
15-441 Computer Networking

Lecture 18 – More TCP & Congestion
Control

Lecture 18: TCP Details 2

Good Ideas So Far…

• Flow control

• Stop & wait

• Parallel stop & wait

• Sliding window (e.g., advertised windows)

• Loss recovery

• Timeouts

• Acknowledgement-driven recovery (selective repeat or cumulative
acknowledgement)

• Congestion control

• AIMD ! fairness and efficiency

• How does TCP actually implement these?

Lecture 18: TCP Details

Outline

• The devilish details of TCP

• TCP connection setup and data transfer

• TCP reliability

• Be nice to your data

• TCP congestion avoidance

• Be nice to your routers

3 Lecture 18: TCP Details 4

Sequence Number Space

• Each byte in byte stream is numbered.

• 32 bit value

• Wraps around

• Initial values selected at start up time

• TCP breaks up the byte stream into packets.

• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.

• Indicates where it fits in the byte stream

packet 8 packet 9 packet 10

13450 14950 16050 17550

Lecture 18: TCP Details 5

Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it
will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
other’s sequence number
• SYN-ACK: Acknowledge

sequence number + 1

• Can combine second SYN
with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

Lecture 18: TCP Details 6

TCP Connection Setup Example

• Client SYN

• SeqC: Seq. #4019802004, window 65535, max. seg. 1260

• Server SYN-ACK+SYN

• Receive: #4019802005 (= SeqC+1)

• SeqS: Seq. #3428951569, window 5840, max. seg. 1460

• Client SYN-ACK

• Receive: #3428951570 (= SeqS+1)

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S

 4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK>

(DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S

 3428951569:3428951569(0) ack 4019802005 win 5840 <mss

1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack

 3428951570 win 65535 (DF)

Lecture 18: TCP Details 7

TCP State Diagram: Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB

CLOSE

delete TCB

CLOSE

snd SYN

SEND

snd SYN ACK

rcv SYN

Send FIN

CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN

snd ACK

Client

Server

Lecture 18: TCP Details 8

Tearing Down Connection

• Either side can initiate tear
down

• Send FIN signal

• “I’m not going to send any more
data”

• Other side can continue
sending data

• Half open connection

• Must continue to acknowledge

• Acknowledging FIN

• Acknowledge last sequence
number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

Lecture 18: TCP Details 9

TCP Connection Teardown Example

• Session

• Echo client on 128.2.222.198, server on 128.2.210.194

• Client FIN

• SeqC: 1489294581

• Server ACK + FIN

• Ack: 1489294582 (= SeqC+1)

• SeqS: 1909787689

• Client ACK

• Ack: 1909787690 (= SeqS+1)

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F

 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F

 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack

 1909787690 win 65434 (DF)

Lecture 18: TCP Details 10

State Diagram: Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

send FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK

rcv FIN

delete TCB

Timeout=2msl

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

ACK

Active Close

Passive Close

Lecture 18: TCP Details 11

Outline

• TCP connection setup/data transfer

• TCP reliability

Lecture 18: TCP Details 12

Reliability Challenges

• Congestion related losses

• Variable packet delays

• What should the timeout be?

• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?

Lecture 18: TCP Details 13

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the

sender.

• Acknowledges all bytes with a lower sequence number

• Starting point for retransmission

• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost

• Network is congested ! shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– Why?

Lecture 18: TCP Details

• How to set timeout?

• Wait until sender knows it should have seen an ACK

• How long should this be?

14

Lecture 18: TCP Details 15

Round-trip Time Estimation

• Wait at least one RTT before retransmitting

• Importance of accurate RTT estimators:
• Low RTT estimate

• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – never more than a

window worth of packets in flight

Lecture 18: TCP Details 16

Original TCP Round-trip Estimator

• Round trip times
exponentially
averaged:

• New RTT = ! (old RTT)

+ (1 - !) (new sample)

• Recommended value
for !: 0.8 - 0.9

• 0.875 for most TCP’s 0

1.25

2.50

3.75

5.00

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing spurious timeouts

• Why?

