and DT spatial information (Marcum and Weaherill
1995 Pascd et al., 1996. Advancing front is known to
produwce high quality elements around the boundry (point
placement) while DT has definite spead advantages.

Since the generators described abowve preserve the
boundry elements and wse them to generate new elements
inside the domain, they neal a well sized boun@ry mesh to
produce high quality final elements. The present work shows a
technique to construct such boundry meshes.

2.2 MOTIVATION

The goal of this work is to develop a robust strategy to
automaticdly construct well sized boundry meshes that can be
used with either the alvancing front or constrained Delaunay
mesh generators. The basic idea behind the scheme described
here is to perform successve refinements on the boundiry
mesh of the domain at ead iteration urtil discretizaion errors
are minimized and reasonable quality elements can be
expeded.

2.3 NOTATION AND BASIC DEFINITIONS

Parametric aurves with parametrization t and padnts are
denoted as lowercase boldface letters, like r(t) and p.
Parametric surfaces with parametrizations u and v and sets are
denoted by upprcase itdic letters, as in Su,v) and R. For
simplicity, parametrizations considered here ae in the unit
interval [0,1]. Other geometric and mesh entities are
represented in lowercase italic letters, asin v for vertices and n
for nodes. Greek |etters represent scaar quantities. Vertices are
referred to as geometric entities, while nodes are mesh
comporents. Both have their position defined by a point. Mesh
entities are mmposed of a set of nodes N = {n}, a set of edges
E = {e} conreding two nodes of the mesh and a set of
elements F = {f} formed by alist of edges. Any curve has two
end wertices and a surfaceis comprised of a set of boundry
curves. A volume isformed by a set of surfaces.

To fadlitate ill ustration, some drawings are restricted to
two dmensions. Nevertheless the method described extends to
threedimensions, unlessotherwise mentioned.

This paper is presented as follows: in sedion 3 the smart
sizing algorithm is presented. Subsedions 3.2 and 33,
respedively, show how curvature is computed for nodes and

how proximity refinement is performed based on the distance
between nodes and edges. In sedion 4 surface proximity
cheding is explained. In sedion 5a simple user interfaceis
discussed and sedion 6 gvesa mnclusion.

3 SMART SIZING

3.1 ALGORITHM
The smart sizing algorithm is as foll ows:

0. Let R={ri} bethe set of curvesfrom given geometry and
let V= {v;} beitsset of vertices
1. Compute (or allow user to input) a global meshing size h
and aminimum meshing size hy,
2. Asdgn asizefor ead node n; at ead vertex v, to be the
small est value anong the following:
- global meshingsizeh
- length of curvesincident to v,
- dzedueto curvature, i.e., ksize(n;)
Processverticesto find small angles
Mesh the aurves, using vertex sizes
Begin main loop
Asdgnsizesfor new nodes, size(n)
Curvature refinement: for eat node n; do
size(n)) = min(size(n;), ksize(ny))
Proximity refinement: for ead edge g do
update size of neaby non-conneded nodes
based on their distanceto g
9. Remesh the aurves
10. End loopif:
- the maximum number of iterationsis readed,
- or no modifications were made

Nouok~w

©

The global meshing size h is an initial guessfor the elge
length in all curves. If the user does not provide this value, then
it can be computed from the input geometry simply by
multi plying the diagonal of the redanguar bounding box of the
domain by a scdingfador.

A minimum meshing size, hyn, is provided so as to restrict
the dgorithm from producing too many nodes in extreme
situations. It is smply the h value divided by a @efficient much
larger than 1, such that 0 < hp, << h.

