
MSOCKS: An Architecture for 
Transport Layer Mobility 

David A. Maltz 
Carnegie Mellon University 
dmaltz@cs.cmu.edu 

Abstrucr-Mobile nodes of the future will be equiped with multiple net- 
work interfaces to take advantage of overlay networks, yet no current mo- 
bility systems provide full support for the simultaneous use of multiple 
interfaces. The need for such support arises when multiple connectivity 
options are available with different cost, coverage, latency and bandwidth 
characteristics, and applications want their data to flow over the interface 
that best matches the characteristics of the data. We present an architecture 
called Transport Layer Mobility that allows mobile nodes to not only change 
their point of attachment to the Internet, but also to control which network 
interfaces are used for the different kinds of data leaving from undurriving ut 
the mobile node. We implement our transport layer mobility scheme using a 
split-connection proxy architecture and a new technique called TCP Splice 
that gives split-connection proxy systems the same end-to-end semantics as 
normal TCP connections. 

Keywords- mobile networking, proxies, TCP, connection redirection, 
SOCKS, firewalls 

I. INTRODUCTION 

Current mobile nodes can choose between many types of wire- 
less network interfaces, each with wildly different bandwidth, 
error-rate, cost, and latency characteristics. Mobile nodes of the 
future will each carry multiple network interfaces in order to take 
advantage of overlay networks [7]. Yet, current mobility support 
efforts do not enable applications to fully take advantage of more 
than one interface at a time. While current mobility support al- 
lows mobile nodes to move between subnets, or to change which 
interface they use as wireless services become unavailable, it 
does not support the simultaneous use of multiple interfaces, 
nor the ability to specify which interface each individual type 
of traffic should be carried on. In this paper, we present both 
a flexible system that gives mobile nodes control over which 
interface data flows to them and from them, and an enabling 
technique called TCP Splice that preserves TCP’s end-to-end re- 
liability and correctness semantics while allowing connections 
to be redirected. 

Given a diverse networking environment, application design- 
ers need a networking infrastructure that allows them to specify 
how particular streams of data should be communicated between 
a mobile node and a correspondent host. Applications need to 
be able to specify the network interfaces over which each data 
stream should be sent and received. Since data streams corre- 
spond most closely to entities in the transport or session layers of 
the OS1 network model, we call our architecture Transportbyer 
Mobility (TLM). Greatly simplified, the architecture provides a 
means for redirecting the endpoints of an existing transport ses- 
sion (e.g., a TCP connection or a series of UDP packets) to 
arbitrary addresses. 

For an application designer, the natural way to think about 
the desired quality of service for the application’s data packets 
is on a stream-by-stream basis. Consider the case of a video- 

Pravin Bhagwat 
IBM T.J. Watson Research Center 
pravin @ watson.ibm.com 

conferencing application which deals with video, audio, and text 
streams (with the text being a transcript of the video). The ap- 
plication designer might want to express the notion that packets 
in the video stream should be sent over the link with highest 
available bandwidth and not sent at all if no cheap interface is 
available, while the audio packets should be sent over a low 
latency interface, and the transcript should be sent over the in- 
terface with the greatest geographic coverage. 

Our Transport Layer Mobility architecture is built around a 
proxy that is inserted into the communication path between a 
mobile node and its correspondent hosts. For each data stream 
from a mobile node to a correspondent host, the proxy is able to 
maintain one stable data stream to the correspondent host, isolat- 
ing the correspondent host from any mobility issues. Meanwhile, 
the proxy can simultaneously make and break connections to the 
mobile node as needed to migrate data streams between network 
interfaces or subnets. 

11. OVERVIEW 

Many proxy-based architectures have been proposed to man- 
age the interactions between resource-poor mobile nodes and 
servers on correspondent hosts [ 161. The typical proxy-based 
architecture places an intermediate host called a proxy in the 
communication path between a mobile node and the servers with 
which the mobile node’s applications converse. The proxy can 
then mediate the communication between server and client, and 
provide services on behalf of either. As examples of possible 
proxy services, proxies can: provide processing resources the 
client may not have; reformat information from the server to fit 
the mobile node, such as resizing GIF images for small screens; 
or use compression to reduce the bandwidth required between 
the mobile node and proxy, which is frequently a low quality 
link. Since the proxy is typically under the control of the same 
organization that owns the mobile nodes it serves, the proxy can 
be configured to support the peculiarities of its population of 
mobile nodes. The servers that mobile nodes access may be un- 
der the control of other organizations, who have little incentive 
to change their code to support the newest mobile nodes. 

The networks of many corporations and schools with wireless 
networks follow a similar pattern (shown in Figure 1) in which 
there is one wiring closet where the wired connections to the base 
stations of various wireless networks come together and connect 
to the building’s wired networks. This interconnection point is 
a perfect place to put a proxy that supports mobile nodes, as it is 
already on the path that packets will travel between servers and 
mobile nodes. If the forwarding latency of the proxy is kept to 
around that of router forwarding latencies, the proxy architecture 

0-7803-4383-2198/$10.00 0 1998 IEEE. 1037 

mailto:dmaltz@cs.cmu.edu
http://watson.ibm.com


Fig. 1. A common network topology showing the location of a proxy between 
the mobile node and correspondent host. 

does not even increase the latency seen by the mobile node. In the 
general case, the network stack of the mobile can be thought of as 
actually being split between the proxy and the mobile node. Any 
transport protocol can be used to exchange information between 
the proxy and mobile node, so long as both the client and server 
see the expected end-to-end semantics from the communications 
session between them. 

