
AUTOMATIC BOUNDARY SIZING FOR 2D AND 3D MESHES

Alexandre Cunha Scott Canann Sunil Saigal
 cunha@cmu.edu scanann@cmu.edu saigal@cmu.edu

Department of Civil and Environmental Engineering
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3890

1 ABSTRACT
The numerical solution of problems in science and

engineering via the finite element method requires, as a first
step, the discretization of a domain into a set of simply shaped
elements. Determining the size of these elements along the
domain, including the boundary, to form well -shaped elements
is a diff icult task. We present in this paper a simple technique,
called smart sizing, which automatically computes high quality
initial element sizing on curves for triangular, quadrilateral and
tetrahedral elements. Curve divisions are computed based on
curve and surface curvatures as well as feature proximity. In
the three dimensional case, refinement of facets is performed as
needed to create reasonably sized surface elements. Computing
a boundary mesh appropriately is a key step to successfully
determine the size and distribution of new elements towards
the interior of the domain, especially for the advancing front
and constrained Delaunay meshing techniques. The approach
presented here is geometry based and does not attempt to
account for the physics of the problem.

2 INTRODUCTION

2.1 PREVIOUS WORK
Most unstructured mesh generators apply one or more of

the following methods: quadtree/octree (2D/3D domains),
Delaunay triangulation (DT), and advancing front. Each has its
own way of assigning element sizes along the domain to
produce a mesh. In many quadtree/octree and DT approaches,
the domain is refined in a top down fashion, breaking the
elements to achieve a desired shape quality and/or target size.
Many of them are not able to exactly match an initial boundary
mesh because the element sizing is an intrinsic part of the
generation process. On the other hand, advancing front mesh
generators rely on a boundary mesh to construct new elements
in the interior of the domain. They usually strictly preserve the

boundary which is sometimes needed when meshing multiple
domains in different stages. This suggests the definition of a
constrained mesh generator (CMG) as one that preserves the
input boundary as it is.

In quadtree and octree mesh generators, the entire domain
is enclosed by an axes-aligned rectangular bounding box and
then recursively subdivided until each leaf cell i n the tree
intersects the domain in a predefined way. The cells are then
warped and cut to conform to the boundary and a triangulation
is constructed from the remaining cells to form a triangular
mesh. The subdividing phase may be governed by a user
supplied spacing function or by a balance condition for the tree.
Algorithms basically differ on the subdividing criteria and the
method used to ensure conformity between boundary cells (the
former being primarily responsible for the element sizes).
Quadtree and octree generators include (Yerry and Shephard,
1983, 1984), (Baehmann et al., 1987), (Peruchio et al., 1989),
(Shephard and Georges, 1991), (Mitchell and Vavasis, 1992),
(Bern et al., 1994), and (Vavasis, 1996).

Some two dimensional mesh generators have made use of
constrained Delaunay triangulation (CDT) (Chew, 1989a) to
construct a triangular mesh. Most of them cannot be classified
as constrained mesh generators because the boundary edges are
subdivided to satisfy their shape quality criteria. Chew (1989b)
was the first one to use a CDT that guaranteed the construction
of a 2D mesh with all angles in the interval [30°, 120°],
provided that the length of all given edges are between h and
(√3)h, and no two given vertices are closer than h, where h is
the edge length chosen by the user. Since boundary edges not
complying with these conditions are divided, the mesher is not
a CMG. Extensions to his work have been made by (Ruppert,
1995), (Shewchuk, 1996a), and (Shewchuk, 1996b). In
(Shewchuk, 1996b) it is possible to preserve the boundary
edges to match adjacent meshes.

P. L. George and colleagues (1990, 1991, 1992) developed
a CMG using a three dimensional DT. Given a boundary mesh,
the DT of its vertex set is first constructed. New points are then
inserted into the domain and a retriangulation forms the
tetrahedral mesh. The boundary mesh is recovered applying a
set of predefined transformations to adjust those elements
crossing it. In a final step, the nodes are smoothed and some
faces may be swapped to improve the element quality.
Weatherill and Hassan (1992) also developed a similar CMG.
A description of improved mesh generators using this
technique can be found in (Weatherill and Hassan, 1994a),
(Weatherill et al., 1994b) and (Borouchaki et al., 1995).