In step 2, the size of the nodes at the vertices are initi ali zed.
The size is computed as the minimum of the sizes due to
curvature (ksizg(n)), the meshing dobal size (h) and the length
of the arves conneded to the node. The arvature size
ksizeg(n), is computed as follows:

» Evauate arvature, k, at the node position on curve;

» Locdly approximate the aurve & that position asa drcle
with radius R equals to 1/k;

» Compute the size s of the alge that spans an angle of ¢,
where ¢, defined as the maximum spanning angdle, is the
maximum angle spanned along the drcle; acording to
Fig. 1, s= 2Rsin(@?2) or s = 2sin(¢@2)/k;



e ksizgn) =s.
Thus, the alge size is a linea function of the radius. As
expeded, small curvature will give large elges and large
curvature will give short edges. For straight lines or almost
straight lines (k = 0), curvature does not affed sizing.

Fig. 1 Node size due to curvature

Curves are now meshed using the sizes at their end nodes.
For any two nodes with sizes 5 and s.; on the arve, the
scheme shown in Fig. 2 is used. New nodes are inserted on the
curve segment of length L, definingm new edges, ead one with
a size propational to § (where 5 < §.1). A smoocth transition
for the edgesis required such that the ratio o the lengths of any
two adjacent edgesisin theinterval [1/A, A], where A is defined
as the growth ratio (or grading facor). Note that given the end
node sizes, § and s.1 (= A””s), and the segment length L, we
can determine the growth ratio and the number of new nodes on
that segment. The computed growth ratio is restricted to be less
than or equal to a user spedfied value. The growth ratio is
similar to Joe's gnoothing parameter (Joe, 1986, which
controls the variation in size between adjacent elements. The

s A5 Xs A™s
S, ‘ ‘ ‘ §+1

""" 1

Fig. 2 Meshing scheme for acurve

pseudo-code below returns the set of nodes for a arve segment
of r(t):

mesh_curve (n;, Njsq, 1, A)
§ = sizeof node n;
S+1 = Sizeof node ;4
L = length of r between n; and nj, 4
A =min(A, growth_ratio(s;, S+1, L))
N= {nj}
A=g
t=A/L
while (t < 1) do
n=node & r(t)
N=NDO{n}
A=A
t=t+ A/L
enddo
N=NDO{nyq}
return N
end

An adjustment of the last edge size is performed as needed to
match s, as closely as possble. For the speda case when § =
S+1 = h nodes are evenly distributed aong the arve. The
example in Fig. 3 shows a geometric model, its lines and the
line divisions after mesh_curveiscdled for all them.

1/ "/
Q Y
A
) T Wy
Y
\
<) /

Fig. 3 An oljeq, itslines and their divisions

Oncenew nodes are aedaed, their sizes are asggned in step
6. The sizeof anew node is st to be the arerage length of the
edges conneded to it. These sizes may be reduced later
depending on the aurvature & the nodes (step 7) and their
proximity to other edges (step 8). After updating the size of the
current nodes, the arves are remeshed as described above and
steps 6 to 9 are repeaed until no modificaions are made to the
nodal size settings (no new nodes creded) or the maximum
number of iterations is readed, which is, typicdly, fairly small
(experience has sown four iterationsto be adequate).

3.2 CURVATURE AT A NODE

Insteps 2 and 7 d the smart sizing algorithm, the aurvature
value & a node on the arve is necessary to compute its sze
This value depends not only on the shape of the arve itsalf, but
also on the arvature of eat surface onneaed to the arve. As
an ill ustration, consider the gylinder of Fig. 4 and its geometric
representation. If only line aurvature is evaluated, the meshing
of the straight line lying on the aurved surfaceof the oylinder
might produce awrong number of nodes which could cause
problems when meshing the surface #ongtheline.

Normal curvature & a point on a surface arve has two
extreme values in orthogonal diredions cdled the principal
curvatures, k; and k, (O’'Neill, 1966. The maximum of these
two values is used together with the line arvature to evaluate
the final curvature & a node (see Fig. 5) and they are most

Sdid Model Model Curves Line Curvature
k=0
., /
@ \/ \ k#0
Curves kiy

ka

Fig. 4 Principal curvatures avoid wrong eval uation of line curvature



significant for some type of surfaces, as ill ustrated above, due
to their geometric representation or due to their construction
itself. Repetitively computing the principal curvatures is quite
expensive and some simplificaions are made. The arvature &
an end node of a arve is the maximum curvature of all its
conneded curves when evaluated at the node position. No
surface arvature is computed becaise it is anticipated that the
line arvature will generally match the surface airvature & such
nodes. For example, for node n; in Fig. 5, k(ny) = ki = max(k(ly),
k(l2) k(I3)), where k(l;) denotes the aurvature of thelinel; at n;.

