
The Design of an Acquisitional Query Processor For
Sensor Networks ∗

Samuel Madden, Michael J. Franklin, and Joseph M. Hellerstein Wei Hong
{madden,franklin,jmh}@cs.berkeley.edu wei.hong@intel-research.net

UC Berkeley Intel Research, Berkeley

ABSTRACT
We discuss the design of an acquisitional query processor for data col-
lection in sensor networks. Acquisitional issues are those that pertain to
where, when, and how often data is physically acquired (sampled) and
delivered to query processing operators. By focusing on the locations
and costs of acquiring data, we are able to significantly reduce power
consumption over traditional passive systems that assume thea priori
existence of data. We discuss simple extensions to SQL for controlling
data acquisition, and show how acquisitional issues influence query op-
timization, dissemination, and execution. We evaluate these issues in
the context of TinyDB, a distributed query processor for smart sensor
devices, and show how acquisitional techniques can provide significant
reductions in power consumption on our sensor devices.

1. INTRODUCTION
In the past few years, smart sensor devices have matured to the point

that it is now feasible to deploy large, distributed networks of such sen-
sors [42, 23, 37, 8]. Sensor networks are differentiated from other wire-
less, battery-powered environments in that they consist of tens or hun-
dreds of autonomous nodes that operate without human interaction (e.g.
configuration of network routes, recharging of batteries, or tuning of pa-
rameters) for weeks or months at a time. Furthermore, sensor networks
are often embedded into some (possibly remote) physical environment
from which they must monitor and collect data. The long-term, low-
power nature of sensor networks, coupled with their proximity to physi-
cal phenomena, lead to a significantly altered view of software systems
than that of more traditional mobile or distributed environments.

In this paper, we are concerned with query processing in sensor net-
works. Researchers have noted the benefits of a query processor-like in-
terface to sensor networks and the need for sensitivity to limited power
and computational resources [27, 33, 41, 48, 34]. Prior systems, how-
ever, tend to view query processing in sensor networks simply as a
power-constrained version of traditional query processing: given some
set of data, they strive to process that data as energy-efficiently as possi-
ble. Typical strategies include minimizing expensive communication by
applying aggregation and filtering operations inside the sensor network –

∗This work has been supported in part by the National Science Founda-
tion under ITR/IIS grant 0086057, ITR/IIS grant 0208588, ITR/IIS grant
0205647, ITR/SI grant 0122599, and by ITR/IM grant 1187-26172 , as
well as research funds from IBM, Microsoft, and the UC MICRO pro-
gram.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, San Diego, CA
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

strategies that are familiar from push-down techniques from distributed
query processing that emphasize moving queries to data.

In contrast, we presentacquisitional query processing(ACQP), where
we focus on the significant new query processing opportunity that arises
in sensor networks: the fact that smart sensors have control over where,
when, and how often data is physically acquired (i.e.sampled) and de-
livered to query processing operators. By focusing on the locations and
costs of acquiring data, we are able to significantly reduce power con-
sumption compared to traditional passive systems that assume thea pri-
ori existence of data. Acquisitional issues arise at all levels of query
processing: in query optimization, due to the significant costs of sam-
pling sensors; in query dissemination, due to the physical co-location
of sampling and processing; and, most importantly, in query execution,
where choices of when to sample and which samples to process are
made. Of course, techniques proposed in other research on sensor and
power-constrained query processing, such as pushing down predicates
and minimizing communication are also important alongside ACQP and
fit comfortably within its model.

We have designed and implemented an ACQP engine, called TinyDB
(for more information on TinyDB, see [35]), which is a distributed query
processor that runs on each of the nodes in a sensor network. TinyDB
runs on the Berkeley Micamoteplatform, on top of the TinyOS [23] op-
erating system. We chose this platform because the hardware is readily
available from commercial sources [13] and the operating system is rel-
atively mature. TinyDB has many of the features of a traditional query
processor (e.g. the ability to select, join, project, and aggregate data),
but, as we will discuss in this paper, also incorporates a number of other
features designed to minimize power consumption via acquisitional tech-
niques. These techniques, taken in aggregate, can lead to orders of mag-
nitude improvement in power consumptionand increased accuracy of
query results over non-acquisitional systems that do not actively control
when and where data is collected.

We address a number of ACQP-related questions, including:

1. When should samples for a particular query be taken?

2. What sensor nodes have data relevant to a particular query?

3. In what order should samples for this query be taken, and how
should sampling be interleaved with other operations?

4. Is it worth expending computational power or bandwidth to pro-
cess and relay a particular sample?

Of these issues, question (1) is unique to ACQP. The remaining ques-
tions can be answered by adapting techniques that are similar to those
found in traditional query processing. Notions of indexing and opti-
mization, in particular, can be applied to answer questions (2) and (3),
and question (4) bears some similarity to issues that arise in stream pro-
cessing and approximate query answering. We will address each of these
questions, noting the unusual kinds of indices, optimizations, and ap-
proximations that are required in ACQP under the specific constraints
posed by sensor networks.

Figure 1 illustrates the basic architecture that we follow throughout
this paper – queries are submitted at a powered PC (thebase station) ,

parsed, optimized and sent into the sensor network, where they are dis-
seminated and processed, with results flowing back up the routing tree
that was formed as the queries propagated. After a brief introduction to
sensor networks in Section 2, the remainder of the paper discusses each
of these phases of ACQP: Section 3 covers our query language, Section
4 highlights optimization issues in power-sensitive environments, Sec-
tion 5 discusses query dissemination, and finally, Sections 6 discusses
our adaptive, power-sensitive model for query execution and result col-
lection.

SELECT nodeid, light
FROM SENSORS

OPS
NULL

FIELDS
nodeid

light

Query PC
Mote

Result
1 28

2 55

3 48

Result
3 48

Result
2 55

Result
1 28

2 55

3 48

Figure 1: A query and results propagating through the network.

2. SENSOR NETWORK OVERVIEW
We begin with an overview of some recent sensor network deploy-

ments, and then discuss properties of sensors and sensor networks in
general, providing specific numbers from our experience with TinyOS
motes when possible.

In the past several years, the sensor network research community has
developed and engaged in real deployments of these devices, making it
possible to understand the data collection needs specific to the sensor
environment. As an example, consider recent environmental monitoring
deployments on Great Duck Island and James Reserve[37, 8]. In these
scenarios, motes collect light, temperature, humidity, and other environ-
mental properties. On Great Duck Island, off the coast of Maine, sensors
have been placed in the burrows of Storm Petrels, a kind of endangered
sea bird. Scientists plan to use them to monitor burrow occupancy and
the conditions surrounding burrows that are correlated with birds com-
ing or going. Other notable deployments that are underway include a
network for earthquake monitoring [45] and sensors for building infras-
tructure monitoring and control [31].1

Each of these scenarios involves a large number of devices that need
to last as long as possible with little or no human intervention. Placing
new sensors, or replacing or recharging batteries of devices in bird nests,
earthquake test sites, and heating and cooling ducts is time consuming
and expensive. Aside from the obvious advantages that a simple, declar-
ative language provides over hand-coded, embedded C, researchers are
particularly interested in TinyDB’s ability to acquire and deliver desired
data while conserving as much power as possible and satisfying desired
lifetime goals.

2.1 Properties of Sensor Devices
A sensor node is a battery-powered, wireless computer. Typically,

these nodes are physically small (a few cubic centimeters) and extremely
low power (a few tens of milliwatts versus tens of watts for a typical lap-
top computer)2. Power is of utmost importance. If used naively, individ-

1Even in indoor infrastructure monitoring settings, there is great interest
in battery powered devices, as running power wire can cost many dollars
per device.
2Recall that 1 Watt (a unit of power) corresponds to power consumption
of 1 Joule (a unit of energy) per second. We sometimes refer to the

ual sensor nodes will deplete their energy supplies in only a few days.
In contrast, if sensor nodes are very spartan about power consumption,
months or years of lifetime are possible. Mica motes, for example, when
operating at 2% duty cycle (between active and sleep modes) can achieve
lifetimes in the 6 month range on a pair of AA batteries. This duty cycle
limits the active time to 1.2 seconds per minute.

Mica motes have a 4Mhz, 8bit Atmel microprocessor. Their RFM
TR1000 radios run at 40 kbits/second over a single shared CSMA chan-
nel. Radio messages are variable size. Typically about 10 48-byte mes-
sages (the default size in TinyDB) can be delivered per second. Power
consumption tends to be dominated by radio communication. When
powered on, radios consume about as much power as the processor.
However, because communication is so slow, everybit of data transmit-
ted by the radio costs as much energy as executing 1000 CPU instruc-
tions. As an additional feature, motes have an external 32kHz clock that
the TinyOS operating system can synchronize with neighboring motes
+/- 1 ms to ensure that neighbors will be powered up and listening when
they wish to send a message[15].