More recently, a mix of advancing front and DT in three
dimensions, as described above, has been proposed to take
advantage of the advancing front high quality point placement
strategy and DT spatial information (Marcum and Weatherill ,
1995, Pascal et al., 1996). Advancing front is known to
produce high quality elements around the boundary (point
placement) while DT has definite speed advantages.

Since the generators described above preserve the
boundary elements and use them to generate new elements
inside the domain, they need a well sized boundary mesh to
produce high quality final elements. The present work shows a
technique to construct such boundary meshes.

2.2 MOTIVATION
The goal of this work is to develop a robust strategy to

automatically construct well sized boundary meshes that can be
used with either the advancing front or constrained Delaunay
mesh generators. The basic idea behind the scheme described
here is to perform successive refinements on the boundary
mesh of the domain at each iteration until discretization errors
are minimized and reasonable quality elements can be
expected.

2.3 NOTATION AND BASIC DEFINITIONS
Parametric curves with parametrization t and points are

denoted as lowercase boldface letters, like r(t) and p.
Parametric surfaces with parametrizations u and v and sets are
denoted by uppercase italic letters, as in S(u,v) and R. For
simplicity, parametrizations considered here are in the unit
interval [0,1]. Other geometric and mesh entities are
represented in lowercase italic letters, as in v for vertices and n
for nodes. Greek letters represent scalar quantities. Vertices are
referred to as geometric entities, while nodes are mesh
components. Both have their position defined by a point. Mesh
entities are composed of a set of nodes N = { ni} , a set of edges
E = { ei} connecting two nodes of the mesh and a set of
elements F = { fi} formed by a list of edges. Any curve has two
end vertices and a surface is comprised of a set of boundary
curves. A volume is formed by a set of surfaces.

To facilit ate ill ustration, some drawings are restricted to
two dimensions. Nevertheless, the method described extends to
three dimensions, unless otherwise mentioned.

This paper is presented as follows: in section 3, the smart
sizing algorithm is presented. Subsections 3.2 and 3.3,
respectively, show how curvature is computed for nodes and

how proximity refinement is performed based on the distance
between nodes and edges. In section 4, surface proximity
checking is explained. In section 5 a simple user interface is
discussed and section 6 gives a conclusion.

3 SMART SIZING

3.1 ALGORITHM
The smart sizing algorithm is as follows:

0. Let R = { ri} be the set of curves from given geometry and
let V = { v i} be its set of vertices

1. Compute (or allow user to input) a global meshing size h
and a minimum meshing size hmin

2. Assign a size for each node ni at each vertex vi to be the
smallest value among the following:

- global meshing size h
- length of curves incident to vi

- size due to curvature, i.e., ksize(ni)
3. Process vertices to find small angles
4. Mesh the curves, using vertex sizes
5. Begin main loop
6. Assign sizes for new nodes, size(n)
7. Curvature refinement: for each node ni do

size(ni) = min(size(ni), ksize(ni))
8. Proximity refinement: for each edge ej do

update size of nearby non-connected nodes
based on their distance to ej

9. Remesh the curves
10. End loop if:

- the maximum number of iterations is reached,
- or no modifications were made

The global meshing size h is an initial guess for the edge
length in all curves. If the user does not provide this value, then
it can be computed from the input geometry simply by
multiplying the diagonal of the rectangular bounding box of the
domain by a scaling factor.

A minimum meshing size, hmin, is provided so as to restrict
the algorithm from producing too many nodes in extreme
situations. It is simply the h value divided by a coeff icient much
larger than 1, such that 0 < hmin << h.

