
A Logic of Authentication.

 Burrows90: Michael Burrows, Martin Abadi,

Roger Needham, ACM Trans. on Computer

Systems (TOCS), vol 8, no 1, February 1990.

Big Picture Redux

• Large systems very complex

– Lucid, clear reasoning & definitions (e.g., Saltzer)

– “the bridge approach” - redundancy, defense-in-depth

• Subsystems amenable to more formal reasoning

– Cryptographic protocols

– Transactional protocols/etc.

– Crypto itself (out of scope for 712)

– Algorithmic correctness

– Correctness of smaller chunks of code

• In keeping with philosophy: have to do everything...
2

Take-home lesson

• Cryptography itself: Leave it to the experts

– Even theirs gets broken. :)

• Cryptographic protocols:

– When possible, use off-the-shelf (see CRC)

– BUT: most real systems / dist systems need

them

• Should understand well enough to evaluate/adapt to

system...

• New technologies -> new (mis)uses

• e.g., cookies and Web authentication
3

Understanding Authentication

• Explicit logic to help understanding/belief,
assumptions, unnecessary transfers

• Focus on beliefs of trustworthy principals

• Not for finding code bugs, deadlocks,
explicit release of inappropriate
information, untrustworthy principals

– Follow on work will beat on these assumptions

• Core tool: freshness; evidence against a
message having been replayed

Logic Basics

• P believes X

• P sees X

– Received X

• P said X

– Believed & sent X once

• follow on work
separates these

• P controls X

– Jurisdiction/believable

• Fresh (X)

– X not said “before now”

– X is a Nonce, usually
timestamped or sequence
numbered

• P <-K-> Q

– share valid key K b/w only P, Q

• |-K-> P

– has valid public key K

• P <=X=> Q

– X is shared secret b/w only P, Q

• {X}K

– X encrypted by K from P

– assume P can recognize &

ignore its own msgs

• <X>Y

– X signed by Y, i.e. X,H(X,Y)

Basic logic rules

• Encrypted messages are indivisable (else they are
multiple messages), internally redundant so to be
recognizable on decryption

– recognizability is explicit in follow on work

• Message meaning:

– “See to said”

• Nonce verification:

– “True now”

• Jurisdiction:

– “Authority to say”

Basic logic rules

• You can decompose messages, but not

consider two messages as one

• Freshness is transitive:

– Which is why messages

can’t be merged

• Cleartext is ignored in logic as it is forgeable

(useful as a hint or for performance)

– follow on work finds fault with this and keeps

clear text around so consistency can be checked

Kerberos: set up a session key

• The protocol:

– server responds

to A with a ticket

– A forwards ticket

and authenticator

• Idealized:

– no lifetime L

– Ta + 1 gone

given msg detectably not same sender

• Start with assumptions:

• Dependence on synch’d clocks

for timestamp freshness

– for known skew, retain all

msgs in skew window &

verify no replays in window

Andrew

• Used to establish an
“extra” session key
subservient to a long
running session

• Nonces only
known to be
fresh by originator

• Need to add nonce Na
into message 4 so A
sees something fresh

– otherwise, old msg 4 replayable
to revert to compromised K’ab

Needham-Schroeder

• Issue: Freshness

of certification

– need to add

timestamps to

public key

certifications from S & re-obtain periodically

• Note that idealization sees Na and Nb as

shared secrets as well as nonces

– creating the idealization requires detailed

understanding of protocol’s later uses

Why was this missed?

• Likely a question of threat model: Original designers

didn’t consider compromise of Ka, Kb and need to change

the keys associated with those principals

• Common cause of vulnerability

– In everything -- physical, systems (insider threats? trojaned 3rd-

party code? etc.)

– even crypto. e.g., Binham & Shamir differential analysis - late

1980s

• In the early 70s, the NSA requested a seemingly innocuous change to some of

the constants in DES

– That change made DES very resilient to Diff. crypt...

• Side-channel attacks (timing of algo - different instructions take different

amounts of time). Watching heat of processor. Heating processor. etc.
12

Attacks against

• That attack was known previously (Dorothy

Denning & Giovanni Maria Sacco, 1981)

• But the protocol is actually more

dangerously broken than that!

– Man-in-the-middle attack

– This paper didn’t catch it. Oops.

13

Lowe MitM attack

• Imposter I convinces A to talk to him:

• A->I : {Na, A}Ki

• I->B: {Na, A}Kb

• B->I: {Na, Nb}Ka

• I->A: {Na, Nb}Ka

• A->I: {Nb}Ki

• I->B: {Nb}Kb

– Fix: message 6 B->A: {B,Na,Nb}Ka 14

Defense-in-depth

• Thought Q: How to protect such a system?

– Given: Not 100% confident in crypto

– Not 100% confident in protocols

– Not 100% confident in impl...