For eat curve, the largest principal curvature, is computed
only once d its middle paint, k... For any node n on the airve,
except the end nodes, kv, and the arvature of the dosest end
node ae linealy interpolated to give the node’'s surface
curvature value, ky(n). The final curvature k at a node n is the
maximum value of its surface arvature and its line aurvature,
ki(n), k(n) = max(ks(n), ki(n)). The largest principal curvature &
the arve midde point is computed as follows:. for al surfaces
conneded to the aurve, find k; and k; at this point and take the
maximum.

Fig. 5 Curvature computation

An exception to the dgorithm for using curvature for sizing
can occur when small holes or small curved feaures are present
in the geometry. As was $own, the elge size due to curvature
is a linea function of the radius of the drcle defined by that
curvature. For very smal radi, the alge sizes will be very
small and thus for small holes a large number of tiny edges can
be mnstructed. If the number of elementsisto be minimized in
such cases, the right approach is to simplify the geometry. Some
reseach has been done in this area to avoid unrecessary
elements in the andysis dep, either removing such small
feaures (Shephard, 1989 or substituting parts of the geometry
by reduced dmension elements, such as beams, plates and
shells (Donaghy et. al., 1996).

Small curved fedures are tradked by comparing the elge
size s due to curvature ajainst the global meshing size h and
modifying s, if necessary. If the ratio h/s is above apre-defined
threshold, 50:1 for example, a small curved feaure has been

’>S

h:s=501 ¢ =90

Fig. 6 Small holes

encountered and s is computed again using an angle @ larger
than the maximum spanning angle ¢ (45° or 90°, for example),
s= 2Rsin(®/2), @ > ¢ (Fig. 6). If theratio is of the same order
of magnitude, up to 5:1 for example, the s value is kept (the
hole is not considered small). For values in-between, a linea
interpolation of the angles @ and ¢ is used and a new ange
propational to the arrent ratio is computed. The alge sizeis
then computed from this new angle.

Fig. 7 Meshing with small holes

Fig. 7 shows a small hole centered in a square plate. The
mesh on the top (bottom) was obtained before (after) applying
the technique described above. An angle of @ =45° was used to
get eight divisions on the hole line, thus deaeasing the number
of elements in the mesh on the bottom. Note that when such
small holes are desired for an analysis, smal hole marsening
can be turned off .

3.3 PROXIMITY

Proximity between edges and nodes is computed to modify
the node size, such that reasonably shaped elements can be
placal in small aress between neaby lines. This is the most
important purpose of smart sizing and most diredly affeds
element quality. For ead edge in the aurrent mesh, the dosest
nodes to it are found and, acwrding to their distance to the
edge, their corresponding size may be reduced. The procedure
for proximity refinement is as follows (seeFig. 8):

curve_proximity (e, A, bins)
N = neaby_nodes(e, bins)
L =length(e)
A = average size of end nodes of edge e
for eadhin N do
d = euclidean_distance(n, €)
if (d> L) then
s= A+ (A-1)d
else
s= Ad
endif
s=max(min(s, h), hy,)
sizg(n) = min(size(n), S)



s=A+(A-1d s=Ad

Fig. 8 Node size due to proximity

The A used in curve proximity is the growth ratio introduced
in sedion 3.1. The neaby region of an edge is determined by its
length and the arrent maximum node size. A bin sort (Samet,
1990 is usad to efficiently find the nodes nea the edge. It is
assumed that the size of any node outside the neaby region is
not affeced by the alge being analyzed. Note that the new size
sisin theinterval [h.n, h] and that the node size only changes
if it islarger than s. This approach tries to kegp approximately
the same alge length for neaby edges through the ajustment
of the sizes of their nodes such that the nearby region can be
covered with well -shaped tetrahedrons of that length.

