
Distributed Systems
Intro

Logistics
• Course Policies

• see web page...

• http://www.cs.cmu.edu/~dga/15-440/F11

• obligatory discussion of {late days, cheating, etc.}

• Waitlist?

• No recitations this year

• Office hours (hands): Earlier, 3:30 - 5:30, 4:00 - 6:00,
Sunday?

Waitlist

• Waitlist of unprecedented size. Keep coming to class, because we don’t
really know how it will work out.

• 74 registered

• 68 waitlisted. (!) (5 dupes. If you are on both, please remove from one. You know who you are. It will not increase admissions odds. :))

• The bad news: Not everyone will get in.

• The plea: Not serious about the class? DROP SOON.

• The strategy:

• Attend class! Sign the signup sheet.

• Let us know if class is on immediate graduation path; have your academic
advisor email us this. :-) (this works well)

• Priority order for 440: SCS, CMU ugrads, others; 640: SCS MS, others

Course Goals

• Systems requirement:

• Learn something about distributed systems in
particular;

• Learn general systems principles (modularity, layering,
naming, security, ...)

• Practice implementing real, larger systems; in teams;
must run in nasty environment;

• One consequence: Must pass homeworks, exams, and
projects independently as well as in total.

Course Format
• ~30 lectures

• Office hours: Practical issues for implementing
projects; general questions and discussion

• 3 projects; 1 solo, 2 team

• Distributed (internet-wide) password cracker

• Building Tribbler

• TBA: Either choose-your-own or Data-intensive
cluster applications with MapReduce/Hadoop?

Book

• Link to Amazon purchase (new, used, rent)
from syllabus page

• Several useful references on web page

• We’ll be compiling notes (and these slides)
for your use over the course of the
semester; based on, but not identical to,
prior 15-440 instance

About Projects

• Systems programming somewhat different from what you’ve done
before

• Low-level (C)

• Often designed to run indefinitely (error handling must be
rock solid)

• Must be secure - horrible environment

• Concurrency

• Interfaces specified by documented protocols

• Office Hours & “System Hacker’s View of Software Engineering”

• Practical techniques designed to save you time & pain

Collaboration

• Working together important

• Discuss course material

• Work on problem debugging

• Parts must be your own work

• Homeworks, midterm, final, solo proj

• Team projects: both students should understand
entire project

• What we hate to say: we run cheat checkers...

• Partner problems: address early.

Late Work
• 10% penalty per day

• Can’t be more than 2 days late

• Usual exceptions: documented medical, emergency,
etc.

• Talk to us early if there’s a problem!

• Two “late points” to use - one day each (still can’t be
more than 2 days late)

• Regrade requests in writing to course admin

Why take this course?
• Huge amounts of computing are now distributed...

• A few years ago, Intel threw its hands up in the air: couldn’t increase GHz much
more without CPU temperatures reaching solar levels

• But we can still stuff more transistors (Moore’s Law)

• Result: Multi-core and GPUs.

• Result 2: Your computer has become a parallel/distributed system. In a decade, it
may have 128 cores.

• Oh, yeah, and that whole Internet thing...

• my phone syncs its calendar with google, which i can get on my desktop with a web
browser, ...

• (That phone has the computing power of a desktop from 10 years ago and
communicates wirelessly at a rate 5x faster than the average american home
could in 1999.)

• Stunningly impressive capabilities now seem mundane. But lots of great stuff going
on under the hood...

• Most things are distributed, and more each day

If you find yourself ...
• In hollywood....

• ... rendering videos on clusters of 10s of 1000s of nodes?

• Or getting terabytes of digital footage from on-location to post-processing?

• On wall street...

• tanking our economy with powerful simulations running on large clusters of
machines

• For 11 years, the NYSE ran software from cornell systems folks to update
trade data

• In biochem...

• using protein folding models that require supercomputers to run

• In gaming...

• Writing really bad distributed systems to enable MMOs to crash on a
regular basis

• not to mention the obvious places

Enough advertising

• Let’s look at one real distributed system

• That’s drastically more complex than it
might seem from the web browser...

Remember IP...

From: 128.2.185.33
To: 66.233.169.103

<packet contents>

hosts.txt

www.google.com 66.233.169.103
www.cmu.edu 128.2.185.33
www.cs.cmu.edu 128.2.56.91

www.areyouawake.com 66.93.60.192
...

Domain Name System
CMU DNS server

who is www.google.com?

www.google.com is 66.233.169.103
.com DNS server

google.com DNS server

. DNS server

who is www.google.com?
ask the .com guy... (here’s his IP)

ask the google.com guy... (IP)

66.233.169.103

who is www.google.com?

Decentralized - admins update own domains without
coordinating with other domains

Scalable - used for hundreds of millions of domains

Robust - handles load and failures well

But there’s more...

who is www.google.com?

google.com DNS server

128.2.53.5

Which google
datacenter is

128.2.53.5 closest to?

Is it too busy?

66.233.169.99Search!

A Google Datacenter

How big? Perhaps one million+ machines

usually don’t use more than 20,000 machines to
accomplish a single task. [2009, probably out of

date]

but it’s not that bad...

Rick Astley?
Front-end

2007: Universal Search

!"#$%&$'!(&)!*&"+&"

,-&".

/012&!3&"+&"3

4'!*.3%&5

6&73

*-8&"!"##%

950:&3

(&)

;<#:3
=>'&#

;##?3

@#10<

Indexing Service

slide from Jeff Dean, Google

Front-end

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

Split into chunks:
make single

queries faster

Replicate:
Handle load

GFS distributed filesystem

Replicated
Consistent

Fast

How do you index the
web?

1. Get a copy of the web.

2. Build an index.

3. Profit.

There are over 1 trillion unique URLs
Billions of unique web pages

Hundreds of millions of websites
30?? terabytes of text

=

• Crawling -- download those web pages

• Indexing -- harness 10s of thousands of
machines to do it

• Profiting -- we leave that to you.

• “Data-Intensive Computing”

MapReduce / Hadoop
Data

Chunks

...

Computers

Data
Transformation

Sort

Data
Aggregation

Storage

Storage

Why? Hiding details of programming 10,000
machines!

Programmer writes two simple functions:

map (data item) -> list(tmp values)
reduce (list(tmp values)) -> list(out values)

MapReduce system balances load, handles
failures, starts job, collects results, etc.

All that...

• Hundreds of DNS servers

• Protocols on protocols on protocols

• Distributed network of Internet routers to
get packets around the globe

• Hundreds of thousands of servers

• ... to find one bad video in under 1/2 second

How do you index the
web?