In step 2, the size of the nodes at the vertices are initialized.
The size is computed as the minimum of the sizes due to
curvature (ksize(n)), the meshing global size (h) and the length
of the curves connected to the node. The curvature size,
ksize(n), is computed as follows:

• Evaluate curvature, k, at the node position on curve;
• Locally approximate the curve at that position as a circle

with radius R equals to 1/k;
• Compute the size s of the edge that spans an angle of φ,

where φ, defined as the maximum spanning angle, is the
maximum angle spanned along the circle; according to
Fig. 1, s = 2Rsin(φ/2) or s = 2sin(φ/2)/k;

• ksize(n) = s.
Thus, the edge size is a linear function of the radius. As
expected, small curvature will give large edges and large
curvature will give short edges. For straight lines or almost
straight lines (k ≈ 0), curvature does not affect sizing.

Curves are now meshed using the sizes at their end nodes.
For any two nodes with sizes sj and sj+1 on the curve, the
scheme shown in Fig. 2 is used. New nodes are inserted on the
curve segment of length L, defining m new edges, each one with
a size proportional to sj (where sj < sj+1). A smooth transition
for the edges is required such that the ratio of the lengths of any
two adjacent edges is in the interval [1/λ, λ], where λ is defined
as the growth ratio (or grading factor). Note that given the end
node sizes, sj and sj+1 (= λm-1sj), and the segment length L, we
can determine the growth ratio and the number of new nodes on
that segment. The computed growth ratio is restricted to be less
than or equal to a user specified value. The growth ratio is
similar to Joe’s smoothing parameter (Joe, 1986), which
controls the variation in size between adjacent elements. The

pseudo-code below returns the set of nodes for a curve segment
of r(t):

mesh_curve (nj, nj+1, r, λ)
sj = size of node nj

sj+1 = size of node nj+1

L = length of r between nj and nj+1

λ = min(λ, growth_ratio(sj, sj+1, L))
N = { nj}
∆ = sj

t = ∆ /L
while (t < 1) do

n = node at r(t)
N = N ∪ { n}
∆ = λ∆
t = t + ∆ / L

enddo
N = N ∪ { nj+1}
return N

end

An adjustment of the last edge size is performed as needed to
match sj+1 as closely as possible. For the special case when sj ≈
sj+1 ≈ h nodes are evenly distributed along the curve. The
example in Fig. 3 shows a geometric model, its lines and the
line divisions after mesh_curve is called for all them.

Fig. 3 An object, its lines and their divisions

Once new nodes are created, their sizes are assigned in step
6. The size of a new node is set to be the average length of the
edges connected to it. These sizes may be reduced later
depending on the curvature at the nodes (step 7) and their
proximity to other edges (step 8). After updating the size of the
current nodes, the curves are remeshed as described above and
steps 6 to 9 are repeated until no modifications are made to the
nodal size settings (no new nodes created) or the maximum
number of iterations is reached, which is, typically, fairly small
(experience has shown four iterations to be adequate).

3.2 CURVATURE AT A NODE
In steps 2 and 7 of the smart sizing algorithm, the curvature

value at a node on the curve is necessary to compute its size.
This value depends not only on the shape of the curve itself, but
also on the curvature of each surface connected to the curve. As
an ill ustration, consider the cylinder of Fig. 4 and its geometric
representation. If only line curvature is evaluated, the meshing
of the straight line lying on the curved surface of the cylinder
might produce a wrong number of nodes which could cause
problems when meshing the surface along the line.

Normal curvature at a point on a surface curve has two
extreme values in orthogonal directions called the principal
curvatures, k1 and k2 (O’Neill , 1966). The maximum of these
two values is used together with the line curvature to evaluate
the final curvature at a node (see Fig. 5) and they are most

φR
s

n r(t)

Fig. 1 Node size due to curvature

R

Solid Model Model Curves Line Curvature

Fig. 4 Principal curvatures avoid wrong evaluation of li ne curvature

Curves

k = 0

k ≠ 0

k2

k1

Fig. 2 Meshing scheme for a curve

sj sj+1

sj

L

λsj λ2sj λm-1sj

significant for some type of surfaces, as ill ustrated above, due
to their geometric representation or due to their construction
itself. Repetitively computing the principal curvatures is quite
expensive and some simpli fications are made. The curvature at
an end node of a curve is the maximum curvature of all it s
connected curves when evaluated at the node position. No
surface curvature is computed because it is anticipated that the
line curvature will generally match the surface curvature at such
nodes. For example, for node nj in Fig. 5, k(nj) = kj = max(k(l1),
k(l2) k(l3)), where k(l i) denotes the curvature of the line l i at nj.