Fig. 9 shows an objed meshed before (left picture) and
after proximity is considered. Note the dement quality
improvement around the holes.

Sz

e Va~

SSSEY
%

i
vl
ﬂ< ‘ﬂuu

-
VN‘AA”;A‘« Vg'éﬂ
AR5 D
oLy 4&)“ 1

Fig. 9 Meshes withou (left) and with proximity considered

An exception to the proximity refinement algorithm occurs
when small angles are present in the input geometry which can
cause problems when updating the node size due to proximity.
Two types of sharp corners are (Fig. 10):

» constant angle: the small angle does not change when

approaching the crner;

» deceasing angless the age deaeases when
approaching the mrner vertex - there is at least one
curved line involved.

A loop over the verticesis done in step 4 to determine if small
angles are present and to clasdfy them acwrding to the two
types above. In both cases, the size of the elges forming the
corner are frozen.

Fig. 10 Sharp corners: constant and decreasing angle

For a cnstant corner, the size of both corner edges is
maX(hyin, Min(h, Aly, Aly)), wherel; and I, are the lengths of the
curves forming the corner and A is the growth ratio. If a tiny
curve is present (its length is much less than h) one elge is
enough to cover it. Smart sizing cahnot take the place of
geometric defeauring — it simply meshes the boundary of the
geometry givento it.

For deaeasing angle arners, a walk is done on its curves
until the edges on these aurves form an angle greder than or
equal to a minimum corner angle. Then the sizes of these alges
are thedked for interval [hyn, h] and modified, if necessary.

In Fig. 11, an objed with these two types of corners is
meshed. Note that the shape of the dements on the round corner
isimproved by increasing the dement angles.

V'A.'

Fig. 11 Meshes before (left) and after applying the technique for
sharp corners

4 SURFACE PROXIMITY

It is not always possble to cach surfaceproximity during
the aurve meshing phase. That is becaise determining the
proximity of curves does not necessarily determine proximity of
the surfaces on which the airves lie on. This is often true for
certain representations of geometric primitives and also due to
the cmbinatoria nature of how these primitives could be
assembled to form the domain being analyzed. Hence, in some
situations the meshing of surfaces can yield large trianguar
facds on neaby surface aeas where there were no curves to
deted the proximity of such surfaces. An example of this type
of surface proximity would be alarge sphere padced inside a
cube.

Some facds may be large enoughto either compromise the
quality of the tetrahedrons that will be inserted between them or
even lead to meshing failures. To overcome this problem, the
size of the facds are deaeased to eliminate the probability of



producing poaly shaped tetrahedrons. This is done through
evaluation of the proximity of the facds, which is much less
expensive, in most cases, than doing it via the continuum
description of the surfaces.
The surface proximity cheding step is a four fold
procedure:
» Preprocessfacds and compute their size
* Determinethe size @ nodes and the distance between the
nodes and neaby facds;
* Mark nodes for refinement if the distanceis lessthan the
node's sze
* Perform successve refinements of the facds
corresponding to the marked nodes urtil they read an
accetable size
The size & a node is the size of the largest face conneded to
the node. The size of afacd f is the distance from the face to
the oppasite point in the equilateral tetrahedron whose elge

- <
I

= (I, + I+ 13)/3 size(n) = size(f)
a) b)