Power consumption in sensors occurs in four phases, which we il-
lustrate in Figure 2 via an annotated capture of an oscilloscope display
showing current draw (which is proportional to power consumption) on
a Mica mote running TinyDB. In “Snoozing” mode, where the node
spends most of its time, the processor and radio are idle, waiting for
a timer to expire or external event to wake the device. When the de-
vice wakes it enters the “Processing” mode, which consumes an order of
magnitude more power than snooze mode, and where query results are
generated locally. The mote then switches to a “Processing and Receiv-
ing” mode, where results are collected from neighbors over the radio.
Finally, in the “Transmitting” mode, results for the query are delivered
by the local mote – the noisy signal during this period reflects switching
as the receiver goes off and the transmitter comes on and then cycles
back to a receiver-on, transmitter-off state.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 0.5 1 1.5 2 2.5 3

C
ur

re
nt

 (
m

A
)

Time (seconds)

Time v. Current Draw In Different Phases of Query Processing

Transmitting

Processing
 and

 Listening

Processing

Snoozing

Figure 2: Phases of Power Consumption In TinyDB

2.2 Communication in Sensor Networks
Typical communication distances for low power wireless radios such

as those used in Mica motes and Bluetooth devices range from a few
feet to around 100 feet, depending on transmission power and environ-
mental conditions. Such short ranges mean that almost all real deploy-
ments must make use of multi-hop communication, where intermediate
nodes relay information for their peers. On Mica motes, all communi-
cation is broadcast. The operating system provides a software filter so
that messages can be addressed to a particular node, though if neigh-
bors are awake, they can stillsnoopon such messages (at no additional
energy cost since they’ve already transferred the decoded message from
the air.) Nodes receive per-message, link-level acknowledgments indi-
cating whether a message was received by the intended neighbor node.
No end-to-end acknowledgments are provided.

The requirement that sensor networks be low maintenance and easy
to deploy means that communication topologies must be automatically
discovered (i.e.ad-hoc) by the devices rather than fixed at the time of

current load of a sensor, because current is easy to measure directly;
note that power (in Watts) = current (in Amps) * voltage (in Volts), and
that Mica motes run at 3V.

network deployment. Typically, devices keep a short list of neighbors
who they have heard transmit recently, as well as some routing informa-
tion about the connectivity of those neighbors to the rest of the network.
To assist in making intelligent routing decisions, nodes associate a link
quality with each of their neighbors.

We describe the process of disseminating queries and collecting re-
sults in Section 5 below. As a basic primitive in these protocols, we use
a routing treethat allows abasestationat the root of the network to dis-
seminate a query and collect query results. This routing tree is formed
by forwarding a routing request (a query in TinyDB) from every node
in the network: the root sends a request, allchild nodes that hear this
request process it and forward it on to their children, and so on, until the
entire network has heard the request. Each request contains a hop-count,
or level indicating the distance from the broadcaster to the root. To de-
termine their own level, nodes pick aparentnode that is (by definition)
one level closer to the root than they are. This parent will be respon-
sible for forwarding the node’s (and its children’s) query results to the
basestation. We note that it is possible to have several routing trees if
nodes keep track of multiple parents. This can be used to support several
simultaneous queries with different roots. This type of communication
topology is common within the sensor network community [47].

3. ACQUISITIONAL QUERY LANGUAGE
In this section, we introduce our query language for ACQP focusing

on issues related to when and how often samples are acquired.3

3.1 Basic Language Features
Queries in TinyDB, as in SQL, consist of aSELECT-FROM-WHERE

clause supporting selection, join, projection, and aggregation. We also
include explicit support for sampling, windowing, and sub-queries via
materialization points. As is the case in the Cougar and TAG work
[41, 34], we view sensor data as a single table with one column per sen-
sor type. Tuples are appended to this table periodically, at well-defined
sample intervalsthat are a parameter of the query. The period of time
between each sample interval is known as anepoch. As we discuss in
Section 6, epochs provide a convenient mechanism for structuring com-
putation to minimize power consumption. Consider the query:

SELECT nodeid, light, temp
FROM sensors
SAMPLE INTERVAL 1s FOR 10s

This query specifies that each sensor should report its own id, light,
and temperature readings (contained in the virtual tablesensors) once
per second for 10 seconds. Results of this query stream to the root of the
network in an online fashion, via the multi-hop topology, where they
may be logged or output to the user. The output consists of a sequence
of tuples, clustered into 1s time intervals. Each tuple includes a time
stamp corresponding to the time it was produced.

Note that thesensors table is (conceptually) an unbounded, con-
tinuousdata streamof values; as is the case in other streaming and
online systems, certain blocking operations (such as sort and symmet-
ric join) are not allowed over such streams unless a bounded subset of
the stream, orwindow, is specified. Windows in TinyDB are defined as
fixed-size materialization points over the sensor streams. Such materi-
alization points accumulate a small buffer of data that may be used in
other queries. Consider, as an example:

CREATE
STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE INTERVAL 10s)

This statement provides a shared, local (i.e. single-node) location to
store a streaming view of recent data similar to materialization points in

3Our query language includes a number of other unusual features tai-
lored to the sensor network domain, such as the ability to log data for
later offline delivery and the ability to actuate physical hardware in re-
sponse to a query, which we will not discuss here.

other streaming systems like Aurora or STREAM [7, 39], or materialized
views in conventional databases. Joins are allowed between two storage
points on the same node, or between a storage point and thesensors
relation, in which casesensors is used as the outer relation in a nested-
loops join. That is, when asensors tuple arrives, it is joined with
tuples in the storage point at its time of arrival. This is effectively a
landmark query[19] common in streaming systems. Consider, as an
example:

SELECT COUNT(*)
FROM sensors AS s, recentLight AS rl
WHERE rl.nodeid = s.nodeid
AND s.light < rl.light
SAMPLE INTERVAL 10s

This query outputs a stream of counts indicating the number of recent
light readings (from 0 to 8 samples in the past) that were brighter than the
current reading. In the event that a storage point and an outer query de-
liver data at different rates, a simple rate matching construct is provided
that allows interpolation between successive samples (if the outer query
is faster), or specification of aggregation function to combine multiple
rows (if the inner query is faster.) Space prevents a detailed description
of this mechanism here.

TinyDB also includes support for grouped aggregation queries. Ag-
gregation has the attractive property that it reduces the quantity of data
that must be transmitted through the network; other sensor network re-
search has noted that aggregation is perhaps the most common opera-
tion in the domain ([34, 27, 48]). TinyDB includes a mechanism for
user-defined aggregates and a metadata management system that sup-
ports optimizations over them, which we discuss in Section 4.1.

In addition to aggregates over values produced during the same sam-
ple interval (for an example, as in theCOUNTquery above), users want
to be able to perform temporal operations. For example, in a building
monitoring system for conference rooms, users may detect occupancy
by measuring maximum sound volume over time and reporting that vol-
ume periodically; for example, the query:

SELECT WINAVG(volume, 30s, 5s)
FROM sensors
SAMPLE INTERVAL 1s

will report the average volume over the last 30 seconds once every
5 seconds, sampling once per second. This is an example of asliding-
windowquery common in many streaming systems [39, 19].

When a query is issued in TinyDB, it is assigned an identifier (id) that
is returned to the issuer. This identifier can be used to explicitly stop a
query via a “STOP QUERY id” command. Alternatively, queries can
be limited to run for a specific time period via aFORclause (shown
above,) or can include a stopping condition as an event (see below.)

3.2 Event-Based Queries
As a variation on the continuous, polling based mechanisms for data

acquisition, TinyDB supportseventsas a mechanism for initiating data
collection. Events in TinyDB are generated explicitly, either by another
query or the operating system (in which case the code that generates the
event must have been compiled into the sensor node.) For example, the
query:

ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2 s FOR 30 s

could be used to report the average light and temperature level at sen-
sors near a bird nest where a bird has just been detected. Every time
a bird-detect event occurs, the query is issued from the detecting
node and the average light and temperature are collected from nearby
nodes once every 2 seconds for 30 seconds.

Such events are central in ACQP, as they allow the system to be
dormant until some external conditions occurs, instead of continually
polling or blocking on an iterator waiting for some data to arrive. Since
most microprocessors include external interrupt lines than can wake a
sleeping device to begin processing, events can provide significant re-

ductions in power consumption, shown in Figure 3.
This figure shows an oscilloscope plot of current draw from a device

running an event-based query triggered by toggling a switch connected
to an external interrupt line that causes the device to wake from sleep.
Compare this to plot at the bottom of Figure 3, which shows an event-
based query triggered by a second query that polls for some condition
to be true. Obviously, the situation in the top plot is vastly preferable,
as much less energy is spent polling. TinyDB supports such externally
triggered queries via events, and such support is integral to its ability to
provide low power processing.

 0
 5

 10
 15
 20
 25
 30
 35

C
ur

re
nt

 (
m

A
)

Time v. Current Draw

Event Based Trigger

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

C
ur

re
nt

 (
m

A
)

Time (s)

Polling Based Trigger

Figure 3: External interrupt driven event-based query (top) vs.
Polling driven event-based query (bottom).

Events can also serve as stopping conditions for queries. Ap-
pending a clause of the formSTOP ON EVENT(param) WHERE
cond(param) will stop a continuous query when the specified event
arrives and the condition holds.

In the current implementation of TinyDB, events are only signalled
on the local node – we do not currently provide a fully distributed event
propagation system. Note, however, that queries started in response to
a local event may be disseminated to other nodes (as in the example
above).