Lecture 18: TCP Details 17

RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment

• Keep backed off time-out for next packet

• Reuse RTT estimate only after one successful transmission

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B

Original transmission

retransmission

Sample
RTT

ACKRTO

X

Lecture 18: TCP Details 18

Jacobson’s Retransmission Timeout

• Key observation:

• At high loads round trip variance is high

• Solution:

• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar

• new_rttvar = " * dev + (1- ") old_rttvar

• Dev = linear deviation

• Inappropriately named – actually smoothed linear
deviation

Lecture 18: TCP Details 19

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

Lecture 18: TCP Details 20

Timer Granularity

• Many TCP implementations set RTO in multiples
of 200,500,1000ms

• Why?

• Avoid spurious timeouts – RTTs can vary quickly due to
cross traffic

• Make timer interrupts efficient

• What happens for the first couple of packets?

• Pick a very conservative value (seconds)

Lecture 18: TCP Details 21

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss

• Packet re-ordering

• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss

• Don’t wait for timeout to retransmit packet

Lecture 18: TCP Details 22

Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks

Lecture 18: TCP Details 23

TCP (Reno variant)

Time

Sequence No

X

X

X
X

Now what? - timeout

Packets

Acks

Lecture 18: TCP Details 24

SACK

• Basic problem is that cumulative acks provide little
information

• Selective acknowledgement (SACK) essentially
adds a bitmask of packets received

• Implemented as a TCP option

• Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

• When to retransmit?

• Still need to deal with reordering ! wait for out of order
by 3pkts

Lecture 18: TCP Details 25

SACK

Time

Sequence No

X

X

X
X

Now what? – send
retransmissions as soon
as detected

Packets

Acks

Lecture 18: TCP Details 26

Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers

• Don’t have 3 packets outstanding

• What are real loss patterns like?

10-30-2007 Lecture 18: TCP Details 26

Outline

• TCP connection setup/data transfer

• TCP reliability

• TCP congestion avoidance

10-30-2007 Lecture 18: TCP Details 27

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x
1

User 2’s
Allocation

x
2

• Both X1 and X2

increase/ decrease
by the same amount
over time

• Additive increase
improves fairness and
additive decrease
reduces fairness

10-30-2007 Lecture 18: TCP Details 28

Muliplicative Increase/Decrease

• Both X1 and X2

increase by the
same factor over
time

• Extension from
origin – constant
fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x
1

User 2’s
Allocation

x
2

10-30-2007 Lecture 18: TCP Details 29

What is the Right Choice?

• Constraints limit
us to AIMD

• Improves or
keeps fairness
constant at
each step

• AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x
1

User 2’s
Allocation

x
2

10-30-2007 Lecture 18: TCP Details 30

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapse

• Basic principles

• AIMD

• Packet conservation

• Reaching steady state quickly

• ACK clocking

10-30-2007 Lecture 18: TCP Details 31

AIMD

• Distributed, fair and efficient

• Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease

• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

Time

Rate

10-30-2007 Lecture 18: TCP Details 32

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how
much data can be in the network.

• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.

• The amount of outstanding data is increased on a “send” and
decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering

• Sender’s maximum window = Min (advertised window, cwnd)

10-30-2007 Lecture 18: TCP Details 33

Congestion Avoidance

• If loss occurs when cwnd = W

• Network can handle 0.5W ~ W segments

• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK

• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? ! 1 MSS worth of bytes

• After cwnd packets have passed by ! approximately increase
of 1 MSS

• Implements AIMD

10-30-2007 Lecture 18: TCP Details 34

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

10-30-2007 Lecture 18: TCP Details 35

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

10-30-2007 Lecture 18: TCP Details 36

Important Lessons

• TCP state diagram ! setup/teardown

• TCP timeout calculation ! how is RTT estimated

• Modern TCP loss recovery

• Why are timeouts bad?

• How to avoid them? ! e.g. fast retransmit

Lecture 18: TCP Details 38