Fig. 12 a) Equil ateral tetrahedron from facet b) node size

length is the average length of the facés edges (Fig. 124). That
is, if the edge lengths arel,, |, and |5 then the facd sizeis sz€(f)
= (V2/13)I, where | = (I; + |, + 13)/3. This tetrahedron is an
approximation of the best tetrahedron to attach to the facd. In
Fig. 12h the size d node n is the size of the shaded face f. The
surfaceproximity procedure for the surfacemesh M = (N, E, F)
isasfollows:

surface _proximity (M)

preprocessfacds:
assgnsizeof eah f; JF
B ={b;: b, isboundingbox of f; }
sort B

foreadin /N do
s=max({sizg(f) : fi isadjacent to n})
b, = bounding box of n
| = intersed(B, b,)
Oy = 400
foreah b [J1 do

d = distance(n, facgb))

if (d< 9 then
drrin =mi n(dminu d)
endif
enddo

if (dmin < ) then
level(n) = Dog, (9dmin)0

R=R0O{n}
endif
enddo
if (R=0) then

refine(M, R)
endif
end

The procedure requires that M be a mnsistently oriented
conformal mesh, that is:

» the normal vedors of all facds are mnsistently oriented

inward or outward from the domain;

* the intersedion of any two faces is an edge mnneding
two nodes of the mesh, a node, or the enpty set. Thisis
not always guaranteed after the surfaces have been
meshed, espedally when they are very close to eadh
other which can cause the facds to intersed in a
nonconformal way.

These requirements guarantee aproper intersedion test and
computation of node-face distances. They are dso required for
suppresdgon of refinement of faces improperly reported by the
intersed routine and of large facds that are very close but do
not face eals other — when the bounding boxes of the node and
the facd intersed, the normals of the node (average normal of
conneded facds) and the face are cmpared to chedk if they
face eal other).

In the preprocessng stage, the redanguar bounding boxes
of the facds are sorted such that the intersedion with the node
bounding box can be determined. Each bounding box by; is
defined by open intervals (X, X-i), (Wi, ¥r.), ad (z;, z) along,
respedively, the x, y, and z diredions. These intervals are
sorted separately in ead dimension using their end values and
intersedions are performed against the node bounding box on a
one-dimensional basis. The results for eat dimension are then
combined to determine the final set of interseded baxes.

The bounding box b,, of a node is a square cetered at the
node position p with edge length equal to two times the node
sizes(Fig. 13), b, = (p - s, p + 9). Similar to curve proximity,
this bounding box defines the neaby region of the node whose
final size might be dfeded by the distance to the facds in its
interior.

When o intersedions occur, the node will not be marked

Fig. 13 Node boundng box and dstance to a facet

for refinement. Otherwise, we find the minimum node-face
distance ad if it is below the node size, we mark it with alevel
of refinement propationa to log,(d.in), Where log, is the
logarithm base two. If not, the node remains unmarked.
Refinement is then done on al faces corresponding to
marked nodes. The refinement used here is based on Schneiders
and Debye dgorithms (1995 as adapted and implemented by
Staten (1996. The refinement is driven by a set of regular
refinement templates, ead one @nstructed acwrding to the



number of nodes marked for refinement in the triangle. Staten’s
work also includes topdogy cleanup and smocthing after ead
refinement iteration. Though the cnnedivity and pasition of
nodes may dightly change between iterations, such
modificaions do not significantly alter the proximity between
nodes and facds. Thus, the integrity of the node's refinement
level computed before any refinement take placeis preserved
for all iterations.

A single refinement at a time is done on these faces and
after ead iteration new facds and new nodes are introduced
into the mesh. The refinement level of these new nodes will be
the average refinement level of their adjacent nodes. At eadh
iteration, the refinement level of a node deaeases by one
becaise the size of its largest adjacent face is cut by half in the
refinement. The iteration stops when all marked nodes have a
refinement level equal to one — when the distance of neaby
facasis approximately equal to their sizes.

5INTERFACE

The smart sizing wser should be ale to easily get a fine or
coarse mesh without having to know the detail s involved in the
development of the technique. Asdgning the mrred parameter
values on atrail and error basis could be atime cnsuming task,
espedaly for a novice user. In order to make things easier and
more transparent, a set of predefined parameter values have
been grouped, making yp a @lledion of ten smart sizing levels,
eath one asdgning different values for some of the input
parameters. The user can then chose from one of these sizing
levels by simply picking a number from one (fine) to ten
(coarse). Table 1 shows the parameters used in ead level.