Most proxies operate on a split connection model where mo- 
bile nodes desiring to communicate with a server first make a 
connection to the proxy and tell it which server they want to 
communicate with. The proxy makes a second connection to 
the server and then loops: it reads data from one connection and 
writes it into the other, thereby allowing the client and server 
to communicate. Each logical communication session between 
mobile node and server is split into two separate TCP connec- 
tions. 

Proxies can support mobility in the hosts they serve by provid- 
ing a way to switch the mobile-proxy connection while maintain- 
ing the proxy-server connection unchanged. Imagine a mobile 
node starting a TCP connection while using its wired network 
interface, so that the connection between the mobile node and the 
proxy uses the mobile node’s wired IP address as its endpoint. 
If the mobile node is disconnected from its wired network, it 
could potentially contact the proxy using the IP address of its 
radio interface and ask the proxy to subsequently copy data from 
the server-proxy connection to the new mobile-proxy-via-radio 
connection, instead of the old mobile-proxy-via-wire connec- 
tion. In this way, the mobile node can migrate its sessions from 
one network interface to the another. 

The case in which a mobile node moves from one subnet to 
another subnet on the same interface can be handled in the same 
way, so long as the mobile node can obtain an address’ for use 
on that subnet via a protocol such as DHCP or stateless address 
autoconfiguration in IPv6 [3][11][15]. 

Since each network interface on the mobile node has its own 
IP address, we can control which interface data will move from 
server to mobile node over by choosing which IP address the 
mobile node uses as its endpoint address in the mobile-proxy 
connection. We control which network interface the data moves 
from mobile node to server over by assigning the proxy several IP 
addresses - it does not matter which interface on the proxy the 
addresses are bound to. Both BSD and Windows define a notion 
of a “host route” that specifies to which network interface packets 
to a specific host address should be routed. The mobile node 
creates a host route for each of the proxy’s addresses, such that 

‘This address is called a co- lm~red  cure-c?f address in Mobile IP terms. 

~ 

1038 

Mobile Node Proxy Correspondent 
n Host 

TCPIIP TCP spllce ----i;-- “;; 
stack 

t 
I I  I 

Fig. 2. The MSOCKS architecture. Parts shown in gray are where MSOCKS 
alterations are made to the standard parts of proxy based clientkerver system. 

packets sent to that address will go out a different interface of the 
mobile node. The mobile node can choose which interface that 
data to the proxy will flow out by picking the appropriate proxy 
address as the peer address for the mobile-proxy connection. 
Taking the two methods together, when the mobile node chooses 
the its endpoint address and proxy’s endpoint address to use for 
the mobile-proxy connection half of a session, it chooses on a on 
a session-by-session basis which interfaces data will flow over 
both to and from the mobile node. 

All solutions that seek to control which interface data flows 
into the mobile node over must involve a proxy or some other 
network entity between the correspondent host and the mobile 
node, since it is the sender of a packet that chooses the packet’s 
destination address. In designs without a proxy, the mobile node 
can control over which interface it sends packets out, but unless 
the correspondent host is modified to include all the mobility 
support features of a proxy, the mobile node cannot control which 
interface it will receive each packet over. Assuming mobile 
nodes will typically run client applications that receive more 
data than they send, it is critical to allow mobile nodes to control 
the inflow of packets. 

A communication session composed of two TCP connections 
spliced together appears to the client and server as a single TCP 
connection, and so is defined in terms of the IP addresses and 
port numbers of the connections’ endpoints. Thus, changing 
the endpoint address of an existing session effectively breaks 
the session. Connecting and reconnecting two connections, as 
we propose doing, normally risks the loss of any data in flight 
while the reconnection happens, which would break the end- 
to-end semantics of the logical mobile-to-server communication 
session. Our transport layer mobility solution, which we call 
MSOCKS, is built around a technique we call TCP Splice [9]. 
TCP Splice allows the machine where two independent TCP 
connections terminate to splice the two connections together, 
effectively forming a single end-to-end TCP connection between 
the endpoints of the two original connections. 

111. MSOCKS 
As shown in Figure 2, the MSOCKS architecture consists 

of three pieces: a user level MSOCKS proxy process running 
on a proxy machine; an in-kernel modification on the proxy 
machine to provide the TCP Splice service; and a shim MSOCKS 
library that runs under the application on the mobile node. No 
modifications are needed in the server, the server machine, the 



mobile node kernel, or the client application (though to take 
maximum advantage of the TLM service, the application must be 
programmed to be mobility-aware, as described in Section ??). 

In the remainder of this section, we first describe the pro- 
tocol used between the MSOCKS library and the MSOCKS 
proxy. We then explain our TCP Splice technique that allows 
TCP connections to be arbitrarily reconnected, and describe our 
implementation of the MSOCKS library. 

A. The MSOCKS Protocol 

The MSOCKS protocol is built on top of the SOCKS proto- 
col [8] for firewall traversal. Only two additions to the SOCKS 
protocol are needed to support MSOCKS’s basic ability to redi- 
rect TCP streams to a mobile node’s changing location. 

First, we introduce the notion of connection identifier by 
which logical sessions between the mobile node and the proxy 
are tracked. The MSOCKS proxy issues a new connection iden- 
tifier every time a mobile node makes a BIND or CONNECT 
request to the MSOCKS proxy asking to be connected to a cor- 
respondent host. The connection identifier is sent to the mobile 
node along with the normal SOCKS reply message that indicates 
the success of the request. 