For each curve, the largest principal curvature, is computed
only once at its middle point, km/2. For any node n on the curve,
except the end nodes, km/2 and the curvature of the closest end
node are linearly interpolated to give the node’s surface
curvature value, ks(n). The final curvature k at a node n is the
maximum value of its surface curvature and its line curvature,
kl(n), k(n) = max(ks(n), kl(n)). The largest principal curvature at
the curve middle point is computed as follows: for all surfaces
connected to the curve, find k1 and k2 at this point and take the
maximum.

An exception to the algorithm for using curvature for sizing
can occur when small holes or small curved features are present
in the geometry. As was shown, the edge size due to curvature
is a linear function of the radius of the circle defined by that
curvature. For very small radii , the edge sizes will be very
small and thus for small holes a large number of tiny edges can
be constructed. If the number of elements is to be minimized in
such cases, the right approach is to simpli fy the geometry. Some
research has been done in this area to avoid unnecessary
elements in the analysis step, either removing such small
features (Shephard, 1989) or substituting parts of the geometry
by reduced dimension elements, such as beams, plates and
shells (Donaghy et. al., 1996).

Small curved features are tracked by comparing the edge
size s due to curvature against the global meshing size h and
modifying s, if necessary. If the ratio h/s is above a pre-defined
threshold, 50:1 for example, a small curved feature has been

encountered and s is computed again using an angle Φ larger
than the maximum spanning angle φ (45° or 90°, for example),
s = 2Rsin(Φ/2), Φ > φ (Fig. 6). If the ratio is of the same order
of magnitude, up to 5:1 for example, the s value is kept (the
hole is not considered small). For values in-between, a linear
interpolation of the angles Φ and φ is used and a new angle
proportional to the current ratio is computed. The edge size is
then computed from this new angle.

Fig. 7 Meshing with small holes

Fig. 7 shows a small hole centered in a square plate. The
mesh on the top (bottom) was obtained before (after) applying
the technique described above. An angle of Φ = 45° was used to
get eight divisions on the hole line, thus decreasing the number
of elements in the mesh on the bottom. Note that when such
small holes are desired for an analysis, small hole coarsening
can be turned off .

3.3 PROXIMITY
Proximity between edges and nodes is computed to modify

the node size, such that reasonably shaped elements can be
placed in small areas between nearby lines. This is the most
important purpose of smart sizing and most directly affects
element quality. For each edge in the current mesh, the closest
nodes to it are found and, according to their distance to the
edge, their corresponding size may be reduced. The procedure
for proximity refinement is as follows (see Fig. 8):

curve_proximity (e, λ, bins)
N = nearby_nodes(e, bins)
L = length(e)
∆ = average size of end nodes of edge e
for each n ∈ N do

d = euclidean_distance(n, e)
if (d > L) then

s = ∆ + (λ - 1) d
else

s = λd
endif
s = max(min(s, h), hmin)
size(n) = min(size(n), s)

k2

S1

nj

km/2

l1

l3

l2
S2

k1

k1

k2n

Fig. 5 Curvature computation

φ

h:s ≡ 50:1

Φ

Φ = 90°

s’ > ss

Fig. 6 Small holes

enddo
end

L e

nd

nearby
region

n

L e

d

s = ∆ + (λ - 1)d s = λd

Fig. 8 Node size due to proximity

The λ used in curve_proximity is the growth ratio introduced
in section 3.1. The nearby region of an edge is determined by its
length and the current maximum node size. A bin sort (Samet,
1990) is used to eff iciently find the nodes near the edge. It is
assumed that the size of any node outside the nearby region is
not affected by the edge being analyzed. Note that the new size
s is in the interval [hmin, h] and that the node size only changes
if it is larger than s. This approach tries to keep approximately
the same edge length for nearby edges through the adjustment
of the sizes of their nodes such that the nearby region can be
covered with well -shaped tetrahedrons of that length.

