
Monte Carlo Hidden Markov Models

Sebastian Thrun and John Langford

December 1998
CMU-CS-98-179

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a learning algorithm for hidden Markov models with continuous state and observa-
tion spaces. All necessary probability density functions are approximated using samples, along
with density trees generated from such samples. A Monte Carlo version of Baum-Welch (EM)
is employed to learn models from data, just as in regular HMM learning. Regularization during
learning is obtained using an exponential shrinking technique. The shrinkage factor, which deter-
mines the effective capacity of the learning algorithm, is annealed down over multiple iterations
of Baum-Welch, and early stopping is applied to select the right model. We prove that under
mild assumptions, Monte Carlo Hidden Markov Models converge to a local maximum in likeli-
hood space, just like conventional HMMs. In addition, we provide empirical results obtained in a
gesture recognition domain, which illustrate the appropriateness of the approach in practice.

This research is sponsored in part by DARPA via AFMSC (contract number F04701-97-C-0022), TACOM (con-
tract number DAAE07-98-C-L032), and Rome Labs (contract number F30602-98-2-0137). The views and conclusions
contained in this document are those of the authors and should not be interpreted as necessarily representing official
policies or endorsements, either expressed or implied, of DARPA, AFMSC, TACOM, Rome Labs, or the United States
Government.

Keywords: annealing, any-time algorithms, Baum-Welch, density trees, early stopping, EM,
hidden Markov models, machine learning, maximum likelihood estimation, Monte Carlo methods,
temporal signal processing

Monte Carlo Hidden Markov Models 1

1 Introduction

Over the last decade or so, hidden Markov models have enjoyed an enormous practical success in
a large range of temporal signal processing domains. Hidden Markov models are often the method
of choice in areas such as speech recognition [28, 27, 42], natural language processing [5], robotics
[34, 23, 48], biological sequence analysis [17, 26, 40], and time series analysis [16, 55]. They are
well-suited for modeling, filtering, classification and prediction of time sequences in a range of
partially observable, stochastic environments.

With few exceptions, existing HMM algorithms assume that both the state space of the envi-
ronment and its observation space are discrete. Some researchers have developed algorithms that
support more compact feature-based state representations [15, 46] which are nevertheless discrete;
others have successfully proposed HMM models that can cope with real-valued observation spaces
[29, 19, 48]. Kalman filters [21, 56] can be thought of as HMMs with continuous state and action
spaces, where both the state transition and the observation densities are linear-Gaussian functions.
Kalman filters assume that the uncertainty in the state estimation is always normally distributed
(and hence unimodal), which is too restrictive for many practical application domains (see e.g.,
[4, 18]).

In contrast, most “natural” state spaces and observation spaces are continuous. For example,
the state space of the vocal tract of human beings, which plays a primary role in the generation
of speech, is continuous; yet HMMs trained to model the speech-generating process are typically
discrete. Robots, to name a second example, always operate in continuous spaces; hence their
state spaces are usually best modeled by continuous state spaces. Many popular sensors (cam-
eras, microphones, range finders) generate real-valued measurements, which are better modeled
using continuous observation spaces. In practice, however, real-valued observation spaces are
usually truncated into discrete ones to accommodate the limitations of conventional HMMs. A
popular approach along these lines is to learn a code-book (vector quantizer), which clusters real-
valued observations into finitely many bins, and thus maps real-valued sensor measurements into
a discrete space of manageable size [54]. The discreteness of HMMs is in stark contrast to the
continuous nature of many state and observation spaces.

Existing HMM algorithms possess a second deficiency, which is frequently addressed in the
AI literature, but rarely in the literature on HMMs: they do not provide mechanisms for adapting
their computational requirements to the available resources. This is unproblematic in domains
where computation can be carried out off-line. However, trained HMMs are frequently employed
in time-critical domains, where meeting deadlines is essential. Any-time algorithms [9, 58] address
this issue. Any-time algorithms can generate an answer at any time; however, the quality of the
solution increases with the time spent computing it. An any-time version of HMMs would enable
them to adapt their computational needs to what is available, thus providing maximum flexibility
and accuracy in time-critical domains. Marrying HMMs with any-time computation is therefore a
desirable goal.

This paper presents Monte Carlo Hidden Markov Models (MCHMMs). MCHMMs employs
continuous state and observation spaces, and once trained, they can be used in an any-time fashion.
Our approach employs Monte Carlo methods for approximating a large, non-parametric class of
density functions. To combine multiple densities (e.g., with Bayes rule), it transforms sample sets

2 Sebastian Thrun and John Langford

into density trees. Since continuous state spaces are sufficiently rich to overfit any data set, our
approach uses shrinkage as mechanism for regularization. The shrinkage factor, which determines
the effective capacity of the HMM, is annealed down over multiple iterations of EM, and early
stopping is applied to choose the right model. We prove the convergence of MCHMMs to a local
maximum in likelihood space. This theoretical results justifies the use of MCHMM in a wide array
of applications. In addition, empirical results are provided obtained for an artificial domain and a
gesture recognition domain, which illustrates the robustness of the approach in practice.