Second, we add the new MSOCKS RECONNECT request. 
When the MSOCKS library wants to change the address or net- 
work interface that a TCP connection uses to communicate with 
the MSOCKS proxy, it simply opens a new connection to the 
proxy and sends a RECONNECT message specifying the connec- 
tion identifier of the original connection. A connection’s identi- 
fier contains the proxy port number the library should connect to 
when reconnecting to the identified connection. Upon receiving 
a RECONNECT message, the proxy unsplices the old mobile- 
to-proxy connection from the proxy-to-server connection, and 
splices in the new mobile-to-proxy connection. The server on 
the correspondent host and the application on the mobile node 
need not be aware the reconnection has happened. As explained 
below, our splicing technique allows us to perform reconnections 
even when there is data in flight between correspondent host and 
mobile node, or when there is no warning the mobile node will 
need to change addresses, such as during hard hand-offs. With- 
out care, these packets in flight may be lost or duplicated; the 
MSOCKS RECONNECT protocol together with TCP Splice en- 
sures that the end-to-end reliable, in-sequence semantics of TCP 
are maintained. 

Figure 3 shows the packets exchanged when an MSOCKS 
client application connects to a server on a correspondent 
host. The application’s connect ( ) call is intercepted by 
the MSOCKS library and turned into a call to Mconnect ( ) . 
Mconnect first uses the mobile node’s normal TCP stack to 
make a connection to the proxy, using whatever addresses are 
appropriate to the data the connection will carry. Over this con- 
nection, the library sends the proxy the server’s address and port 
number that the application gave as arguments to Mconnec t ( ) , 
along with any authentication information the proxy requires. 
Our splicing technique supports an arbitrary authentication ne- 
gotiation with packets sent both from and to the proxy, although 
only a single packet is shown in the figure. After authenticat- 
ing the mobile node, the proxy connects to the desired server 
and then splices the mobile-proxy and proxy-server connections 

Mobile Client Proxy 

A C D 

Server 

B 

Fig. 3. Packet exchange diagram for connection establishment between a 
MSOCKS client and a correspondent host via a MSOCKS proxy. 

Mobile Client proxy 

A C D 

S I 

Server 

B 

Fig. 4. Packet exchange diagram for a MSOCKS client accepting a connection 
from a server on a correspondent host via a MSOCKS proxy. 

together. When the splice is set up, the proxy transmits a final 
OK message to the mobile node to synchronize the MSOCKS 
library. The OK message contains the connection identifier the 
proxy has assigned to this session for use should the mobile node 
later want to reconnect it. 

Figure 4 shows the packets exchanged when an application on 
a mobile node wishes to accept a connection from a server (e.g., 
the data connection during an FIT transfer). The application’s 
call to bind ( ) is intercepted and the code in Mbind ( ) carried 
out. Mbind ( ) connects to the proxy, which opens another 
socket (labeled D in the figure) and prepares it to receive a 
connection from the server. The proxy then tells the MSOCKS 
library which address and port number the proxy is listening on, 
and the library returns this information to the application. When 
Maccept ( 1 is called, it blocks waiting for a message from the 
proxy notifying it of a server’s connection.’ By the time the 

2A fortuitous side effect of this approach is that nonblocking applications, 
which select  ( ) on the bound socket before calling accept ( 1,  continue to 
work since select  ( ) indicates a socket has a pending connection by marking 
it as readable, which the OK message will do as well. 

1039 



Mobile Client Proxy 

A C D 

Server 

B 

Fig. 5. Packet exchange diagram for complete BSD semantics. 

Mobile Client Proxy Server 

A C D B 

F 

I checks 

Fig. 6. Packet exchange diagram for a mobile node reconnecting to an existing 
connection. 

MSOCKS library receives the OK message from the server, the 
mobile-proxy and proxy-server connections are spliced together 
so the application can communicate with the server as normal. 

The MSOCKS protocol for accepting connections is roughly 
equivalent to the SOCKS protocol, and shares with it the draw- 
back that it can accept single connections, but it cannot publish 
a pordaddress pair to which many connections are made. Since 
most mobile nodes will be acting as clients, this is not a sig- 
nificant limitation. As shown in Figure 5 ,  a more complicated 
protocol can be used that gives the application on the mobile 
node the complete Berkeley Sockets semantics, allowing it to 
accept multiple connections to the same port, but we have not 
implemented this. 

Figure 6 shows the packets exchanged when a connection be- 
tween a mobile node and proxy breaks for some reason (e.g., the 
mobile node moves and obtains a new IP address, or it wishes 
to switch the session from one network interface to another). 
After the connection to the proxy is broken, the MSOCKS li- 

brary opens a new socket, labeled E in the figure, and connects 
to the proxy using it. The MSOCKS library transmits a re- 
connect message to the proxy giving the connection identifier 
of the old connection to the server, along with a data-read 
counter, telling the proxy how many bytes of data the application 
has read from the connection, and a data-written counter, 
telling the proxy how many bytes of data the application has writ- 
ten to the connection. The proxy then splices the new connection 
to the proxy-server connection in place of the old mobile-proxy 
connection and closes the old connection. Once the splice is 
setup, the proxy sends an OK message to the MSOCKS library, 
along with da tawr i te  and datasalvage counters direct- 
ing the MSOCKS library how to complete the splice at the mobile 
node's end. The application and server are completely unaware 
the switch has happened. The data-read, data-written, 
data-write, and datasalvage counters are explained in 
detail later. 