3.3 Lifetime-Based Queries
In lieu of a explicitSAMPLE INTERVALclause, users may request

a specific query lifetime via aQUERY LIFETIME <x> clause, where
<x> is a duration in days, weeks, or months. Specifying lifetime is a
much more intuitive way for users to reason about power consumption.
Especially in environmental monitoring scenarios, scientific users are
not particularly concerned with small adjustments to the sample rate, nor
do they understand how such adjustments influence power consumption.
Such users, however, are very concerned with the lifetime of the network
executing the queries. Consider the query:

SELECT nodeid, accel
FROM sensors
LIFETIME 30 days

This query specifies that the network should run for at least 30 days,
sampling light and acceleration sensors at a rate that is as quick as pos-
sible and still satisfies this goal.

To satisfy a lifetime clause, TinyDB performs lifetime estimation. The
goal of lifetime estimation is to compute a sampling and transmission
rate given a number of Joules of energy remaining. We begin by consid-
ering how a single node at the root of the sensor network can compute
these rates, and then discuss how other nodes coordinate with the root
to compute their delivery rates. For now, we also assume that sampling
and delivery rates are the same. On a single node, these rates can be
computed via a simple cost-based formula, taking into account the costs
of accessing sensors, selectivities of operators, expected communication
rates and current battery voltage. We show below a lifetime computation
for simple queries of the form:

Parameter Description Units
l Query lifetime goal hours

crem Remaining Battery Capacity Joules
En Energy to sample sensorn Joules

Etrans Energy to transmit a single sampleJoules
Ercv Energy to receive a message Joules

σ Selectivity of selection predicate
C # of children routing through node

Table 1: Parameters used in lifetime estimation

SELECT a1, ... , anumSensors
FROM sensors
WHEREp
LIFETIME l hours

To simplify the equations in this example, we present a query with a
single selection predicate that is applied after attributes have been ac-
quired. The ordering of multiple predicates and interleaving of sam-
pling and selection are discussed in detail in Section 4. Table 1 shows
the parameters we use in this computation (we do not show processor
costs since they will be negligible for the simple selection predicates we
support, and have been subsumed into costs of sampling and delivering
results.)

The first step is to determine the available powerph per hour:
ph = crem / l
We then need to compute the energy to collect and transmit one sam-

ple,es, including the costs to forward data for our children:
es = (

∑numSensors
s=0 Es) + (Ercv + Etrans)× C + Etrans × σ

Finally, we can compute the maximum transmission rate,T (in sam-
ples per hour), as :

T = ph/es

To illustrate the effectiveness of this simple estimation, we in-
serted a lifetime-based query (SELECT voltage, light FROM
sensors LIFETIME x) into a sensor (with a fresh pair of AA bat-
teries) and asked it to run for 24 weeks, which resulted in a sample rate
of 15.2 seconds per sample. We measured the remaining voltage on the
device 9 times over 12 days. The first two readings were outside the
range of the voltage detector on the mote (e.g. they read “1024” – the
maximum value) so are not shown. Based on experiments with our test
mote connected to a power supply, we expect it to stop functioning when
its voltage reaches 350. Figure 4 shows the measured lifetime at each
point in time, with a linear fit of the data, versus the “expected voltage”
which was computed using the cost model above. The resulting linear fit
of voltage is quite close to the expected voltage. The linear fit reaches
V=350 about 5 days after the expected voltage line.

Given that it is possible to estimate lifetime on a single node, we now
discuss coordinating the transmission rate across all nodes in the routing
tree. Since sensors need to sleep between relaying of samples, it is im-
portant that senders and receivers synchronize their wake cycles. To do
this, we allow nodes to transmit only when their parents in the routing
tree are awake and listening (which is usually the same time they are
transmitting.) By transitivity, this limits the maximum rate of the entire
network to the transmission rate of the root of the routing tree. If a node
must transmit slower than the root to meet the lifetime clause, it may
transmit at an integral divisor of the root’s rate.4 To propagate this rate
through the network, each parent node (including the root) includes its
transmission rate in queries that it forwards to its children.

The previous analysis left the user with no control over the sample
rate, which could be a problem because some applications require the
ability to monitor physical phenomena at a particular granularity. To
remedy this, we allow an optionalMIN SAMPLE RATEr clause to be
supplied. If the computed sample rate for the specified lifetime is greater
than this rate, sampling proceeds at the computed rate (since the alterna-
tive is expressible by replacing theLIFETIME clause with aSAMPLE
INTERVAL clause.) Otherwise, sampling is fixed at a rate ofr and the

4One possible optimization, which we do not explore, would involve
selecting or reassigning the root to maximize transmission rate.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000 3500 4000

B
at

te
ry

 V
ol

ta
ge

 (
A

D
C

 U
ni

ts
)

Time (in Hours)

Predicted Voltage vs. Actual Voltage (Lifetime Goal = 24 Wks)

Insufficient
Voltage
to Operate
(V=350)

Linear Fit (r = -0.92)
Actual Data

Predicted Lifetime

 950
 960
 970
 980
 990

 1000
 1010
 1020
 1030

 0 50 100 150 200 250 300

Insufficient
Voltage
to Operate
(V=350)

Figure 4: Predicted versus actual lifetime for a requested lifetime of
24 weeks (168 days)

prior computation for transmission rate is done assuming a different rate
for sampling and transmission. To provide the requested lifetime and
sampling rate, the system may not be able to actually transmit all of
the readings – it may be forced to combine (aggregate) or discard some
samples; we discuss this situation (as well as other contexts where it may
arise) in Section 6.2.

Finally, we note that since estimation of power consumption was done
using simple selectivity estimation as well as cost-constants that can vary
from node-to-node (see Section 4.1) and parameters that vary over time
(such as number of children,C), we need to periodically re-estimate
power consumption. Section 6.3.1 discusses this runtime re-estimation
in more detail.

4. POWER-AWARE OPTIMIZATION
Given our query language for ACQP environments, with special fea-

tures for event-based processing and lifetime queries, we now turn to
query processing issues. We begin with a discussion of optimization,
and then cover query dissemination and execution.

Queries in TinyDB are parsed at the basestation and disseminated in a
simple binary format into the sensor network, where they are instantiated
and executed. Before queries are disseminated, the basestation performs
a simple query optimization phase to choose the correct ordering of sam-
pling, selections, and joins.

We use a simple cost-based optimizer to choose a query plan that will
yield the lowest overall power consumption. Optimizing for power al-
lows us to subsume issues of processing cost and radio communication,
which both contribute to power consumption and so will be taken into
account. One of the most interesting aspects of power-based optimiza-
tion, and a key theme of acquisitional query processing, is that the cost
of a particular plan is often dominated by the cost of sampling the physi-
cal sensors and transmitting query results rather than the cost of applying
individual operators (which are, most frequently, very simple.) We begin
by looking at the types of metadata stored by the optimizer. Our opti-
mizer focuses on ordering joins, selections, and sampling operations that
run on individual nodes.

4.1 Metadata Management
Each node in TinyDB maintains a catalog of metadata that describes

its local attributes, events, and user-defined functions. This metadata is
periodically copied to the root of the network for use by the optimizer.
Metadata is registered with the system via static linking done at compile
time using the TinyOS C-like programming language. Events and at-
tributes pertaining to various operating system and TinyDB components
are made available to queries by declaring them in an interface file and
providing a small handler function. For example, in order to expose net-
work topology to the query processor, the TinyOSNetwork component
defines the attributeparent of type integer and registers a handler that
returns the id of the node’s parent in the current routing tree.

Event metadata consists of a name, a signature, and a frequency esti-
mate that is used in query optimization (see Section 4.3 below.) User-
defined predicates also have a name and a signature, along with a selec-
tivity estimate which is provided by the author of the function.

Metadata Description
Power Cost to sample this attribute (in J)

Sample Time Time to sample this attribute (in s)
Constant? Is this attribute constant-valued (e.g. id)?

Rate of Change How fast the attribute changes (units/s)
Range Dynamic range of attribute values (pair of units)

Table 2: Metadata fields kept with each attribute

Table 2 summarizes the metadata associated with each attribute, along
with a brief description. Attribute metadata is used primarily in two
contexts: information about the cost, time to fetch, and range of an at-
tribute is used in query optimization, while information about the se-
mantic properties of attributes is used in query dissemination and result
processing. Table 3 gives examples of power and sample time values
for some actual sensors – notice that the power consumption and time to
sample can differ across sensors by several orders of magnitude.

Sensor Power Sample time Sample Energy
mW ms (VI * t), uJ

Light, Temp .9 .1 [5] 90
Magnetometer 15 [24] .1 [5] 1500
Accelerometer 1.8 [3] .1 [5] 180

Organic Byproducts5 15 > 1000 > 1.5× 107

Table 3: Energy costs of accessing various common sensors

The catalog also contains metadata about TinyDB’s extensible aggre-
gate system. As with other extensible database systems [44] the catalog
includes names of aggregates and pointers to their code. Each aggregate
consists of a triplet of functions, that initialize, merge, and update the fi-
nal value of partial aggregate records as they flow through the system. As
in the TAG[34] paper, aggregate authors must provide information about
functional properties. In TinyDB, we currently require two: whether the
aggregate ismonotonicand whether it isexemplaryor summary. COUNT
is a monotonic aggregate as its value can only get larger as more values
are aggregated.MIN is an exemplary aggregate, as it returns a single
value from the set of aggregate values, whileAVERAGEis a summary
aggregate because it computes some property over the entire set of val-
ues.