Fig. 9 shows an object meshed before (left picture) and
after proximity is considered. Note the element quality
improvement around the holes.

Fig. 9 Meshes without (left) and with proximity considered

An exception to the proximity refinement algorithm occurs
when small angles are present in the input geometry which can
cause problems when updating the node size due to proximity.
Two types of sharp corners are (Fig. 10):

• constant angle: the small angle does not change when
approaching the corner;

• decreasing angles: the angle decreases when
approaching the corner vertex - there is at least one
curved line involved.

A loop over the vertices is done in step 4 to determine if small
angles are present and to classify them according to the two
types above. In both cases, the size of the edges forming the
corner are frozen.

For a constant corner, the size of both corner edges is
max(hmin, min(h, λl1, λl2)), where l1 and l2 are the lengths of the
curves forming the corner and λ is the growth ratio. If a tiny
curve is present (its length is much less than h) one edge is
enough to cover it. Smart sizing cannot take the place of
geometric defeaturing − it simply meshes the boundary of the
geometry given to it.

For decreasing angle corners, a walk is done on its curves
until the edges on these curves form an angle greater than or
equal to a minimum corner angle. Then the sizes of these edges
are checked for interval [hmin, h] and modified, if necessary.

In Fig. 11, an object with these two types of corners is
meshed. Note that the shape of the elements on the round corner
is improved by increasing the element angles.

 Fig. 11 Meshes before (left) and after applying the technique for
 sharp corners

4 SURFACE PROXIMITY
It is not always possible to catch surface proximity during

the curve meshing phase. That is because determining the
proximity of curves does not necessarily determine proximity of
the surfaces on which the curves lie on. This is often true for
certain representations of geometric primitives and also due to
the combinatorial nature of how these primitives could be
assembled to form the domain being analyzed. Hence, in some
situations the meshing of surfaces can yield large triangular
facets on nearby surface areas where there were no curves to
detect the proximity of such surfaces. An example of this type
of surface proximity would be a large sphere packed inside a
cube.

Some facets may be large enough to either compromise the
quality of the tetrahedrons that will be inserted between them or
even lead to meshing failures. To overcome this problem, the
size of the facets are decreased to eliminate the probabilit y of

decreasing
angle

constant
angle

Fig. 10 Sharp corners: constant and decreasing angle

φ

producing poorly shaped tetrahedrons. This is done through
evaluation of the proximity of the facets, which is much less
expensive, in most cases, than doing it via the continuum
description of the surfaces.

The surface proximity checking step is a four fold
procedure:

• Preprocess facets and compute their size;
• Determine the size at nodes and the distance between the

nodes and nearby facets;
• Mark nodes for refinement if the distance is less than the

node’s size;
• Perform successive refinements of the facets

corresponding to the marked nodes until they reach an
acceptable size.

The size at a node is the size of the largest facet connected to
the node. The size of a facet f is the distance from the facet to
the opposite point in the equilateral tetrahedron whose edge

length is the average length of the face’s edges (Fig. 12a). That
is, if the edge lengths are l1, l2 and l3 then the facet size is size(f)
= (√2/3)l, where l = (l1 + l2 + l3)/3. This tetrahedron is an
approximation of the best tetrahedron to attach to the facet. In
Fig. 12b, the size at node n is the size of the shaded facet f. The
surface proximity procedure for the surface mesh M = (N, E, F)
is as follows:

surface_proximity (M)
preprocess facets:

assign size of each fi ∈ F
B = { bi : bi is bounding box of fi }
sort B

for each n ∈ N do
s = maxi({ size(fi) : fi is adjacent to n})
bn = bounding box of n
I = intersect(B, bn)
dmin = +∞
for each b ∈ I do

d = distance(n, face(b))
if (d < s) then

dmin = min(dmin, d)
endif

enddo
if (dmin < s) then

level(n) = log2 (s/dmin)
R = R ∪ { n}

endif
enddo
if (R ≠ ∅) then

refine(M, R)
endif

end

The procedure requires that M be a consistently oriented
conformal mesh, that is:

• the normal vectors of all facets are consistently oriented
inward or outward from the domain;

• the intersection of any two facets is an edge connecting
two nodes of the mesh, a node, or the empty set. This is
not always guaranteed after the surfaces have been
meshed, especially when they are very close to each
other which can cause the facets to intersect in a
nonconformal way.

These requirements guarantee a proper intersection test and
computation of node-facet distances. They are also required for
suppression of refinement of facets improperly reported by the
intersect routine and of large facets that are very close but do
not face each other − when the bounding boxes of the node and
the facet intersect, the normals of the node (average normal of
connected facets) and the facet are compared to check if they
face each other).

In the preprocessing stage, the rectangular bounding boxes
of the facets are sorted such that the intersection with the node
bounding box can be determined. Each bounding box bi is
defined by open intervals (xl,i, xr,i), (yl,i, yr,i), and (zl,i, zr,i) along,
respectively, the x, y, and z directions. These intervals are
sorted separately in each dimension using their end values and
intersections are performed against the node bounding box on a
one-dimensional basis. The results for each dimension are then
combined to determine the final set of intersected boxes.

The bounding box bn of a node is a square centered at the
node position p with edge length equal to two times the node
size s (Fig. 13), bn = (p - s, p + s). Similar to curve proximity,
this bounding box defines the nearby region of the node whose
final size might be affected by the distance to the facets in its
interior.

When no intersections occur, the node will not be marked

for refinement. Otherwise, we find the minimum node-facet
distance and if it is below the node size, we mark it with a level
of refinement proportional to log2(s/dmin), where log2 is the
logarithm base two. If not, the node remains unmarked.

Refinement is then done on all facets corresponding to
marked nodes. The refinement used here is based on Schneiders
and Debye algorithms (1995) as adapted and implemented by
Staten (1996). The refinement is driven by a set of regular
refinement templates, each one constructed according to the

n

f

size(n) = size(f)

b)

Fig. 12 a) Equilateral tetrahedron from facet b) node size

l = (l1 + l2 + l3)/3

l

l
l

a)

l1
l3

l2

f

Fig. 13 Node bounding box and distance to a facet

p

d
2s

2s

2s

2s

number of nodes marked for refinement in the triangle. Staten’s
work also includes topology cleanup and smoothing after each
refinement iteration. Though the connectivity and position of
nodes may slightly change between iterations, such
modifications do not significantly alter the proximity between
nodes and facets. Thus, the integrity of the node’s refinement
level computed before any refinement take place is preserved
for all it erations.

A single refinement at a time is done on these facets and
after each iteration new facets and new nodes are introduced
into the mesh. The refinement level of these new nodes will be
the average refinement level of their adjacent nodes. At each
iteration, the refinement level of a node decreases by one
because the size of its largest adjacent facet is cut by half in the
refinement. The iteration stops when all marked nodes have a
refinement level equal to one − when the distance of nearby
facets is approximately equal to their sizes.

5 INTERFACE
The smart sizing user should be able to easily get a fine or
coarse mesh without having to know the details involved in the
development of the technique. Assigning the correct parameter
values on a trail and error basis could be a time consuming task,
especially for a novice user. In order to make things easier and
more transparent, a set of predefined parameter values have
been grouped, making up a collection of ten smart sizing levels,
each one assigning different values for some of the input
parameters. The user can then chose from one of these sizing
levels by simply picking a number from one (fine) to ten
(coarse). Table 1 shows the parameters used in each level.