B. TCPSplice 

~ 

1040 

The goal of a TCP Splice is to make it appear to the endpoints 
of two separate TCP connections that those two connections 
are, in fact, one. From the point-of-view of the endpoints, it 
should appear that they are directly connected by a single TCP 
connection with all the end-to-end properties of a normal TCP 
connection. The insight behind TCP Splice is simple: data 
can be lost in split connection proxy schemes because the proxy 
acknowledges the receipt of data to the correspondent host before 
receiving an acknowledgment (ACK) from the mobile node. 
Data which is ACK'd to the server but lost in transmission to 
the mobile node or mired in the kernel socket buffer of a broken 
connection, is lost forever. 

We implement the splice by altering all the packets sent on 
one connection, including the acknowledgments, so the packets 
appear to belong to the second connection, and then sending the 
packets out over the second connection. Since the alterations are 
a simple mapping function and require no storage, they can be 
done quickly in the kernel. Since the TCP Splice code itself does 
not generate data acknowledgments, TCP end-to-end semantics 
are preserved between the two endpoints. Only after the mobile 
node receives data and transmits an ACK can the correspondent 
host possibly receive an ACK, since the proxy only relays the 
mobile node's ACK. 

B.l TCP Background 

Before describing TCP Splice, some background on TCP is 
required (see [14] for more detailed information). Figure 7 
depicts a normal TCP connection with data in flight between 
endpoints. Each normal TCP connection is point-to-point and 
terminates at a TCP socket which is named by an address and 
a port number. A TCP connection is uniquely identified by the 
names of the two sockets at its endpoints. For each TCP socket, 
the normal TCP state machine maintains the following three 
counters: 

sndnxt: The sequence number of the next data byte to 
be sent. 
snd-una: The sequence number of the first unacknowl- 
edged data byte (equivalent to the sequence number of the 
greatest ACK received). 



data flow to client - 
snd-nxtC snd-unaC ” 

Data received but 
not yet acknowledged 

A 
rcv-nxt 

Data sent but 
not yet received 

@ <addrA,porlA> caddrC,portCr @ 
rcv-nxt n 

snd-unaA snd-nxtA - 
data flow to sewer 

Fig. 7. A normal TCP connection between sockets A and C with state counters 
labeled. 

rcvnxt: The sequence number of the next byte of data 
the socket expects to receive (equivalent to one more than 
the greatest consecutive sequence number received so far). 

Using these counters, TCP assigns each byte of data sent over the 
connection a sequence number so TCP can detect and recover 
from data loss, reordering, or duplication. 

These counters define a sequence space associated with the 
socket. Without loss of generality, we assume for this expla- 
nation that each sequence space begins numbering at 0. Data 
bytes with sequence numbers greater than snd-nxt have not 
yet been sent. Data bytes with sequence numbers less than 
rcv-nxt have been received by the TCP stack, but perhaps not 
yet read by the application. We say that data is acknowledged 
when the sender of the data receives an acknowledgment for it: 
snd-una will be less than the associated rcv-nxt counter 
(Le., snd-unac <rcv-nxtA) whenever an ACK is in flight, 
delayed, or lost. 

B.2 Mapping Sequence Spaces and Moving Packets 

If the proxy has two connections it is to splice together, 
one to A and one to B, the next data byte the proxy expects 
to receive from A must be transmitted on the connection to 
B with the sequence number that B next expects to receive 
from the proxy. We call the sequence number of the next 
byte the proxy expects to receive from A the splice initial 
receive sequence number (splice-irs) and the sequence 
number B next expects to receive from the proxy the splice 
initial send sequence number (spl ice-i s s). Together, the 
pair <splice-irs,splice-iss> define a mapping at be- 
tween the sequence number spaces of the spliced connections 
from A to B. For example, the datum with sequence number 
splice-irs + N on the A-to-proxy connection maps to se- 
quence number splice-iss + N on the proxy-to-B connection. 
A second pair similarly defines the mapping of the spliced con- 
nections from B to A. 

As each TCP segment is received at a spliced socket on the 
proxy, the segment’s IP headers are altered to address the seg- 
ment to the socket at the other end of the spliced connection. 
The segment’s TCP headers are altered so the segment will be 
intelligible to the end system when it arrives - the segment will 

look like a continuation of the normal TCP connection that the 
end system first started with the proxy. To alter a segment for 
forwarding, the proxy needs only the state from the two sockets 
located on it (labeled C and D in the figures). In the discussion 
below, all variables referred to are those kept by the proxy. Pro- 
cessing a segment requires three steps: altering the IP and TCP 
headers, and checking for connection closing. 

B.2.a Alter IP header. The following steps are used to alter the 
IP header: 

Change source and destination address to that of outgoing 

Remove IP options from incoming packet. 
Update IP header checksum. 

connection. 

B.2.b Alter TCP header. The following steps are used to alter 
the TCP header: 

Change source and destination port numbers to match out- 
going connection. 
Map sequence number from incoming sequence space to 
outgoing space: 
seq-num = (seqmum - in->spJiceirs)+out-xpliceiss 
Map ACK number from incoming sequence space to out- 
going space: 
ack-num = (ack-num - in->spJiceiss)+out-xpliceirs 
Update TCP header checksum. 

The TCP and IP headers are updated incrementally, saving 
the time required to recompute them, while also preserving the 
checksum’s error detection ability. TCP represents the urgent 
pointer as an offset from the segment’s sequence number; it is 
not changed during the mapping procedure. A special check 
must be made to ensure a segment being mapped does not con- 
tain data with sequence numbers less than splice base point 
splice-irs. If such a segment is received, the data up to 
splice-irs is simply chopped out of the segment. 