TinyDB also stores metadata information about the costs of process-
ing and delivering data, which is used in query-lifetime estimation. The
costs of these phases in TinyDB were shown in Figure 2 – they range
from 2 mA while sleeping, to over 20 mA while transmitting and pro-
cessing. Note that actual costs vary from mote to mote – for example,
with a small sample of 5 motes (using the same batteries), we found that
the average current with processor active varied from 13.9 to 17.6 mA
(with the average being 15.66 mA).

4.2 Ordering of Sampling And Predicates
Having described the metadata maintained by TinyDB, we now de-

scribe how it is used in query optimization.
As Table 3 shows, sampling is often an expensive operation in terms of

power. However, a sample from a sensors must be taken to evaluate any
predicate over the attributesensors.s . If a predicate discards a tuple
of thesensors table, then subsequent predicates need not examine the
tuple – and hence the expense of sampling any attributes referenced in
those subsequent predicates can be avoided. Thus these predicates are
“expensive”, and need to be ordered carefully. The predicate ordering
problem here is somewhat different than than in the earlier literature (e.g.
[21]) because (a) an attribute may be referenced in multiple predicates,
and (b) expensive predicates are only on a single table,sensors . The
first point introduces some subtlety, as it is not clear which predicate

5Scientists are particularly interested in monitoring the micro-climates
created by plants and their biological processes. See [14, 8]. An example
of such a sensor is Figaro Inc’sH2S sensor [16].

should be “charged” the cost of the sample.
To model this issue, we treat the sampling of a sensort as a sep-

arate “job” τ to be scheduled along with the predicates. Hence a set
of predicatesP = {p1, . . . , pm} is rewritten as a set of operations
S = {s1, . . . , sn}, whereP ⊂ S, andS − P = {τ1, . . . , τn−m}
contains one sampling operator for each distinct attribute referenced in
P . The selectivity of sampling operators is always 1. The selectivity of
selection operators is derived by assuming that attributes have a uniform
distribution over their range (which is available in the catalog.) Relaxing
this assumption by, for example, storing histograms or time-dependent
functions per-attribute remains an area of future work. The cost of an op-
erator (predicate or sample) can be determined by consulting the meta-
data, as described in the previous section. In the cases we discuss here,
selections and joins are essentially “free” compared to sampling, but this
is not a requirement of our technique.

We also introduce a partial order onS, whereτi must precedepj if
pj references the attribute sampled byτi. The combination of sampling
operators and the dependency of predicates on samples captures the costs
of sampling operators and the sharing of operators across predicates.

The partial order induced onS forms a graph with edges from sam-
pling operators to predicates. This is a simpleseries-parallelgraph. An
optimal ordering of jobs with series-parallel constraints is a topic treated
in the Operations Research literature that inspired earlier optimization
work [25, 30, 21]; Monma and Sidney present theSeries-Parallel Algo-
rithm Using Parallel Chains[38], which gives an optimal ordering of the
jobs inO(|S| log |S|) time.

Due to space constraints, we have glossed over the details of han-
dling the expensive nature of sampling in theSELECT, GROUP BY, and
HAVINGclauses. The basic idea is to add them toS with appropriate
selectivities, costs, and ordering constraints.

As an example of this process, consider the query:
SELECT accel,mag

FROM sensors
WHERE accel > c1
AND mag > c2
SAMPLE INTERVAL 1s

The order of magnitude difference in per-sample costs for the ac-
celerometer and magnetometer suggests that the power costs of plans
with different orders of sampling and selection will vary substantially.
We consider three possible plans: in the first, the magnetometer and ac-
celerometer are sampled before either selection is applied. In the second,
the magnetometer is sampled and the selection over its reading (which
we callSmag) is applied before the accelerometer is sampled or filtered.
In the third plan, the accelerometer is sampled first and its selection
(Saccel) is applied before the magnetometer is sampled. We compared
the cost of these three plans, and, as expected, found that the first was al-
ways more expensive than the other two. More interestingly, the second
can be an order of magnitude more expensive than third, whenSaccel

is much more selective thanSmag. Conversely, whenSmag is highly
selective, it can be cheaper to sample the magnetometer first, although
only by a small factor (.8). The order of magnitude difference in relative
costs represents an absolute difference of 1320 uJ per sample, or 3.96
mW at a (slow) sample rate of one sample per second – putting the ad-
ditional power consumption from sampling in the incorrect order on par
with the power costs of running the radio or CPU for an entire second.

Similarly, we note that there are certain kinds of aggregate functions
where the same kind of interleaving of sampling and processing can also
lead to a performance savings. Consider the query:

SELECT MAX(light)
FROM sensors
WHERE mag >x
SAMPLE INTERVAL 8s

In this query, the maximum light reading will be computed over all the
nodes in the network whose magentometers read greater thanx . Inter-
estingly, it turns out that, unless themag > x predicate isveryselective,
it will be cheaper to evaluate this query by checking to see if each new
light reading is greater than the previous maximum and then applying

the selection predicate overmag, rather than first samplingmag. This
sort of reordering, which we callexemplary aggregate pushdowncan be
applied to any exemplary aggregate (e.g.MIN, MAX). Unfortunately, the
selectivities of exemplary aggregates are very hard to capture, especially
for window aggregates. We reserve the problem of ordering exemplary
aggregates in query optimization for future work.

4.3 Event Query Batching to Conserve Power
As a second example of the benefit of power-aware optimization, we

consider the optimization of the query:
ON EVENTe(nodeid)

SELECT a1
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVALd FOR k

This query will cause an instance of the internal query (SELECT
...) to be startedevery timethe evente occurs. The internal query
samples results everyd seconds for a duration ofk seconds, at which
point it stops running.

Note that, by the semantics formulated above, it is possible for mul-
tiple instances of the internal query to be running at the same time. If
enough such queries are running simultaneously, the benefit of event-
based queries (e.g. not having to poll for results) will be outweighed
by the fact that each instance of the query consumes significant energy
sampling and delivering (independent) results. To alleviate the burden
of running multiple copies of the same identical query , we employ a
multi-query optimization technique based on rewriting. To do this, we
convert external events (of typee) into a stream of events, and rewrite
the entire set of independent internal queries as a sliding window join
betweenevents andsensors , with a window size ofk seconds on
the event stream, and no window on the sensor stream. For example:

SELECT s.a1
FROM sensors AS s, events AS e
WHERE s.nodeid = e.nodeid
AND e.type = e
AND s.time - e.time <= k AND s.time > e.time
SAMPLE INTERVALd

We execute this query by treating it as a join between a materialization
point of sizek onevents and thesensors stream. When anevent
tuple arrives, it is added to the buffer of events. When asensor tuple
s arrives, events older thank seconds are dropped from the buffer ands
is joined with the remaining events.

The advantage of this approach is that only one query runs at a time
no matter how frequently the events of typee are triggered. This of-
fers a large potential savings in sampling and transmission cost. At first
it might seem as though requiring the sensors to be sampled everyd
seconds irrespective of the contents of the event buffer would be pro-
hibitively expensive. However, the check to see if the the event buffer
is empty can be pushed before the sampling of the sensors, and can be
done relatively quickly.

Figure 5 shows the power tradeoff for event-based queries that have
and have not been rewritten. Rewritten queries are labeled asstream
join and non-rewritten queries asasynch events. We measure the cost in
mW of the two approaches using a numerical model of power costs for
idling, sampling and processing (including the cost to check if the event
queue is non-empty in the event-join case), but excluding transmission
costs to avoid complications of modeling differences in cardinalities be-
tween the two approaches. We expect that the asynchronous approach
will generally transmit many more results. We varied the sample rate
and duration of the inner query, and the frequency of events. We chose
the specific parameters in this plot to demonstrate query optimization
tradeoffs; for much faster or slower event rates, one approach tends to
always be preferable.

For very low event rates (fewer than 1 per second), the asynchronous
events approach is sometimes preferable due to the extra overhead of
empty-checks on the event queue in the stream-join case. However, for
faster event rates, the power cost of this approach increases rapidly as
independent samples are acquired for each event that few seconds. In-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ow

er
 C

on
su

m
pt

io
n(

m
W

)

Events Per Second

Event Rate v. Power Consumption
(8 Samples/S)

 Stream Join
 Async Events, Event Dur = 1s
 Async Events, Event Dur = 3s
 Async Events, Event Dur = 5s

Figure 5: The cost of processing event-based queries as asyn-
chronous events versus joins.

creasing the duration of the inner query increases the cost of the asyn-
chronous approach as more queries will be running simultaneously. The
maximum absolute difference (of about .8mW) is roughly comparable to
1/4 the power cost of the CPU or radio.

Finally, we note that there is a subtle semantic change introduced by
this rewriting. The initial formulation of the query caused samples in
each of the internal queries to be produced relative to the time that the
event fired: for example, if evente1 fired at timet, samples would appear
at timet + d, t + 2d, If a later evente2 fired at timet + i, it would
produce a different set of samples at timet + i + d, t + i +2d, Thus,
unlessi were equal tod (i.e. the events werein phase), samples for the
two queries would be offset from each other by up tod seconds. In the
rewritten version of the query, there is only one stream of sensor tuples
which is shared by all events.

