
Each Unto Their 
Abilities...

Low-Power Computing
David Andersen

Carnegie Mellon University

Sources:  
Balancing Performance, Energy, and Quality in Pervasive Computing (Flinn, Park, Satyanarayanan)

A Lightweight Secure Cyber Foraging Infrastructure for Resource-Constrained Devices  (Goyal and Carter)

Simplifying Cyber Foraging for Mobile Devices (Balan, Gergle, Satyanarayanan, Herbsleb)

Transient Customization of Mobile Computing Infrastructure (Wolbach, Harkes, Chellappa, Satyanarayanan)

Strategies for power
• More efficient systems

• Do less work (aggregation;  interval sampling)

• Trade speed for power (DVFS, etc)

• Sleep more

• Consolidate -> deeper sleeping

• Scavenge power from the environment

• Make someone else do the work for you

• Tiered systems;  Cyber Foraging

Tiered Sensors

Cyber Foraging

Thin-Client Computing

Big Blade 
Server

C
lie

n
t

C
lie

n
t

C
lie

n
t

C
lie

n
t

Per-client 
VMs

Tiny 
Client

In-Wall 
Computer

MotesMotesMotesMotesMotesMotesMotesMotes

Stargate 
or PC

Stargate 
or PC

Why not pure cloud?

• “After all, Google runs in the cloud”

• But some applications require interactivity

• HCI-ish things (games, graphics, sound & 
speech, GUIs, etc) - humans start to notice 
10s of ms response time

• Something nice:  Partition so that “heavy 
lifting” happens in cloud, “fast response” 
happens on client



Cyber Foraging

• Ex1:  Speech recognition on a handheld (HCI)

• Ex2:  <N> recognition on a <wimpy dev>

• “Smart glasses” (tell you who you’re talking to)

• Language Translation (DARPA projects galore)

• Augmented Reality

• Ex:  Boeing uses AR goggles for airplane wiring

• Supercomputing - process (reduce) data near source before 
sending across (slow) network

Mobile Computing + 
“The Cloud”

• Computation everywhere - but your 
devices are battery-limited

• Offload the “heavy lifting”

• Two sets of design constraints

Desirable Outcomes

• Battery Lifetime

• Good application quality (bitrate, latency, 
etc.)

• High performance

Big Picture

• Locate a compute server {advertise capabilities & 
resources, etc.}

• Trust the compute server

• Account for resources consumed

• Isolate the client code safely

• Partition the application

• Transfer the state + code

• Collect the results + new state

• And make it easy and transparent in a harsh (lossy, 
unreliable, etc) environment!



Resources

• What resources?  There are many - often platform 
dependent (disk, CPU, memory, energy, network bw, ...)

• (And even that’s an oversimplification - disk seeks?  disk 
bw?  etc.)

• Apps may not really know.

• Spectra:  Dynamically estimate

• Discovery:  XML, SLP, etc.  Similar problems exist, e.g., 
general cloud computing, planetlab, akamai, etc.

• Not clear whether or not this matters - maybe 
overprovision, maybe cloud is starved/heterogenous

“Traditional” 
approaches

• Middleware of various sorts

• Spectra, Odyssey - provide standard 
runtime on remote system

• Virtual machines.

• Some tried with JVMs

• Most use “real” VMs - Xen, VMware, etc.

Sensor Decomposition

• Typically explicit

• TENET -- Click-like configuration

• Constrained functionality on motes 
(record, briefly summarize, report)

• Arbitrary functionality on higher tier

• could do same with TinyAgg, etc.

Middleware

• Modify the source code

• Like RPC decomposition for most apps

• Programmer picks functional 
decomposition

• + runtime (RPCs again) - but runtime 
decides which components to run where



Partitioning

• How much 
communication 
between these 
components?

Display Computation

Storage

Network

• How sensitive to b/w and latency?

Jason Flinn 14

Granularity of Remote Execution

Spectra considers many factors to place objects

! decision overhead not negligible

! targets coarse-grained remote execution

! remote operations typically >100 ms.

coarse-
grained

more opportunities
for remote execution

amortizes overhead
over larger execution unit

fine-
grained

Jason Flinn 15

Source Code Modification?

Can transparently partition applications:

!  use externally visible objects (e.g. Coign)

! If your program is written using nicely 
encapsulated objects

(Coign uses COM objects)

Problems:

!  can!t support legacy applications

!  best partitioning may not be visible

!  lots of objects = expensive computation

!Spectra uses app hints to optimize 
computation (what!s likely to matter)

No source code 
changes?

• Can partition display

• e.g., remote X11, VNC, etc.

• Move entire computation

• Thin client example does exactly this.

• Display latency can be higher (where is 
the surrogate?  What’s your b/w to it?)

• But must be able to execute code...



Execution

• Java VMs?

• Real VMs!  (Kimberley, WASCo, etc).

• Encapsulate entire computation and state 
needed for it

• Send to surrogate

• Run

• And get the data back, please!

Transfer

• State (filesystem, memory, etc.)

• Spectra:  Use Coda (or other DFS)

• Kimberley:  Transfer entire VM

• Key:  For fast response, binaries, system state, etc., must be pre-
place-able at surrogate

• VM caching, coda hoarding, etc.

• ISR & Kimberley approaches:  Chunk-based or delta-encoding.  
ISR maintains full VM state - deltas can be large (100s of MB).  
Kimberley ditches state.

• But, er, I modified data?

Kimberley Persistent 
State

• Question:  Do you snapshot all state, or only 
explicitly saved state?

• ISR did the former

• We do have abstractions for explicitly saved 
state:  files on disk.

• “Export” a disk to the surrogate.  Let it lock it, 
write it, and then copy just the disk back.

• Avoids transferring large amounts of transient/
unimportant state changes.

Trust 1:  Evil Clients

• Don’t let clients goof up the surrogate

• Don’t let clients goof each other up

• Don’t build the perfect botnet1

• bw/computation/anonymity for attacks

1 Sachin Goyal and John Carter, “Safely Harnessing Wide Area Surrogate Computing -or- How to Avoid Building the Perfect Platform for Network Attacks”



Solving Trust 1

• WASCo idea:  Tunnel through the client if surrogate wants to access 
arbitrary nodes

• Assumes client has connectivity...

• Allow access to authorized nodes (other surrogates used by same 
client, etc.)

• Allow external nodes to say “OK to contact me!”

• Plus:  Traffic shaping & Rate Limiting (WASCo, PlanetLab, etc).

• Plus:  “Don’t talk to me!” lists

• Plus:  “No contacting internal nodes” for some sites (CoDeeN policy for 
academic Planetlab sites)

• Plus: Logging, IDS, etc.  Can probably afford to be aggressive about cutting 
off access - surrogate is “just” an optimization

Trust 2:  The 
Infrastructure

• Kimberly example:  viewing medical images on untrusted 
infrastructure.

• 1)  please don’t show my spleen in a restaurant. :)

• 2)  What about access credentials, private data, etc?

Solving Trust 2

• Null hypothesis:  “Trust us!”

• Proxy data access through client

• Still leaves untrusted data on surrogate, 
potentially;  uses more b/w

• Use trusted computing hardware to ensure 
that surrogates execute only client code

• This is kind of easier said than done. :)