B.2.c Connection Teardown. As TCP segments are passed 
through the splice, they are examined for indications that the end 
systems are closing their connections. When the end systems 
finalize their connection, the TCP Splice code tears down the 
splice between the two sockets and frees the sockets on the 
proxy: 

If each side sends a FIN and ACKs the other side’s FIN, then 
tear down the splice because the end systems have closed. 
If either side sends a reset (RST), tear down the splice. 

B.3 Choosing the Basepoints 

During the RECONNECT operation, the proxy must unsplice 
the connection between sockets A-C and D-B and splice in the 
connection between sockets E-F (see Figure 6). The basepoints 
for the splice must be carefully chosen to prevent any overlaps or 
gaps forming in the sequence space of the logical session between 
the client and server. There are three cases to be concerned with: 
two covering the data flow from server to client, and one covering 
the data flow from client to server. 

B.4 Splicing the Server to Client Flow 

Figure 8 shows how basepoints are chosen for data flowing 
from the server to client in the case in which data is arriving 
faster than the client application reads it. Let us introduce a 

1041 



sn 

. "ldla"lk" 
@ 

, 
snd-unac rev-nxt , data-read 

_i snd-unaB 
........................................................................................................................... I splice-irs 

splice-iss 
d 

rcv-nxt E 

Fig. 8. The selection of basepoints for resplicing data flowing from server to 
client. The thin, shaded box represents unread data present in the socket of 
the old connection that has not yet been read by the application. 

snd-nxt snd-una, 

. 
,-data-read 

1 
But. fluw t" client 

spliceiss 
4 

................................................... 

rcv-nxt E 

Fig. 9. The selection of basepoints for resplicing data flowing from server to 
client. The thin, shaded box represents data read by the application, but not 
yet ACKd to the sender. 

pointer data-read which keeps track of how much of the se- 
quence space has actually been read by the application. The 
proxy is sure that the mobile node has received at least all 
the data up to snd-unac (the largest ACK the proxy has re- 
ceived from the client) since it has seen a cumulative ACK from 
the mobile node for that data. If snd-unac is greater than 
data-read, then at least snd-unac-data-read bytes of 
data are present in the socket buffers at A. Since an ACK has 
been sent for the data, the proxy must assume the the server 
may have received this ACK and so will never retransmit the 
data again. The MSOCKS library must therefore drain the 
da t a-s a lvage= snd-unac- da t a-r ead bytes out of the 
old socket A before freeing it and must offer those data to the ap- 
plication when it next reads from its MSOCKS socket. As shown 
by the thick arrows in the figure, the proxy sets splice-irs so 
that the next byte of unacknowledged data from the server is the 
next byte of data sent to the client after the OK message. The data 
between recv-nxtD and splice-irs can be retransmitted 
by the server if they were lost during the hand-off. 

Figure 9 shows how basepoints are chosen for data flowing 
from the server to the client in the case in which data is read faster 
than it is ACK'd to the server (snd-unac <dataeread). To 
avoid duplicating data, we choose splice-irs to be at the 
data-read pointer. The next byte of data the application has 
not read will then be the first byte of data to be read from the 
new socket after the OK message (which is read by the MSOCKS 
library). Any data the application has already already read that 
is retransmitted by the server will fall before the splice-irs 

~ 

1042 

data-written 
,, rcv-nxt, 

data-written \ 
snd-una, snd-nxt, 

: rcv-nxtB 

snd-una snd-nxt 

0 
snd una 
sndInxt E' - 

splice-irs splice-iss 

Fig. 10. The selection of basepoints while resplicing data flowing from client 
to server. The thin, shaded box represents written by the mobile node's 
application, but unacknowledged by the Correspondent host. 

point and will be chopped off and dropped by the proxy. 

B.5 Splicing the Client to Server Flow 

Figure 10 shows how basepoints are chosen for data flowing 
from the client to the server. The thin, shaded box in the figure 
depicts the data the application has written that the proxy has not 
yet seen acknowledged by the server. While this data is present 
in the old socket A, it is a "hole" in the sequence space of the new 
socket E, the socket that will be responsible for retransmitting 
the data once the new E-F connection is spliced in. Since some 
of the data in the hole may have been lost in flight, the mobile 
node must rewrite the data into the new connection between 
sockets E-F. The rewritten data, shown as the thin, shaded box 
in the figure, "covers the hole" left by the previous connection. 
In the case in which all the data in the hole has safely made it 
to the correspondent, the next ACK from the correspondent will 
acknowledge all the rewritten data. After the MSOCKS library 
has written data into socket E to cover the hole, new application 
data can be sent via E as normal. The proxy is able to calculate 
how many bytes of data the MSOCKS library must rewrite into 
the new connection as data-write = data-written - 
snd-unao. 

B.6 Urgent Data 

TCP defines a notion of urgent data [14] that is typically 
received either inline or out-of band by the user-level appli- 
cation. The MSOCKS proxy must handle connections with 
out-of-band urgent data slightly different from those with inline 
urgent data, since there is the potential for pending out-of-band 
data to be overwritten by newly arriving out-of-band data be- 
fore the MSOCKS library can include the pending data in the 
data-read pointer. Since the MSOCKS proxy sees all out-of- 
band data as it flows through, it is able to correct the data-read 
value reported by the MSOCKS library to reflect all the data that 
has traversed the connection. 

C. The MSOCKS Library 

The MSOCKS library sits between the application and the 
kernel on the mobile node. It's task is to provide an interface 
to the application identical to that of the Berkeley Sockets API, 



while internally using the normal TCP stack of the kernel to 
provide mobility functions. We call the sockets exported by 
the MSOCKS library Msockets. The MSOCKS library works 
as a shim library. It intercepts calls made by the application to 
networking functions such as connect(), send(), recv(), and get- 
sockopt(), and replaces those calls with code from the MSOCKS 
library. 