The remainder of this paper is organized as follows. Section 2 establishes the basic terminol-
ogy for generalizing HMMs to continuous state and observation spaces. We will then, in Section
Section 3, discuss commonly used sampling schemes and provide an algorithm for generating
piece-wise constant density trees from these samples. A key result in this section is a proof of
asymptotic consistency of both sample-based and tree-based representations. Section 4 describes
our approach for complexity control (regularization) using shrinkage, followed by the statement of
the MCHMM algorithm in Section 5. Section 6 proves the MCHMM convergence theorem, which
states that under mild assumptions MCHMMs converge with high probability. Empirical results
are described in Section 7, which specifically investigates MCHMM in the finite sample case. The
empirical results show that MCHMMs work well even in the non-asymptotic case. Section 7 also
provides an experiment that characterizes the relation between sample set size (computation) and
accuracy. Finally, related work is discussed in Section 8 and the paper is summarized in Section 9.

2 Generalized Hidden Markov Models

This section introduces generalized hidden Markov models (in short: GHMM). GHMMs gener-
alize conventional hidden Markov models (HMMs) in that all spaces, state and observation, are
continuous. Our description closely follows that of Rabiner [43], with densities replacing finite
probability distributions throughout. Throughout this paper, we assume all event spaces and ran-
dom variables (e.g., state, observations) are measurable. We also assume that unless otherwise
specified, all probability distributions are continuous and possess continuous density functions.
Further below, when introducing density trees, we will also assume that densities are non-zero
over a compact, bounded region, and that they obey a Lipschitz condition.

A GHMM is a partially observable, time-invariant Markov chain with continuous state and ob-
servation spaces and discrete time. Let x denote a state variable (a measurable random variable),
defined over some continuous space (e.g., �k for some k). At each time t � �, the HMM’s state
is denoted xt. Initially, at time t � �, the state of the HMM is selected randomly according to the
density �. State transitions are governed by a conditional probability density, denoted ��x� j x�
and called state transition density. Densities are measurable functions over the set of Borel sets,
hence the Riemann integralZ x�

x�

��x� j x� dx (1)

measures, for x� � x�, the probability Pr�x� � x� � x� j x� that the state succeeding x lies in
�x�� x��.

In HMMs (and thus in GHMMs), state cannot be observed. Instead, only a probabilistic

Monte Carlo Hidden Markov Models 3

projection of the state is observable. Let bt denote a measurable random variable that models the
observation at time t. Observations are generated according to a probability density conditioned
on the state of the HMM (called the observation density), denoted ��b j x� . If b� � b�,Z b�

b�

��b j x� db (2)

measures the probability that the observation b is in �b�� b��, given that the state of the HMM is x.
Thus, a generalized HMM is uniquely defined through three densities:

� � f�� �� �g� (3)

Putting computational limitations aside for the moment, knowledge of � is sufficient to tackle a
variety of interesting practical problems:

� Computing distributions over states and observations at arbitrary points in time,

� Generating representative example trajectories in state and observation space,

� Determining the likelihood of example trajectories under an HMM, and

� Classifying data sequences generated by mixtures of labeled HMMs.

Algorithms for these problems are described in detail in [43]; they are easily transferred from the
finite to the continuous case.

In practice, the densities � are often unknown and have to be estimated from data. The data,
denoted d, is a sequence of observations� , denoted

d � fO�� O�� � � � � OT g� (4)

Here Ot denotes the observation at time t. The total number of observations in d is T .
The well-known Baum-Welch algorithm [2, 33, 43] provides a computationally efficient and

elegant approach for learning �, �, and �. Baum-Welch begins with an initial model, denoted
����. It iterates two steps, an E-step and an M-step (see also [12]). In the n-th E-step, distributions
for the various state variables xt are computed under a fixed model ��n� (with n � �). The n-th
M-step uses these distributions to derive a new, improved model ��n���. As shown for example in
[33, 37], both steps increase the data likelihood Pr�d j ��, or leave it unchanged if, and only if, a
local maximum in the likelihood function has been reached.

In the E-step, distributions are computed for the state variables xt conditioned on a fixed model
� and the data d. Recall that in the discrete case,

�
�n�
t �x� � Pr�xt � x j O�� � � � � Ot� �

�n�� (5)

�
�n�
t �x� � Pr�Ot��� � � � � OT j xt � x� ��n�� (6)

	
�n�
t �x� � Pr�xt � x j d� ��n�� (7)

�n�
t �x� x�� � Pr�xt � x� xt�� � x� j d� ��n�� (8)

�For simplicity of the presentation, we only present the case in which the data consist of a single sequence. The
extension to multiple sequences is straightforward but requires additional notation.