In many cases, users may not care that tuples are out of phase with
events. In some situations, however, phase may be very important. In
such situations, one way the system could improve the phase accuracy
of samples while still rewriting multiple event queries into a single join
is via oversampling, or acquiring some number of (additional) samples
everyd seconds. The increased phase accuracy of oversampling comes
at an increased cost of acquiring additional samples (which may still be
less than running multiple queries simultaneously.) For now, we simply
allow the user to specify that a query must be phase-aligned by specify-
ing ON ALIGNED EVENTin the event clause.

Thus, we have shown that there are several interesting optimization
issues in ACQP systems; first, the system must properly order sampling,
selection, and aggregation to be truly low power. Second, for frequent
event-based queries, rewriting them as a join between an event stream
and thesensors stream can significantly reduce the rate at which a
sensor must acquire samples.

5. POWER SENSITIVE DISSEMINATION AND
ROUTING

After the query has been optimized, it is disseminated into the net-
work; dissemination begins with a broadcast of the query from the root of
the network. As each sensor hears the query, it must decide if the query
applies locally and/or needs to be broadcast to its children in the routing
tree. We say a queryq appliesto a noden if there is a non-zero probabil-
ity that n will produce results forq. Deciding where a particular query
should run is an important ACQP-related decision. Although such deci-
sions occur in other distributed query processing environments, the costs
of incorrectly initiating queries in ACQP environments like TinyDB can
be unusually high, as we will show.

If a query does not apply at a particular node, and the node does not
have any children for which the query applies, then the entire subtree
rooted at that node can be excluded from the query, saving the costs
of disseminating, executing, and forwarding results for the query across
several nodes, significantly extending the node’s lifetime.

Given the potential benefits of limiting the scope of queries, the chal-

lenge is to determine when a node or its children need not participate
in a particular query. One common situation arises with constant-valued
attributes (e.g. nodeid or location in a fixed-location network) with a se-
lection predicate that indicates the node need not participate. Similarly,
if a node knows that none of its children will ever satisfy the value of
some selection predicate, say because they have constant attribute val-
ues outside the predicate’s range, it need not forward the query down
the routing tree. To maintain information about child attribute values ,
we propose the use of asemantic routing tree(SRT). We describe the
properties of SRTs in the next section, and briefly outline how they are
created and maintained.

5.1 Semantic Routing Trees
An SRT is a routing tree (similar to the tree discussed in Section 2.2

above) designed to allow each node to efficiently determine if any of
the nodes below it will need to participate in a given query over some
constant attributeA. Traditionally, in sensor networks, routing tree con-
struction is done by having nodes pick a parent with the most reliable
connection to the root (highestlink quality.) With SRTs, we argue that
the choice of parent should include some consideration of semantic prop-
erties as well. In general, SRTs are most applicable in situations in which
there are several parents of comparable link quality. A link-quality-based
parent selection algorithm, such as the one described in [47], should be
used in conjunction with the SRT to prefilter the set of parents made
available to the SRT.

Conceptually, an SRT is an index overA that can be used to locate
nodes that have data relevant to the query. Unlike traditional indices,
however, the SRT is an overlay on the network. Each node stores a single
unidimensional interval representing the range ofA values beneath each
of its children. 6 When a queryq with a predicate overA arrives at a
noden, n checks to see if any child’s value ofA overlaps the query range
of A in q. If so, it prepares to receive results and forwards the query. If
no child overlaps, the query is not forwarded. Also, if the query also
applies locally (whether or not it also applies to any children)n begins
executing the query itself. If the query does not apply atn or at any of
its children, it is simply forgotten.

Building an SRT is a two phase process: first theSRT build requestis
flooded (re-transmitted by every mote until all motes have heard the re-
quest) down the network. This request includes the name of the attribute
A over which the tree should be built. As a request floods down the net-
work, a noden may have several possible choices of parent, since, in
general, many nodes in radio range may be closer to the root. Ifn has
children, it forwards the request on to them and waits until they reply.
If n has no children, it chooses a nodep from available parents to be its
parent, and then reports the value ofA to p in a parent selection mes-
sage. If n doeshave children, it records the value ofA along with the
child’s id. When it has heard from all of its children, it chooses a parent
and sends a selection message indicating the range of values ofA which
it and its descendents cover. The parent records this interval with the
id of the child node and proceeds to choose its own parent in the same
manner, until the root has heard from all of its children.

Figure 6 shows an SRT over the latitude. The query arrives at the root,
is forwarded down the tree, and then only the gray nodes are required to
participate in the query (note that node 3 must forward results for node
4, despite the fact that its own location precludes it from participation.)

5.2 Maintaining SRTs
Even though SRTs are limited to constant attributes, some SRT main-

tenance must occur. In particular, new nodes can appear, link qualities
can change, and existing nodes can fail.

Node appearance and link quality change can both require a node to
switch parents. To do this, it sends a parent selection message to its new
parent,n. If this message changes the range ofn’s interval, it notifies its

6A natural extension to SRTs would be to store multiple intervals at each
node.

X

Y
0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

12

QUERY
SELECT light
WHERE x > 3

AND x < 7

1

2 3

4 5
SRT(x)
Location : (1,7)

Location : (4,12)
SRT(x)
1: [1,1]
3: [5,10]

Location : (8,7)
SRT(x)
4: [5,5]
5: [10,10]

Location : (5,3)
SRT(x)

Location : (10,3)
SRT(x)

Figure 6: A semantic routing tree in use for a query. Gray arrows
indicate flow of the query down the tree, gray nodes must produce
or forward results in the query.

parent; in this way, updates can propagate to the root of the tree.
To handle the disappearance of a child node, parents associate anac-

tive query idand last epochwith every child in the SRT (recall that an
epoch is the period of time between successive samples.) When a parent
p forwards a queryq to a childc, it setsc’s active query id to the id ofq
and sets its last epoch entry to 0. Every timep forwards or aggregates a
result forq from c, it updatesc’s last epoch with the epoch on which the
result was received. Ifp does not hearc for some number of epochst,
it assumesc has moved away, and removes its SRT entry. Then,p sends
a request asking its remaining children retransmit their ranges. It uses
this information to construct a new interval. If this new interval differs
in size from the previous interval,p sends a parent selection message up
the routing tree to reflect this change.

Finally, we note that, by using these maintenance rules proposed, it is
possible to support SRTs over non-constant attributes, although if those
attributes change quickly, the cost of propagating changes in child inter-
vals could be prohibitive.

5.3 Evaluation of Benefit of SRTs
The benefit that an SRT provides is dependent on the quality of the

clustering of children beneath parents. If the descendents of some node
n are clustered around the value of the index attribute atn, then a query
that applies ton will likely also apply to its descendents. This can be
expected for geographic attributes, for example, since network topology
is correlated with geography.

We study three policies for SRT parent selection. In the first,random
approach, each node picks a random parent from the nodes with which
it can communication reliably. In the second,closest-parentapproach,
each parent reports the value of its index attribute with the SRT-build
request, and children pick the parent whose attribute value is closest to
their own. In theclusteredapproach, nodes select a parent as in the
closest-parent approach, except, if a node hears a sibling node send a
parent selection message, itsnoopson the message to determine its sib-
lings parent and value. It then picks its own parent (which could be the
same as one of its siblings) to minimize the spread of attribute values
underneath all of its available parents.

We studied these policies in a simple simulation environment – nodes
were arranged on annxn grid and were asked to choose a constant at-
tribute value from some distribution (which we varied between exper-
iments.) We used a perfect (lossless) connectivity model where each
node could talk to its immediate neighbors in the grid (so routing trees
weren nodes deep), and each node had 8 neighbors (with 3 choices of
parent, on average.) We compared the total number of nodes involved in
range queries of different sizes for the three SRT parent selection poli-
cies to thebest-caseapproach and theno SRTapproach. Thebest-case
approach would only result if exactly those nodes that overlapped the
range predicate were activated, which is not possible in our topologies
but provides a convenient lower bound. In theno SRTapproach, all
nodes participate in each query.

We experimented with a number of sensor value distributions; we re-
port on two here. In therandomdistribution, each constant attribute

value was randomly and uniformly selected from the interval [0,1000].
In the geographicdistribution, (one-dimensional) sensor values were
computed based on a function of sensor’s x and y position in the grid,
such that a sensor’s value tended to be highly correlated to the values of
its neighbors.

Figure 7 shows the number of nodes which participate in queries over
variably-sized query intervals (where the interval size is shown on the
X axis) of the attribute space in a 20x20 grid. The interval for queries
was randomly selected from the uniform distribution. Each point in the
graph was obtained by averaging over five trials for each of the three
parent selection policies in each of the sensor distributions (for a total of
30 experiments). In each experiment, an SRT was constructed according
to the appropriate policy and sensor value distribution. Then, for each
interval size, the average number of nodes participating in 100 randomly
constructed queries of the appropriate size was measured.

For both distributions, the clustered approach was superior to other
SRT algorithms, beating the random approach by about 25% and the
closest parent approach by about 10% on average. With the geographic
distribution, the performance of the clustered approach is close to opti-
mal: for most ranges, all of the nodes in the range tend to be co-located,
so few intermediate nodes are required to relay information for queries
in which they themselves are not participating. This simulation is admit-
tedly optimistic, since geography and topology are perfectly correlated
in our experiment. Real sensor network deployments show significant
but not perfect correlation [17].

It is a bit surprising that, even for a random distribution of sensor val-
ues, the closest-parent and clustered approaches are substantially better
than the random-parent approach. The reason for this is that these tech-
niques reduce the spread of sensor values beneath parents, thereby re-
ducing the probability that a randomly selected range query will require
a particular parent to participate.