There are numerous ways to insert a shim library between an 
application and a kernel; the best method depends on factors such 
as the ability to recompile the application, and OS support for 
shared libraries. On Windows platforms, we are implementing 
the MSOCKS library as a DLL that fits between the application 
and the WinSock DLL. On our BSD OS implementation, we are 
looking at using the shared library support, although we currently 
recompile the application. 

In our BSD implementation, each Msocket is an integer, iden- 
tical to how normal BSD sockets are represented to applica- 
tions. The integer is the index of an entry in a table kept by the 
MSOCKS library - a kind of user level file descriptor table. 
The entry, in turn, contains all the MSOCKS data associated 
with that socket and its connection. Underlying each Msocket in 
our implementation is a real socket, and we chose Msocket table 
entries such that the Msocket file descriptor is the same as the 
underlying, real file descriptor. This allows applications to use 
Msocket descriptors in the same way as all other file and socket 
and descriptors. 

The basic operation of the library was already discussed 
indirectly in the Section 111-A. We will now describe how 
the MSOCKS library maintains or uses the data-read, 
data-written, datasalvage, and data-write coun- 
ters. 

As explained above, the proxy must know how many bytes of 
data the application has read from the server-to-client flow in or- 
der to properly choose the mapping basepoint for a respliced con- 
nection. To maintain this data-read counter, the MSOCKS 
library must intercept all the calls that read from the Msocket, 
make the appropriate call to the underlying real socket, and up- 
date the counter with the number of bytes transfered. There is 
no data copying overhead, as the library does not make a pass 
over the data transfered. 

If, while resplicing, the proxy finds that the application has 
been reading data more slowly than it has been arriving, the 
MSOCKS library will have to salvage the unread data from 
the old connection’s socket before closing the old socket. This 
is the case described above when snd-unac >data-read. 
The proxy calculates how many bytes of data are left in the old 
socket as data-salvage = snd-unac-data-read and 
sends the MSOCKS library the data-salvage counter as part 
of the OK message for the RECONNECT. While an Msocket’s 
data-salvage is greater than 0, the MSOCKS library directs 
all read calls to the old socket. When it drops to 0, read calls are 
directed to the new socket. 

The final major task of the MSOCKS library concerns the 
data-written and data-write counters and the hole de- 
scribed above that can form when resplicing the data flow from 
client to server. In order for the proxy to calculate the size of the 
hole, the MSOCKS library must count the number of bytes the 
application has sent into its Msocket so it can provide the proxy 

- g 60 .  
3 

5 0 -  

g 40- 
g 
.. 

~ 

1043 

Thrwghput of MSOCKS proxy wrsm connection load 

lWr 

10 

0,’ 
50 1W 150 2W 250 300 

number d conneztians 

Fig. 11. TCP throughput supported by the MSOCKS proxy as a function of 
number of simultaneous connections. 

with the count as the data-written field in RECONNECT 
messages. The proxy calculates the size of the hole and returns 
the value as the data-write field in the RECONNECT OK 
message. In order to cover the hole, the MSOCKS library must 
then write into the new socket the last data-write bytes that 
were sent by the application. This implies that the MSOCKS 
library must keep a copy of all data sent by the application into 
an Msocket, as well as writing it into the Msocket’s underlying 
real socket. We use a circular buffer to store the data, and the 
buffer size is set as the minimum of the maximum TCP window 
size and the underlying socket buffer size. Luckily, most mobile 
nodes receive significantly more data than they send, so the data 
copying requirement imposed is minimal in practice. 

By intercepting the setsockopt ( ) call, the MSOCKS li- 
brary can determine whether the application is receiving urgent 
data inline or out-of-band and can notify the proxy as appropri- 
ate. 

IV. PERFORMANCE 

All proxy architectures cause a concentration of traffic at the 
proxy, which raises scalability concerns. If each mobile node 
needed its own proxy to serve it, the transport layer mobility 
architecture would not be practical. Testbed evaluation shows 
that because the forwarding operation at the proxy is so cheap for 
spliced connections, the primary limitation on how many mobile 
nodes a proxy can handle is the link bandwidth in and out of the 
proxy. 

To discover how many simultaneous connections an 
MSOCKS proxy can support, we ran both a client and a server 
program on the same machine as the MSOCKS proxy. By using 
the loopback interface to carry the traffic from client to proxy 
and from proxy to server, we avoided limitations on throughput 
resulting from a physical link and maximally stressed the proxy. 
The test machine was a 200 MHz Pentium Pro with 256KB of 
cache running BSDI BSD/OS. Figure 11 shows the total through- 
put achieved by the proxy as the number of connections through 
it was increased. Considering that fast wireless technologies 
support 1-3Mbps, we believe this data shows that the MSOCKS 
proxy is scalable. 

In addition to supporting many connections, an ideal 
MSOCKS proxy would add minimal latency to the path of pack- 



Latencies seen by a muted and a spliced cOnneCtion 

IP forwarding 

V. DISCUSSION 

0.4038 0.0960 

. .  

TCP Splre toiwadlng 

TCP Splice forwarding I 0.4444 

0 1 2  3 4 5 6 7 8 9 10 

0.1120 

x 106 sequence number 

Fig. 12. Comparison of the latency of IP packet fonvarding with the latency of 
TCP Splice forwarding. 