• Physical isolation

• Needham-Schroeder attack is MitM

– Link encryption?

– Secure the routers (ISPs today “cloak” routers)

• Contain effects of compromise (one user, one server, etc.)

15

Eval

• Mostly a “by omitted proofs” paper :-)

• Power from important existing protocols

– Shows logic flaw Andrew had used & repaired

– Shows logic flaw in author’s important protocol

– Shows logic flaw in an international standard

• Follow ons relax/explicit assumptions

– GNY90: recognizability, repeat w/o belief

– Nessbett90: bad use of keys, disclosure

– Boyd93: hold onto cleartext for consistency

– Rubin94: non-monotomic, ie., temporal logic

Authentication in 2000+

• The web: millions of new distributed systems

– Authored by millions of new programmers. :)

– SSL/TLS provides one standard, but

• Many web sites don’t like SSL (speed)

• Hardly any use SSL certs for authentication (browser

support, etc.)

• Many don’t use HTTP authentication (not very secure

over unencrypted connection)

• Many like persistent login cookies for user convenience

17

Threat model

• Interrogative adversary

– Can make a reasonable # of queries to a web

server (e.g., 1/second)

• Adaptive chosen message attacks

– Can’t sniff

• Almost any user can mount w/out special access to

network

– Can use info publicly available on web server

• User lists if available, etc.

– This is a pretty basic threat model... 18

HTTP cookies

• Recall that HTTP is stateless

• Any state must be sent to client and have

client send it back (cookie)

– Can set cookie value

– Set duration (some time or immediate discard)

– Control which servers cookie is sent to

• Host, domain, port, SSL required or not

19

Balancing concerns

• This slide again???

• Performance: SSL, encryption speed

– Even with today’s machines, SSL is not cheap

– 100s of reqs/sec vs. 1000s or 10,000s

• User acceptability / convenience

• Security (against what threats??)

20

Auth models

• Coarse-grained: Verify authorization, but

not necessarily identity

– e.g., “valid subscriber to Wall Street Journal”

– For services w/no accounting/customization

• Fine-grained: Verify user identity as well

21

Confidentiality

• Some sites use SSL for everything (etrade),

but

• many protect only login sessions

(passwords) and confidential email (actually

placing an order/CC#/etc)

• (Again: Cost/performance/security trade)

22

Threats

• Existential forgery:

– Become {some unspecified} valid user

– Gain access to content, but can’t target person

• Selective forgery:

– “Login as Joe”

• Total break:

– Compromise the authenticator minting mechanism

– Can off-line construct valid auths for any user

23

Examples

• We broke a bunch of them...

• All had home-brewed authentication

schemes (bad programmer! no cookie!)

•

24

Wall Street Journal

25

Username/passwordUser
WSJ

Set: Fastlogin cookie

Fastlogin cookie

Later

OK! No login

needed

(convenient)

The cookie

• fastlogin = username + crypt(username +

server secret)

– Crypt is a one-way hash function (same one

used to secure UNIX passwords). Can’t be

inverted.

– BUT:

• Crypt only uses first 8 characters of input!

• crypt(“mynameisdave”) == crypt(“mynameisjoe”)

26

The attack

• fastlogin(8 character username) == crypt(username)

– That’s not very strong. :-)

• fastlogin(7 char username) ==

 crypt(username + 1 secret character)

– Can brute-force in 128 tries

• fastlogin(6 char username) ==

 crypt (username + char from above + 1 secret

character)

 ...

• Can discover “secret” in 128*8 steps
27

(It gets worse)

• Secret: “March20” (day WSJ.com went online)

• The site used the secret as the salt (“Ma”) -- leaked even

more information

• They didn’t change the salt

– Didn’t seem to hurt things; already insecure

• No per-user revocation

– Only way to revoke was changing secret key for entire site (which

they never did)

• No lifetime/freshness...

• Even allows invalid accounts

– WSJ presumbaly didn’t want DB lookup on access (reasonable)

– Could make up a username, generate cookie...

28

Other systems

• Fatbrain.com used a sequence number as a

validator

– The sequence # was global and monotonically

incremented...

– Could login as any user

– And then change email address w/out needing

to authenticate

– And then click “mail me my password”

– and then 0wn user’s account...
29

Doing it right

• Don’t reinvent the wheel

• Understand the crypto and protocols enough

to apply them (e.g., crypt == 8 bytes...)

• Don’t rely on protocol secrecy

– A gaggle of grad students broke 8 websites in a

few weeks...

• Re-authenticate before changing security-

sensitive things {email, passwords, etc.}
30

Make auths unforgeable

• Good way:

• cookie = {

 expiration = time

 data=s

 digest=MAC_k(expiration=t,data=s)

}

– Use an existing MAC, like HMAC-SHA1!

31