As the previous results show, the benefit of using an SRT can be sub-
stantial. There are, however, maintenance and construction costs associ-
ated with SRTs; as discussed above. Construction costs are comparable
to those in conventional sensor networks (which also have a routing tree),
but slightly higher due to the fact that parent selection messages are ex-
plicitly sent, whereas parents do not always require confirmation from
their children in other sensor network environments.

5.4 SRT Summary
SRTs provide an efficient mechanism for disseminating queries and

collecting query results for queries over constant attributes. For at-
tributes that are highly correlated amongst neighbors in the routing tree
(e.g. location), SRTs can reduce the number of nodes that must dissem-
inate queries and forward the continuous stream of results from children
by nearly an order of magnitude.

6. PROCESSING QUERIES
Once queries have been disseminated and optimized, the query pro-

cessor begins executing them. Query execution is straightforward, so we
describe it only briefly. The remainder of the section is devoted to the
ACQP-related issues of prioritizing results and adapting sampling and
delivery rates. We present simple schemes for prioritizing data in se-
lection queries, briefly discuss prioritizing data in aggregation queries,
and then turn to adaptation. We discuss two situations in which adapta-
tion is necessary: when the radio is highly contented and when power
consumption is more rapid than expected.

6.1 Query Execution
Query execution consists of a simple sequence of operations at each

node during every epoch: first, nodes sleep for most of an epoch; then
they wake, sample sensors and apply operators to data generated locally
and received from neighbors, and then deliver results to their parent. We
(briefly) describe ACQP-relevant issues in each of these phases.

Nodes sleep for as much of each epoch as possible to minimize power

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 N

od
es

 In
vo

lv
ed

 In
 Q

ue
ry

Query Size as Percent of Value Range

Query Range v. Nodes in Query (Random Dist)

No SRT
Random Parent
Closest Parent

Clustered
Best Case

(a)Random Distribution

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 N

od
es

 In
vo

lv
ed

 In
 Q

ue
ry

Query Size as Percent of Value Range

Query Range v. Nodes in Query (Geographic Dist)

No SRT
Random Parent
Closest Parent

Clustered
Best Case

(b)Geographic Distribution
Figure 7: Number of nodes participating in range queries of different sizes for different parent selection policies in a semantic routing tree
(20x20 grid, 400 sensors, each point average of 500 queries of the appropriate size.)

consumption. They wake up only to sample sensors and relay and de-
liver results. Because nodes are time synchronized, they all sleep and
wake up at the same time, ensuring that results will not be lost as a re-
sult of a parent sleeping when a child tries to propagate a message. The
amount of time,tawake that a sensor node must be awake to success-
fully accomplish the latter three steps above is largely dependent on the
number of other nodes transmitting in the same radio cell, since only a
small number of messages per second can be transmitted over the single
shared radio channel.

TinyDB uses a simple algorithm to scaletawake based on the neigh-
borhood size, the details of which we omit. Note, however, that there are
situations in which a node will be forced to drop or combine results as a
result of the eithertawake or the sample interval being too short to per-
form all needed computation and communication. We discuss policies
for choosing how to aggregate data and which results to drop in the next
subsection.

Once a node is awake, it begins sampling and filtering results accord-
ing to the plan provided by the optimizer. Samples are taken at the ap-
propriate (current) sample rate for the query, based on lifetime compu-
tations and information about radio contention and power consumption
(see Section 6.3 for more information on how TinyDB adapts sampling
in response to variations during execution.) Filters are applied and re-
sults are routed to join and aggregation operators further up the query
plan.

For aggregation queries across nodes, we adopt the approach of TAG
[34], although TAG does not support temporal aggregates but only ag-
gregates of values produced in the same epoch.

The basic approach used in both TAG and TinyDB is to compute a
partial state recordat each intermediate node in the routing topology.
This record represents the partially evaluated aggregation of local sen-
sor values with sensor values received from child nodes as they flow up
the routing tree. The benefit of doing this is that a great deal less data
is transmitted than when all sensors’ values are sent to the root of the
network to be aggregated together.

Finally, we note that in event-based queries, theON EVENTclause
must be handled specially. When an event fires on a node, that node
disseminates the query, specifying itself as the query root. This node
collects query results, and delivers them to the basestation or a local
materialization point.

6.2 Prioritizing Data Delivery
Once results have been sampled and all local operators have been ap-

plied, they are enqueued onto a radio queue for delivery to the node’s
parent. This queue contains both tuples from the local node as well
as tuples that are being forwarded on behalf of other nodes in the net-
work. When network contention and data rates are low, this queue can be
drained faster than results arrive. However, because the number of mes-
sages produced during a single epoch can vary dramatically, depending
on the number of queries running, the cardinality of joins, and the num-
ber of groups and aggregates, there are situations when the queue will

overflow. In these situations, the system must decide if it should dis-
card the overflow tuple, discard some other tuple already in the queue,
or combine two tuples via some aggregation policy.

The ability to make runtime decisions about the value of an individ-
ual data item is central to ACQP systems, because the cost of acquiring
and delivering data is high, and because of these situations where the
rate of data items arriving at a node will exceed the maximum delivery
rate. A simple conceptual approach for making such runtime decisions
is as follows: whenever the system is ready to deliver a tuple, send the
result that will most improve the “quality” of the answer that the user
sees. Clearly, the proper metric for quality will depend on the applica-
tion: for a raw signal, root-mean-square (RMS) error is a typical metric.
For aggregation queries, minimizing the confidence intervals of the val-
ues of group records could be the goal [43]. In other applications, users
may be concerned with preserving frequencies, receiving statistical sum-
maries (average, variance, or histograms), or maintaining more tenuous
qualities such as signal “shape”.

Our goal is not to fully explore the spectrum of techniques available
in this space. Instead, we have implemented several policies in TinyDB
to illustrate that substantial quality improvements are possible given a
particular workload and quality metric. Generalizing concepts of qual-
ity and implementing and exploring more sophisticated prioritization
schemes remains an area of future work.

There is a large body of related work on approximation and com-
pression schemes for streams in the database literature (e.g. [18, 9]),
although these approaches typically focus on the problem of building
histograms or summary structures over the streams rather than trying to
preserve the (in order) signal as best as possible, which is the goal we
tackle first. Algorithms from signal processing, such as Fourier analy-
sis and wavelets are likely applicable, although the extreme memory and
processor limitations of our devices and the online nature of our problem
(e.g. choosing which tuple in an overflowing queue to evict) make them
tricky to apply. We have begun to explore the use of wavelets in this
context; see [22] for more information on our initial efforts.

We begin with a comparison of three simple prioritization schemes,
naive, winavg, and delta for simple selection queries. In thenaive
scheme no tuple is considered more valuable than any other, so the queue
is drained in a FIFO manner and tuples are dropped if they do not fit in
the queue.

The winavgscheme works similarly, except that instead of dropping
results when the queue fills, the two results at the head of the queue are
averaged to make room for new results. Since the head of the queue is
now an average of multiple records, we associate a count with it.

In thedeltascheme, a tuple is assigned an initial score relative to its
difference from the most recent (in time) value successfully transmitted
from this node, and at each point in time, the tuple with the highest score
is delivered. The tuple with the lowest score is evicted when the queue
overflows. Out of order delivery (in time) is allowed. This scheme re-
lies on the intuition that the largest changes are probably interesting. It

works as follows: when a tuplet with timestampT is initially enqueued
and scored, we mark it with the timestampR of this most recently de-
livered tupler. Since tuples can be delivered out of order, it is possible
that a tuple with a timestamp betweenR andT could be delivered next
(indicating thatr was delivered out of order), in which case the score
we computed fort as well as itsR timestamp are now incorrect. Thus,
in general, we must rescore some enqueued tuples after every delivery.
The delta scheme is similar to the value-deviation metric used in [18]
for minimizing deviation between a source and a cache, value-deviation
does not include the possibility of out of order delivery.

We compared these three approaches on a single mote running
TinyDB. To measure their effect in a controlled setting, we set the sample
rate to be a fixed numberK faster than the maximum delivery rate (such
that 1 of everyK tuples was delivered, on average) and compared their
performance against several predefined sets of sensor readings (stored
in the EEPROM of the device.) In this case, delta had a buffer of 5
tuples; we performed reordering of out of order tuples at the basesta-
tion. To illustrate the effect of winavg and delta, Figure 8 shows how
delta and winavg approximate a high-periodicity trace of sensor read-
ings generated by a shaking accelerometer (we omit naive due to space
constraints.) Notice that delta is considerably closer in shape to the orig-
inal signal in this case, as it is tends to emphasize extremes, whereas
average tends to dampen them.

 400
 500
 600
 700
 800

S
am

pl
e

V
al

ue

Approximations of Acceleration Signal

Acceleration Signal

 400

 500

 600

 700

 800

S
am

pl
e

V
al

ue Delta

 400

 500

 600

 700

 800

 400 450 500 550 600 650

S
am

pl
e

V
al

ue

of Samples

Avg

Figure 8: An acceleration signal (top) approximated by a delta (mid-
dle) and an average (bottom), K=4.