Parameter  Description

U scaling factor appied to the cmputed default
meshing size; values in the interval [0.2, 5.0] are
acceptable; 1.0 is default.

(0 maximum spanring ande for linear elements; values
in theinterval [9.0, 30.0] are used. 15.0 is default.

() maximum spanring ande for quadatic dements;
values in the interval [15.0, 30.0] are used; 30.0 is
default.

A growth ratio for line and aea element size epansion
and wed for proximity checkng, values in the
interval [1.2, 5.0] areallowed; 1.2 is default.

I maximum number of sizingiterations

Table 1 Interfaceparameters for ead smart sizing level

In table 2, these parameter values are shown for levels 3
and 8 and also for the intermediate level 6. Note that neither an
interpolation scheme nor ancther analyticd approach was used
to set up these values. They are simply the results of
experimental work dore with a @lledion o models and have
been tuned to handle most situations. To ill ustrate the variation
on the meshes obtained when levels are changed, a simple
geometry is meshed (Fig. 14). Note that the dement qudlity, as
expeded, is propationa to the number of elements achieved.
Typicdly, a very coarse mesh (level 10) would produce a

larger propational number of poaly shaped elements than a
finer one (levels6 or 1).

Level U 0 () A I
8 1.875 22.0 30.0 17 4
6 1.000 15.0 30.0 15 4
3 0.300 10.0 18.0 13 4

Table 2 Parameter values at levels 8, 6, and 3

Fig. 14 Meshes at levels (from left to right) 8, 6 and 3

6 CONCLUSION

A technique to construct well sized boundry meshes
is presented and several examples are shown. Successve
refinement due to curvature and poximity are the keys to
ressonably distributing nodks along curves © as to form well
shaped elements. Smart sizing does not take the place of
geometric defeauring — it simply meshes the geometry given to
it as best it can. Surface proximity refinement is performed
when surface facd sizing may lead to poaly shaped
tetrahedrons. A somewhat arbitrary set of smart sizing levels
are dso presented so that the user can easily chocse one that is
most suitable for his nedls.

Acknowledgments
The authors would like to thank CNPg/Brazl and Ansys,
Inc. for their financia suppat to make thiswork possble.

7 REFERENCES

(Baéhmann et al., 1987 Baehmann, P. L., Wittchen, S. L.,
Shephard, M. S., Grice, K. R, and Yerry, M. A., Robust
geometrically-based auomatic two dmensiond mesh
generation, Intl. J. Num. Meth. Eng., 24, pp. 10431078
1987

(Bern et al., 1994 Bern, M. J., Eppstein, D., and Gilbert, J. R.,
Provably good mesh generation, J. Comp. System
Sciences, 48, pp. 384-409, 1994

(Chew, 198%) Chew, L. P., Constrained Delaunay
Trianguations, Algorithmica, 4, pp. 97-108 1989

(Chew, 1989H Chew, L. P., Guaranteed-qudity trianguar
meshes, Tedh. Report TR-89-983 Cornell University,
1989

(Donaghy et al., 1996 Donaghy, R. J., McCune, W., Bridgett,
S. J.,, Armstrong, C. G., Robinson, D. J., and McKeay, R.
M., Dimensiond reduction o andysis models, In Proc. 5th
International Meshing Roundable, pp. 307-329, 1996



(George ¢ al., 1990 George, P. L., Hedht, F., and Saltel, E.,
Automatic 3D mesh generation with spedfied bounday,
IEEE Transadions on Magnetics, 26(2), pp. 771774
1990

(George ¢ al., 1991) George, P. L., Hedht, F., and Saltel, E.,
Automatic mesh generation with spedfied bounday,
Comp. Meth. Applied Med. Eng., 92, pp. 269288, 1991

(George and Hemerline, 1992 George, P. L. and Hemerline,
F., Delaunay’s mesh of a convexpolyhedronin dmension
d: apdication for arbitrary poyhedron, Intl. J. Num.
Meth. Eng., 33, pp. 975995, 1992