TABLE I 
SUMMARY OF FORWARDING LATENCIES CREATED BY TCP SPLICE AND IP 

ROUTING 

I I mean(msecs) I median (msecs) I 

ets traveling to or from mobile nodes. Figure 12 compares 
the latency seen by packets in a TCP connection routed via IP 
forwarding through our test machine with the latency seen by 
packets in a TCP connection spliced at our test machine. The 
X-axis in the figure is the sequence number of the packet. The 
data from a larger run is summarized in table I. Latency mea- 
surements were made by configuring the test machine as a router 
between two Ethernet interfaces. The tcpdump program was 
used to record the time at which each packet was received by an 
interface and the time at which that packet was written into the 
IF-QUEUE of the outgoing interface. While our test machine is 
not a commercial-strength backbone router, the rough equality 
of the forwarding latencies shows that inserting a TCP Splice 
between two connections does not create burdensome latency 
overhead. 

Another issue of concern is how quickly MSOCKS will be 
able to reconnect TCP connections after the decision to reroute 
a connection has been made. The time taken by the proxy to 
resplice two connections is insignificant. The greatest latency 
in reconnection results from the time required to establish the 
new TCP connection and transmit the RECONNECT message, 
which in turn depends critically on the roundtrip time (RTT) of 
the particular network technology being switched to. A protocol 
level analysis shows the greatest rate at which a mobile node 
can reasonably reconnect TCP sessions is limited to once per 2.5 
round trip times: 1.5 RTT for the connection establishment, and 
0.5 for transmission of the RECONNECT OK message, and 
0.5 RTT for the data. 

~ 

1044 

We have been deliberately vague in describing the mecha- 
nism applications use to set and change the policies between 
mobile node and proxy, such as which network interfaces are 
used for which traffic. We see transport layer mobility as a 
generic mechanism that can be used along side others in a com- 
plete connectivity management solution for mobile nodes. 

For example, there is a natural fit between the Odyssey project 
at CMU [lo] and our transport layer mobility architecture. 
Odyssey is a system of wardens, one per data type, overseen 
by a viceroy that negotiates with user level applications to de- 
termine resource usage policies. Each warden is responsible for 
the control of all streams of some data type (e.g., movies, files, 
audio) entering or leaving the mobile node, and based on policy 
passed down from the viceroy, it determines fidelity levels for 
the data. Odyssey implicitly assumes that data servers will be 
able to alter the fidelity of the data they transmit based on signals 
from wardens on the mobile node. The transport layer mobility 
architecture enhances Odyssey wardens by allowing them con- 
trol over which interface their data is sent over. Additionally, 
since few or no servers today are capable of negotiating data fi- 
delity levels with clients, the TLM proxy provides an ideal place 
to put the transcoding services mobile nodes need to interoperate 
with unmodified servers. 

At a philosophical level, mobility support systems can be 
tuned to support either local mobility or global mobility. Trans- 
port Layer Mobility is tuned to support local mobility, as we feel 
many mobile computer users, such as office workers, will not 
want to keep their connections up and valid during long moves. 
They may move often inside their buildings or between home 
and work, but they will shutdown their machines before leaving 
on a trip. While inside their buildings, the machine may move 
between a desk with a wired network connection, meeting rooms 
with diffuse IR constrained to the room, and all the while never 
leaving the range of a building-wide radio network. Given this 
environment, we focused on a design that allows individual data 
streams to be rerouted, rather than rerouting packets. 

Mobile IP [12][6] is concerned with global mobility, that is, 
maintaining a mobile node’s connections by rerouting packets 
to it, regardless of where in the world the it happens to wander. 
As currently defined, Mobile IP largely assumes that there is 
only one way to reach a mobile node, and that all packets sent 
to the mobile node have equal priority. Since Mobile IP is 
a network layer function, it does not distinguish between the 
different types of data present in the packets it carries, and it has 
no way to handle them differently. Mobile IP can not support 
handling each transport session differently without violating the 
network stack layering. 

Additionally, Mobile IP traffic can not currently cross corpo- 
rate firewalls, as the protocol is firewall unaware, which limits the 
movement options of company mobile nodes to networks inside 
the corporate firewall. Since our mobility proxy functions can 
be integrated with other proxies, such as firewalls, MSOCKS 
mobile nodes can move outside their corporate firewall while 
retaining communication with both internal and external cor- 
respondents. MSOCKS by itself, however, does not solve the 
problem of traversing multiple firewalls. 

Many researchers have focused on the TCP address match- 



ing function as the root of TCP’s mobility problems. Several 
have proposed schemes which identify TCP connections by a 
unique identifier not based on the endpoint addresses [5][ 131, 
similar to the way our MSOCKS proxy assigns connections 
identifiers. These unique-identifier schemes typically require 
significant modifications to the correspondent hosts, which make 
the schemes hard to deploy. Furthermore, schemes based solely 
around connection identifiers are extremely insecure, in that any 
host overhearing the connection identifier can “capture” that con- 
nection by issuing a forged reconnect message. Since MSOCKS 
is built on top of the SOCKS firewall authentication system, it is 
already as secure as SOCKS itself. 

Some unique-identifier schemes, like [5 ] ,  require modifying 
the transport layer header so each packet carries the connection 
identifier. In MSOCKS, packets are demultiplexed based on 
port number at the proxy, and connection identifiers are used 
only when reconnecting TCP connections. Since all connection 
identifiers used by a proxy are issued by that proxy, there is no 
problem maintaining identifier uniqueness. The Mobile Socket 
Layer design [ 131 describes a virtual port that performs the same 
functions of byte counting as the Msocket in our MSOCKS 
library. However, the Mobile Socket Layer is based on a unique- 
identifier scheme, where MSOCKS is based on TCP Splice and 
so is compatible with unmodified correspondent hosts. 