We also measured RMS error for this signal as well as two others: a
square wave-like signal from a light sensor being covered and uncov-
ered, and a slow sinusoidal signal generated by moving a magnet around
a magnetometer. The error for each of these signals and techniques is
shown in Table 4. Although delta appears to match the shape of the ac-
celeration signal better, its RMS value is about the same as average’s
(due to the few peaks that delta incorrectly merges together.) Delta out-
performs either other approach for the fast changing step-functions in
the light signal because it does not smooth edges as much as average.

Accel Light (Step) Magnetometer (Sinusoid)
Winavg 64 129 54
Delta 63 81 48
Naive 77 143 63

Table 4: RMS Error for Different Prioritization Schemes and Sig-
nals (1000 Samples, Sample Interval = 64ms)

We omit a discussion of prioritization policies for aggregation queries.
TAG [34] discusses several snooping-based techniques unique to sensor
networks that can be used to prioritize aggregation queries. There is also
significant related work on using wavelets and histograms to approxi-
mate distributions of aggregate queries when there are many groups, for
example [18, 9]. These techniques are applicable in sensor networks as
well, although we expect that the number of groups will be small (e.g. at

most tens or hundreds), so they may be less valuable.
Thus, we have illustrated some examples where prioritization of re-

sults can be used improve the overall quality of that data that are trans-
mitted to the root when some results must be dropped or aggregated.
Choosing the proper policies to applyin general, and understanding
how various existing approximation and prioritization schemes map into
ACQP is an important future direction.

6.3 Adapting Rates and Power Consumption
We saw in the previous sections how TinyDB can exploit query se-

mantics to transmit the most relevant results when limited bandwidth
or power is available. In this section, we discuss selecting and adjust-
ing sampling and transmission rates to limit the frequency of network-
related losses and fill rates of queues. This adaptation is the other half
of the runtime techniques in ACQP: because the systemcanadjust rates,
significant reductions can be made in the frequency with which data pri-
oritization decisions must be made. These techniques are simply not
available in non-acquisitional query processing systems.

When initially optimizing a query, TinyDB’s optimizer chooses a
transmission and sample rate based on current network load conditions,
and requested sample rates and lifetimes. However, static decisions
made at the start of query processing may not be valid after many days
running the same continuous query. Just as adaptive query processing
techniques like eddies [6], or those of Tukwila[28] dynamically reorder
operators as the execution environment changes, TinyDB must react to
changing conditions – however, unlike in previous adaptive query pro-
cessing systems, failure to adapt in TinyDB can bring the system to its
knees, reducing data flow to a trickle or causing the system to severely
miss power budget goals.

We study the need for adaptivity in two contexts: network contention
and power consumption. We first examine network contention. Rather
than simply assuming that a specific transmission rate will result in a
relatively uncontested network channel, TinyDB monitors channel con-
tention and adaptively reduces the number of packets transmitted as con-
tention rises. This backoff is very important: as the4 motesline of Figure
9 shows, if several nodes try to transmit at high rates, the total number of
packets delivered is substantially less than if each of those nodes tries to
transmit at a lower rate. Compare this line with the performance of a sin-
gle node (where there is no contention) – a single node does not exhibit
the same falling off because there is no contention (although the percent-
age of successfully delivered packets does fall off.) Finally, the4 motes
adaptiveline does not have the same precipitous performance because it
is able to monitor the network channel and adapt to contention.

Note that the performance of the adaptive approach is slightly less
than the non-adaptive approach at 4 and 8 samples per second as back-
off begins to throttle communication in this regime. However, when we
compared the percentage of successful transmission attempts at 8 pack-
ets per second, the adaptive scheme achieves twice the success rate of
the non-adaptive scheme, suggesting the adaptation is still effective in
reducing wasted communication effort, despite the lower utilization.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

D
el

iv
er

y
R

at
e,

 A
gg

re
ga

te
 o

ve
r

A
ll

M
ot

es
 (

pa
ck

et
s

pe
r

se
co

nd
)

Samples Per Second (per mote)

Sample Rate vs. Delivery Rate

4 motes
1 mote

4 motes, adaptive

Figure 9: Per-mote sample rate versus aggregate delivery rate.

The problem with reducing the transmission rate is that it will rapidly

cause the network queue to fill, forcing TinyDB to discard tuples us-
ing the semantic techniques for victim selection presented in Section
6.2 above. We note, however, that had TinyDB not chosen to slow its
transmission rate, fewer total packets would have been delivered. Fur-
thermore, by choosing which packets to drop using semantic informa-
tion derived from the queries (rather than losing some random sample
of them), TinyDB is able to substantially improve the quality of results
delivered to the end user. To illustrate this in practice, we ran a selec-
tion query over four motes running TinyDB, asking them each to sample
data at 16 samples per second, and compared the quality of the deliv-
ered results using an adaptive-backoff version of our delta approach to
results over the same dataset without adaptation or result prioritization.
We show here traces from two of the nodes on the left and right of Figure
10. The top plots show the performance of the adaptive delta, the middle
plots show the non-adaptive case, and the bottom plots show the the orig-
inal signals (which were stored in EEPROM to allow repeatable trials.)
Notice that the delta scheme does substantially better in both cases.

 500

 600

 700

 800

S
am

pl
e

V
al

ue

Adaptive vs. Non-Adaptive (Accel)

ERMS=81

Adaptive Delta

 500

 600

 700

 800

S
am

pl
e

V
al

ue

ERMS=112

No Adaptation

 500

 600

 700

 800

 500 520 540 560 580 600

S
am

pl
e

V
al

ue

Sample #

Accelerometer Signal

 150

 300

 450

 600

 750

Adaptive vs. Non-Adaptive (Mag.)

ERMS=87

Adaptive Delta

 150

 300

 450

 600

 750

ERMS=109

No Adaptation

 150
 300
 450
 600
 750

 350 400 450 500 550

Sample #

Magnetometer Signal

Figure 10: Comparison of delivered values (bottom) versus actual
readings for from two motes (left and right) sampling at 16 packets
per second and sending simultaneously. Four motes were communi-
cating simultaneously when this data was collected.

6.3.1 Measuring Power Consumption
We now turn to the problem of adapting tuple delivery rates to meet

specific lifetime requirements in response to incorrect sample rates com-
puted at query optimization time (see Section 3.3). We first note that,
using similar computations to those shown Section 3.3, it is possible to
compute apredicted battery voltagefor a timet seconds into processing
a query. We omit the calculation due to space constraints.

The system can then compare its current voltage to this predicted volt-
age. By assuming that voltage decays linearly (see Figure 4 for empirical
evidence of this property), we canre-estimatethe power consumption
characteristics of the device (e.g. the costs of sampling, transmitting,
and receiving) and then re-run our lifetime calculation. By re-estimating
these parameters, the system can ensure that this new lifetime calculation
tracks the actual lifetime more closely.

Although this calculation and re-optimization are straightforward,
they serve an important role by allowing sensors in TinyDB to satisfy
occasional ad-hoc queries and relay results for other sensors without
compromising the lifetime goals of long running monitoring queries.

Finally, we note that incorrect measurements of power consumption
may also be due to incorrect estimates of the cost of various phases of
query processing, or may be as a result of incorrect selectivity estima-
tion. We cover both by tuning sample rate. As future work, we intend
to explore adaptation of optimizer estimates and ordering decisions (in
the spirit of other adaptive work like Eddies [6]) and the effect of fre-
quency of re-estimation on lifetime (currently, in TinyDB, re-estimation
can only be triggered by an explicit request from the user.)

7. SUMMARY
This completes our discussion of the novel issues and techniques that

arise when taking an acquisitional perspective on query processing. In
summary, we first discussed important aspects of an acquisitional query
language, introducing event and lifetime clauses for controlling when
and how often sampling occurs. We then discussed query optimization
with the associated issues of modeling sampling costs and ordering of
sampling operators. We showed how event-based queries can be rewrit-
ten as joins between streams of events and sensor samples. Once queries
have been optimized, we demonstrated the use of semantic routing trees
as a mechanism for efficiently disseminating queries and collecting re-
sults. Finally, we showed the importance of prioritizing data according
to quality and discussed the need for techniques to adapt the transmission
and sampling rates of an ACQP system.

8. RELATED WORK
There has been some recent publication in the database and systems

communities on query processing-like operations in sensor networks
[27, 34, 41, 33, 48]. As mentioned above, these papers noted the im-
portance of power sensitivity. Their predominant focus to date has been
on in-networkprocessing – that is, the pushing of operations, particularly
selections and aggregations, into the network to reduce communication.
We too endorse in-network processing, but believe that, for a sensor net-
work system to be truly power sensitive, acquisitional issues of when,
where, and in what order to sample and which samples to process must
be considered. To our knowledge, no prior work addresses these issues.

There is a small body of work related to query processing in mobile
environments [26, 2]. This work is concerned with laptop-like devices
that are carried with the user, can be readily recharged every few hours,
and, with the exception of a wireless network interface basically have
the capabilities of a wired, powered PC. Lifetime-based queries, notions
of sampling the associated costs, and runtime issues regarding rates and
contention are not considered. Many of the proposed techniques, as well
as more recent work on moving object databases (such as [46]) focus on
the highly mobile nature of devices, a situation we are not (yet) dealing
with, but which could certainly arise in sensor networks.