Parameter Description

µ scaling factor applied to the computed default
meshing size; values in the interval [0.2, 5.0] are
acceptable; 1.0 is default.

φ1 maximum spanning angle for linear elements; values
in the interval [9.0, 30.0] are used. 15.0 is default.

φ2 maximum spanning angle for quadratic elements;
values in the interval [15.0, 30.0] are used; 30.0 is
default.

λ growth ratio for line and area element size expansion
and used for proximity checking; values in the
interval [1.2, 5.0] are allowed; 1.2 is default.

Ι maximum number of sizing iterations

Table 1 Interface parameters for each smart sizing level
In table 2, these parameter values are shown for levels 3

and 8, and also for the intermediate level 6. Note that neither an
interpolation scheme nor another analytical approach was used
to set up these values. They are simply the results of
experimental work done with a collection of models and have
been tuned to handle most situations. To ill ustrate the variation
on the meshes obtained when levels are changed, a simple
geometry is meshed (Fig. 14). Note that the element quality, as
expected, is proportional to the number of elements achieved.
Typically, a very coarse mesh (level 10) would produce a

larger proportional number of poorly shaped elements than a
finer one (levels 6 or 1).

Level µ φ1 φ2 λ Ι
8 1.875 22.0 30.0 1.7 4
6 1.000 15.0 30.0 1.5 4
3 0.300 10.0 18.0 1.3 4

Table 2 Parameter values at levels 8, 6, and 3

Fig. 14 Meshes at levels (from left to right) 8, 6 and 3

6 CONCLUSION
A technique to construct well sized boundary meshes

is presented and several examples are shown. Successive
refinement due to curvature and proximity are the keys to
reasonably distributing nodes along curves so as to form well
shaped elements. Smart sizing does not take the place of
geometric defeaturing − it simply meshes the geometry given to
it as best it can. Surface proximity refinement is performed
when surface facet sizing may lead to poorly shaped
tetrahedrons. A somewhat arbitrary set of smart sizing levels
are also presented so that the user can easily choose one that is
most suitable for his needs.

Acknowledgments
The authors would like to thank CNPq/Brazil and Ansys,

Inc. for their financial support to make this work possible.

7 REFERENCES

(Baehmann et al., 1987) Baehmann, P. L., Wittchen, S. L.,
Shephard, M. S., Grice, K. R., and Yerry, M. A., Robust
geometrically-based automatic two dimensional mesh
generation, Intl. J. Num. Meth. Eng., 24, pp. 1043-1078,
1987.

(Bern et al., 1994) Bern, M. J., Eppstein, D., and Gilbert, J. R.,
Provably good mesh generation, J. Comp. System
Sciences, 48, pp. 384-409, 1994.

(Chew, 1989a) Chew, L. P., Constrained Delaunay
Triangulations, Algorithmica, 4, pp. 97-108, 1989.

(Chew, 1989b) Chew, L. P., Guaranteed-quality triangular
meshes, Tech. Report TR-89-983, Cornell University,
1989.

(Donaghy et al., 1996) Donaghy, R. J., McCune, W., Bridgett,
S. J., Armstrong, C. G., Robinson, D. J., and McKeag, R.
M., Dimensional reduction of analysis models, In Proc. 5th
International Meshing Roundtable, pp. 307-329, 1996.

(George et al., 1990) George, P. L., Hecht, F., and Saltel, E.,
Automatic 3D mesh generation with specified boundary,
IEEE Transactions on Magnetics, 26(2), pp. 771-774,
1990.

(George et al., 1991) George, P. L., Hecht, F., and Saltel, E.,
Automatic mesh generation with specified boundary,
Comp. Meth. Applied Mech. Eng., 92, pp. 269-288, 1991.

(George and Hemerline, 1992) George, P. L. and Hemerline,
F., Delaunay’s mesh of a convex polyhedron in dimension
d: application for arbitrary polyhedron, Intl. J. Num.
Meth. Eng., 33, pp. 975-995, 1992.