The use of the MSOCKS shim library to support mobility on 
mobile nodes without requiring any mobile node kernel changes 
is not one of the major contributions of this paper. However, 
it dovetails well with TCP Splice and the overall Transport 
Layer Mobility architecture to support mobility on systems like 
Microsoft Windows95 where the code for the transport proto- 
cols (like TCP) comes from a third-party and can not be modi- 
fied. Even the WinSock2 specification, which defines a Service 
Provider Interface [4] hook point above the transport protocol, 
does not provide sufficient access to easily implement mobility. 

Bakre and Badrinath [ 13 proposed using a split TCP connec- 
tion architecture both for mobility and for improving TCP’s per- 
formance over wireless links, though their system significantly 
violates the normal end-to-end semantics of TCP. Their mobile 
support router (roughly equivalent to our proxy) acknowledges 
data to the server before it has been received by the mobile node, 
which could cause serious data integrity problems in the case of 
failed hand-offs. To the best of our knowledge, TCP Splice is 
the first technique that enables split TCP connection architectures 
while maintaining end-to-end TCP semantics. We see the issues 
of transport layer mobility and TCP’s wireless performance as 
largely orthogonal. MSOCKS and TCP Splice concentrate on 
providing mobility with correct end-to-end semantics. Systems 
like Snoop TCP [2] could be used underneath TCP Splice to 
improve the wireless performance. 

VI. CONCLUSIONS 
Providing mobility support at the transport layer has both 

strategic and technical benefits. Strategicly, adding mobility 

support to the transport layer allows us to add mobility support 
to applications running on operating systems, like Windows 95, 
where we do not have access to the network source code but 
can can intercept data above the transport layer. Technically, 
adding mobility support at the transport layer allows us to provide 
applications with a qualitatively different kind of control over 
their sessions: they can specify which interfaces are used for each 
type of traffic they exchange. The architecture allows mobile 
nodes to specify the both the network interface that packets in a 
session should be sent out on, and the interface that packets for 
the session should be received on. 

Additionally, we have shown how our TCP Splice technique 
can be used to implement MSOCKS while preserving TCP’s 
end-to-end reliability and semantics between a mobile node and a 
correspondent host, something no other split connection protocol 
does. Finally, given the low cost of forwarding packets between 
two spliced connections, TCP Splice enables simple and scalable 
proxy services, like MSOCKS. 

REFERENCES 
Ajay Bakre and B.R. Badrinath. Handoff and system support for indi- 
rect TCPAP. In Second USENIX Symprisium on Mobile and Lricution- 
Independent Computing Proceedings, Ann Arbor, Michigin, April 10-1 1 
1995. Usenix. 
Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz. Improving 
reliable transport and handoff performance in cellular wireless networks. 
ACM Wireless Networks, 1(4), December 1995. 
R. Droms. Dynamic host configuration protocol. Internet Request For 
Comments RFC 2131, April 1997. 
WinSock Group. Windows Sockets 2 Service Provider Interface. 
Web White Paper - Revision 2.2.2, August 1997. Available as 
ftp://ftp.microsoft.com/bussys/winsock2/wsspi22.doc. 
C. Huitema. Multi-homed TCP. IETF Working Draft - work in progress, 
May 1995. draft expired November 1995. 
David B. Johnson and David A. Maltz. Protocols for adaptive wireless 
and mobile networking. IEEE Perscinul Communicutioins, 3( 1):34-42, 
February 1996. 
Randy H. Katz and Eric A. Brewer. The case for wireless overlay networks. 
In SPIE Multimediu und Networking Conference (MMNC.961, San Jose, 
CA, January 1996. 
M. Leech, David Koblas, et al. SOCKS protocol version 5. Internet Request 
For Comments RFC 1928, April 1996. 
David A. Maltz and Pravin Bhagwat. TCP splicing for firewall and HTTP 
cache performance. Technical report, 1998. To be published. 
Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, Eric J. Tilton, 
Jason Flinn, and Kevin R. Walker. Agile application-aware adaptation for 
mobility. In Proceedings vf the 16th ACM Symposium on Operuting System 
Principles, St. Malo, France, October 1997. 
Charles E. Perkins and Tangirala Jagannadh. DHCP for mobile networking 
with TCPIIP. In Wireless IEEE Internution Symposium on Systems and 
Communicution, Alexandria, Egypt, June 1995. IEEE. 
Charlie Perkins. IP mobility support. Internet Request For Comments 
RFC 2002, October 1996. 
Xun Qu. Jeffery Xu Yu, and Richard P. Brent. A mobile TCP socket. 
Technical Report TR-CS-9708, The Austrailian National University, April 
1997. 
W. Richard Stevens. TCP/IP Illustruted, The Protocols, volume 1. 
Addison-Welsley, 1994. 
S. Thomson and T. Narten. IPv6 stateless address autoconfiguration. In- 
ternet Request For Comments RFC 1971, August 1996. 
Bruce Zenel and Dan Duchamp. General purpose proxies: Solved and 
unsolved problems. In Prmeedings uf Hut-OS VI, May 1997. read as 
http://www.mcl.cs.columbia.edu/ baz/ps/hot-os-vi.ps. 

1045 

ftp://ftp.microsoft.com/bussys/winsock2/wsspi22.doc
http://www.mcl.cs.columbia.edu