Power sensitive query optimization was proposed in [1], although, as
with the previous work, the focus is on optimizing costs in traditional
mobile devices (e.g. laptops and palmtops), so concerns about the cost
and ordering of sampling do not appear. Furthermore, laptop-style de-
vices typically do not offer the same degree of rapid power-cycling that
is available on embedded platforms like motes. Even if they did, their
interactive, user oriented nature makes it undesirable to turn off displays,
network interfaces, etc. because they are doing more than simply collect-
ing and processing data, so there are many fewer power optimizations
that can be applied.

Building an SRT is analogous to building an index in a conventional
database system. Due to the resource limitations of sensor networks, the
actual indexing implementations are quite different. See [29] for a sur-
vey of relevant research on distributed indexing in conventional database
systems. There is also some similarity to indexing in peer-to-peer sys-
tems [4]. However, peer-to-peer systems differ in that they are inexact
and not subject to the same paucity of communications or storage infras-
tructure as sensor networks, so algorithms tend to be storage and com-
munication heavy. Similar indexing issues also appear in highly mobile
environments (like [46, 26]), but this work relies on a centralized loca-
tion servers for tracking recent positions of objects.

The observation that interleaving the fetching of attributes and appli-
cation of operators also arises in the context of compressed databases
[12], as decompression effectively imposes a penalty for fetching an in-
dividual attribute, so it is beneficial to apply selections and joins on al-
ready decompressed or easy to decompress attributes.

There is a large body of work on event-based query processing in the
active database literature. Languages for event composition and sys-

tems for evaluating composite events, such as [10], as well as systems
for efficiently determining when an event has fired, such as [20] could
(possibly) be useful in TinyDB. More recent work on continuous query
systems [32, 11] describes languages which provide for query processing
in response to events or at regular intervals over time. This earlier work,
as well as our own work on continuous query processing [36], inspired
the periodic and event-driven features of TinyDB.

Approximate and best effort caches [40], as well as systems for online-
aggregation [43] and stream query processing [39, 7] include some no-
tion of data quality. Most of this other work is focused on quality
with respect to summaries, aggregates, or staleness of individual objects,
whereas we focus on quality as a measure of fidelity to the underlying
continuous signal. Aurora [7] mentions a need for this kind of metric,
but proposes no specific approaches. Work on approximate query pro-
cessing [18] includes a scheme similar to our delta approach, as well
as a substantially more thorough evaluation of its merits, but does not
consider the possibility of out of order delivery.

9. CONCLUSIONS AND FUTURE WORK
Acquisitional query processing provides a framework for addressing

issues of when, where, and how often data is sampled and which data
is delivered in distributed, embedded sensing environments. Although
other research has identified the opportunities for query processing in
sensor networks, this work is the first to discuss these fundamental issues
in an acquisitional framework.

We identified several opportunities for future research. We are cur-
rently actively pursuing two of these: first, we are exploring how query
optimizer statistics change in acquisitional environments and studying
the role of online re-optimization in sample rate and operator orderings
in response to bursts of data or unexpected power consumption. Second,
we are pursuing more sophisticated prioritization schemes, like wavelet
analysis, that can capture salient properties of signals other than large
changes (as our delta mechanism does) as well as mechanisms to allow
users to express their prioritization preferences.

We believe that ACQP notions are of critical importance for preserv-
ing the longevity and usefulness of any deployment of battery powered
sensing devices, such as those that are now appearing in biological pre-
serves, roads, businesses, and homes. Without appropriate query lan-
guages, optimization models, and query dissemination and data delivery
schemes that are cognisant of semantics and the costs and capabilities of
the underlying hardware the success of such deployments will be limited.

References
[1] R. Alonso and S. Ganguly. Query optimization in mobile environments. In

Workshop on Foundations of Models and Languages for Data and Objects,
pages 1–17, September 1993.

[2] R. Alonso and H. F. Korth. Database system issues in nomadic computing.
In ACM SIGMOD, Washington DC, June 1993.

[3] Analog Devices, Inc.ADXL202E: Low-Cost 2 g Dual-Axis Accelerometer.
http://products.analog.com/products/info.asp?product=ADXL202.

[4] H. G. Arturo Crespo. Routing indices for peer-to-peer systems. InICDCS,
July 2002.

[5] Atmel Corporation. Atmel ATMega 128 Microcontroller Datasheet.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[6] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query pro-
cessing. InProceedings of the ACM SIGMOD, pages 261–272, Dallas, TX,
May 2000.

[7] D. Carney, U. Centiemel, M. Cherniak, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new class
of data management applications. InVLDB, 2002.

[8] A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, , and J. Zhao. Habitat
monitoring: Application driver for wireless communications technology. In
ACM SIGCOMM Workshop on Data Communications in Latin America and
the Caribbean, 2001.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate
query processing using wavelets.VLDB Journal, 10, 2001.

[10] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite
events for active databases: Semantics, contexts and detection. InVLDB,
1994.

[11] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable con-
tinuous query system for internet databases. InProceedings of the ACM
SIGMOD, 2000.

[12] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database
systems. InACM SIGMOD, 2001.

[13] I. Crossbow. Wireless sensor networks (mica motes).
http://www.xbow.com/Products/WirelessSensorNetworks.htm.

[14] K. A. Delin and S. P. Jackson. Sensor web forin situexploration of gaseous
biosignatures. InIEEE Aerospace Conference, 2000.

[15] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. InOSDI, 2002.

[16] Figaro, Inc. TGS-825 - Special Sensor For Hydrogen Sulfide.
http://www.figarosensor.com.

[17] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wickera. Complex behavior at scale: An experimental study of
low-power wireless sensor networks. Under submission. Available at:
http://lecs.cs.ucla.edu/ deepak/PAPERS/empirical.pdf, July 2002.

[18] M. Garofalakis and P. Gibbons. Approximate query processing: Taming the
terabytes! (tutorial). InVLDB, 2001.

[19] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates
over continual data streams. InProceedings of the ACM SIGMOD Confer-
ence on Management of Data, Santa Barbara, CA, May 2001.

[20] E. N. Hanson. The design and implementation of the ariel active database
rule system. IEEE Transactions on Knowledge and Data Engineering,
8(1):157–172, February 1996.

[21] J. M. Hellerstein. Optimization techniques for queries with expensive meth-
ods.TODS, 23(2):113–157, 1998.

[22] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond Average:
Towards Sophisticated Sensing with Queries. . InWorkshop on Information
Processing In Sensor Networks (IPSN), 2003.

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System archi-
tecture directions for networked sensors. InASPLOS, November 2000.

[24] Honeywell, Inc. Magnetic Sensor Specs HMC1002.
http://www.ssec.honeywell.com/magnetic/specsheets/specs1002.html.

[25] T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-
relational joins.TODS, 9(3):482–502, 1984.

[26] T. Imielinski and B. Badrinath. Querying in highly mobile distributed envi-
ronments. InVLDB, Vancouver, Canada, 1992.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. InMobi-
COM, Boston, MA, August 2000.

[28] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive
query execution system for data integration. InProceedings of the ACM
SIGMOD, 1999.

[29] D. Kossman. The state of the art in distributed query processing.ACM
Computing Surveys, 2000.

[30] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive
queries. InVLDB, pages 128–137, 1986.

[31] C. Lin, C. Federspiel, and D. Auslander. Multi-Sensor Single Actuator Con-
trol of HVAC Systems. 2002.

[32] L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale event-
driven information delivery.IEEE Knowledge and Data Engineering, 1999.
Special Issue on Web Technology.

[33] S. Madden and M. J. Franklin. Fjording the stream: An architechture for
queries over streaming sensor data. InICDE, 2002.

[34] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks. InOSDI, 2002.

[35] S. Madden, W. Hong, J. Hellerstein, and M. Franklin. TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb.

[36] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adap-
tive continuous queries over streams. InSIGMOD, 2002.

[37] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor
networks for habitat monitoring. InACM Workshop on Sensor Networks
and Applications, 2002.

[38] C. L. Monma and J. Sidney. Sequencing with seriesparallel precedence
constraints.Mathematics of Operations Research, 1979.

[39] R. Motwani, J. Window, A. Arasu, B. Babcock, S.Babu, M. Data, C. Olston,
J. Rosenstein, and R. Varma. Query processing, approximation and resource
management in a data stream management system. InCIDR, 2003.

[40] C. Olston and J.Widom. Best effort cache sychronization with source coop-
eration.SIGMOD, 2002.

[41] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems. In
Conference on Mobile Data Management, January 2001.

[42] G. Pottie and W. Kaiser. Wireless integrated network sensors.Communica-
tions of the ACM, 43(5):51 – 58, May 2000.

[43] V. Raman, B. Raman, and J. Hellerstein. Online dynamic reordering.The
VLDB Journal, 9(3), 2002.

[44] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation
Database Management System.Communications of the ACM, 34(10):78–
92, 1991.

[45] UC Berkeley. Smart buildings admit their faults. Web Page, November
2001. Lab Notes: Research from the College of Engineering, UC Berkeley.
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[46] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO:
Databases fOr MovINg Objects tracking. InACM SIGMOD, Philadelphia,
PA, June 1999.

[47] A. Woo and D. Culler. A transmission control scheme for media access in
sensor networks. InACM Mobicom, July 2001.

[48] Y. Yao and J. Gehrke. The cougar approach to in-network query processing
in sensor networks. InSIGMOD Record, September 2002.