(Joe and Simpson, 1986 Joe, B. and Simpson, R. B,
Trianguar meshes for regions of complicated shape, Intl.
J. Num. Meth. Eng., 23, pp. 751-778 1986

(Marcum and Wedaherill, 1995 Marcum, D. And Weaherill,
N. P., Unstructured grid generation wsing iterative point
insertion and local remnredion, AIAA J., 33(9), pp.
16191625 1995

(Mitchell and Vavasis, 1992 Mitchell, S. A., and Vavasis, S,,
Quality mesh generation in three dimensions, In Proc. 8th
ACM Symp. Comp. Geom., pp 212221, 1992

(O'Nelill, 1966 O'Neil, B., Elementary differential geometry,
Academic Press New York, 1966

(Peruchio et al., 1989 Peruchio, R., Saxena, M., and Kela, A.,
Automatic mesh generation from solid models based on
reaursive spatial decompostion, Int. J. Num. Meth. Eng,
28, pp. 24692502 1989

(Ruppert, 1995 Ruppert, J., A Delaunay refinement algorithm
for qudity 2-dimensiond mesh generation, Journa of
Algorithms, 18(3), pp. 548585, 1995

(Samet, 1990 Samet, H, Design and andysis of spatial data
structures, Addison Wesley, 1990

(Shewchuk, 1996) Schewchuk, J. R., Triande: Engineeing a
2D qudity mesh generator and Delaunay trianguator, In
Proc. 12th ACM Symp. Computational Geometry, 1996

(Shewchuk, 19968 Schewchuk, J. R., Triande Home Page,
http://www.cs.cmu.edu/~quake/triang e.html.

(Schneiders and Debye, 1995 Schneiders, R., and Debye, J.,
Refinement algorithms for unstructured quadilateral or
brick dement meshes, Modeling, Mesh Generation, and
Adaptive Num. Meth. for PDEs, IMA - Springer-Verlag,
1995

(Shephard, 1989 Shephard, M. S., Algorithmic approach to
eliminating small features from the finite octree dud
representation o features, Tedh Rep., SCOREC,
Rensselaa Polytechnic Institute, Troy, N.Y., 1989

(Shephard and Georges, 1991) Shephard, M. S. and Georges,
M. K., Automatic three dimensiond mesh generation by
the finite octreetechnique, Int. J. Num. Meth. Eng., 32, pp.
709749 1991

(Staten, 1996 Staten, M. L., Seledive refinement of two and
threedimensiond finite dement meshes, Master's Thesis,
Brigham Y oungUniversity, 1996

(Vavasis, 1996 Vavasis, S, QMG Web Page, 1996
Http://www.cs.cornell .edw/Info/People/vavasis/gmg-
home.html.

(Wedaherill and Hassan, 1992 Weabherill, N. P., and Hassn,
O., Efficient three dimensiond grid generation using the
Delaunagy triangdation, In Proc. 1st European CFD
Conference, Elsevier, 1992

(Wedaherill and Hassan, 19947 Weaherill, N. P., and Hassn,
O., Efficient three dimensiond Delaunay trianguation
with auomatic point creation and imposed bounday
congtraints, Int. J. Num. Meth. Eng., 37, pp. 20052039
1994

(Weaherill et a., 1994h, Weaherill, N. P.,, Hassn, O,
Marcum, D. L., and Marchant, M. J., Grid generation by
the Delaunay trianguation, von Karman Ingtitute for Fluid
Dynamics, 1994

(Yerry and Shephard, 1983 Yerry, M. A. and Shephard, M. S,,
A modified quadree approach to finite element mesh
generation, IEEE Computer Graphics and Applicaions, 3,
pp. 39-46, 1983

(Yerry and Shephard, 1984 Yerry, M. A. and Shephard, M. S,,
Automatic three dimensiond mesh generation by the
modified octreetechnique, Int. 3 Num. Meth. Eng., 20, pp.
19651990 1984