(Joe and Simpson, 1986) Joe, B. and Simpson, R. B.,
Triangular meshes for regions of complicated shape, Intl.
J. Num. Meth. Eng., 23, pp. 751-778, 1986.

(Marcum and Weatherill , 1995) Marcum, D. And Weatherill ,
N. P., Unstructured grid generation using iterative point
insertion and local reconnection, AIAA J., 33(9), pp.
1619-1625, 1995.

(Mitchell and Vavasis, 1992) Mitchell , S. A., and Vavasis, S.,
Quality mesh generation in three dimensions, In Proc. 8th
ACM Symp. Comp. Geom., pp 212-221, 1992.

(O’Neill , 1966) O’Neil , B., Elementary differential geometry,
Academic Press, New York, 1966.

(Peruchio et al., 1989) Peruchio, R., Saxena, M., and Kela, A.,
Automatic mesh generation from solid models based on
recursive spatial decompostion, Int. J. Num. Meth. Eng.,
28, pp. 2469-2502, 1989.

(Ruppert, 1995) Ruppert, J., A Delaunay refinement algorithm
for quality 2-dimensional mesh generation, Journal of
Algorithms, 18(3), pp. 548-585, 1995.

(Samet, 1990) Samet, H, Design and analysis of spatial data
structures, Addison Wesley, 1990.

(Shewchuk, 1996a) Schewchuk, J. R., Triangle: Engineering a
2D quality mesh generator and Delaunay triangulator, In
Proc. 12th ACM Symp. Computational Geometry, 1996.

(Shewchuk, 1996b) Schewchuk, J. R., Triangle Home Page,
http://www.cs.cmu.edu/~quake/triangle.html.

(Schneiders and Debye, 1995) Schneiders, R., and Debye, J.,
Refinement algorithms for unstructured quadrilateral or
brick element meshes, Modeling, Mesh Generation, and
Adaptive Num. Meth. for PDEs, IMA - Springer-Verlag,
1995.

(Shephard, 1989) Shephard, M. S., Algorithmic approach to
eliminating small features from the finite octree: dual
representation of features, Tech Rep., SCOREC,
Rensselaer Polytechnic Institute, Troy, N.Y., 1989.

(Shephard and Georges, 1991) Shephard, M. S. and Georges,
M. K., Automatic three dimensional mesh generation by
the finite octree technique, Int. J. Num. Meth. Eng., 32, pp.
709-749, 1991.

(Staten, 1996) Staten, M. L., Selective refinement of two and
three-dimensional finite element meshes, Master's Thesis,
Brigham Young University, 1996.

(Vavasis, 1996) Vavasis, S., QMG Web Page, 1996.
Http://www.cs.cornell .edu/Info/People/vavasis/qmg-
home.html.

(Weatherill and Hassan, 1992) Weatherill , N. P., and Hassan,
O., Efficient three dimensional grid generation using the
Delaunay triangulation, In Proc. 1st European CFD
Conference, Elsevier, 1992.

(Weatherill and Hassan, 1994a) Weatherill , N. P., and Hassan,
O., Efficient three dimensional Delaunay triangulation
with automatic point creation and imposed boundary
constraints, Int. J. Num. Meth. Eng., 37, pp. 2005-2039,
1994.

(Weatherill et al., 1994b), Weatherill , N. P., Hassan, O.,
Marcum, D. L., and Marchant, M. J., Grid generation by
the Delaunay triangulation, von Karman Institute for Fluid
Dynamics, 1994.

(Yerry and Shephard, 1983) Yerry, M. A. and Shephard, M. S.,
A modified quadtree approach to finite element mesh
generation, IEEE Computer Graphics and Applications, 3,
pp. 39-46, 1983.

(Yerry and Shephard, 1984) Yerry, M. A. and Shephard, M. S.,
Automatic three dimensional mesh generation by the
modified octree technique, Int. J Num. Meth. Eng., 20, pp.
1965-1990, 1984.