4 Sebastian Thrun and John Langford

The continuous case is analogous; however, here � and � are densities, and thus may be larger than
1. Following [43], these densities are computed incrementally; � is computed forward in time, and
� backwards in time (for which reason this algorithm is often referred to as the forward-backward
algorithm. Initially,

�
�n�
� �x� � ��n��x� (9)

�
�n�
T �x� � � (10)

and for all other �t and �t:

�
�n�
t �x� �

Z
�
�n�
t���x

�� ��n��x j x�� ��n��Ot j x� dx� (11)

�
�n�
t �x� �

Z
�
�n�
t���x

�� ��n��x� j x� ��n��Ot�� j x�� dx� (12)

Bayes rule governs the conditional density over the state space at time t:

	
�n�
t �x� �

�
�n�
t �x� �

�n�
t �x�Z

�
�n�
t �x�� ��n�t �x�� dx�

(13)

Similarly, the state transition densities
�n� are computed as

�n�
t �x� x�� �

�
�n�
t �x� ��n��x� j x� ��n��Ot�� j x�� ��n�t���x�Z Z

�
�n�
t ��x� ��n���x� j �x� ��n��Ot�� j �x�� ��n�t����x� d�x d�x�

(14)

This computation is completely analogous to the finite case, replacing conditional probabilities by
conditional densities.

The M-step uses 	�n�t �x� and

�n�
t �x� x�� to compute a new model ��n���, using the maximum

likelihood estimator:

��n����x� � 	
�n�
� �x� (15)

��n����x� j x� �

PT��
t��

�n�
t �x� x��PT��

t�� 	
�n�
t �x�

(16)

��n����b j x� �

PT
t�� IOt�b 	

�n�
t �x�PT

t�� 	
�n�
t �x�

(17)

Here Icond denotes an indicator variable that is 1 if the condition cond is true, and 0 otherwise. A
straightforward result is the convergence of GHMMs under approprate conditions.

Theorem 1. (GHMM Convergence Theorem) If all distributions of a GHMM � possess
density functions that are Lipschitz (and differentiable) in all variables, then for almost all (mea-
sure 1) points the steps outlined above do not decrease the probability density of the observation
sequence. They do not improve the probability density of the observation sequence at each iter-
ation if, and only if, the distributions at the beginning of an EM step are at a critical point (local
maximum, minimum, or saddle point).

Monte Carlo Hidden Markov Models 5

Proof. Only sketched here (see also [2, 20, 33], and see [47] for an extension to certain real-
valued spaces). For finite-state finite-observation HMMs, all densities and variables (�, �, �, �,
�, 	, and
) can be implemented by vectors, and the Baum-Welch algorithm has been proven to
converge [2]. Juang [19] has shown convergence to local maxima for HMMs with a finite number
of states and continuous observations where the observation densities are a mixture of log concave
or ellipsoidal symmetrical densities. In particular, the class of ellipsoidal symmetrical densities
includes Gaussians. A GHMM can be viewed as the limit as the number of Gaussians is allowed
to increase to infinity, and then the number of states is allowed to increase to infinity in Juang’s
analysis. Since Gaussians meet the assumptions of Juang’s analysis, any continuous ��Ojx� can
be the limit.

lim
K��

KX
k��

ckx bkx�O� (18)

where
P

k ckx � � and bkx�O� is a Gaussian.
Juang’s analysis contains the following forms of manipulation:Z

Y

Z
X
f�x� y� dx dy �

Z
X

Z
Y
f�x� y� dy dx (19)

rY

Z
X
f�x� y� dx �

Z
X
rY f�x� y� dx (20)

where f�x� y� is some function proportional to a density. Differentiability of all densities is a
sufficient assumption for these statements to hold true. �

3 Density Approximation

This section describes sample-based and tree-based methods for density approximation. The no-
tion of asymptotic consistency is introduced and results, along with error bounds, are given for a
popular sampling algorithm and a tree method. Throughout this section, we assume that all density
functions are centered on a compact and bounded region in �k (for an arbitrary k) and that they
are Lipschitz.

3.1 Sampling

Samples are values drawn from the domain of a density function, where each sample is annotated
by a non-negative real value [30, 36, 57]. Sample sets are (finite) sets of samples, annotated by
numerical probability values. More specifically, let f be a probability density function, and let N
denote a positive number (the cardinality of a sample set). Then a sample set is a set

X � fhx�� px�i � � � � hxN � pxN ig with
NX
n��

pxn � � (21)

6 Sebastian Thrun and John Langford

where xn � dom�f� and pxn � ��� �� for all n with � � n � N . Sample sets can be thought of
as discrete distributions over the event space fx�� � � � � xNg and probability distribution defined by
fpx� � � � � � pxN g [36, 41].

One popular sampling method is called importance sampling, which was originally introduced
by Rubin [44]. Importance sampling approximates a density f by drawing samples x from a
distribution with density g, and assigning a weight px proportional to f�x�

g�x� . Obviously, the density
g must be non-zero over the support of f , i.e.,

f�x� � � �� g�x� � � (22)

We will distinguish two special cases:

1. Likelihood-weighted sampling. If g�f , we will refer to the sampling algorithm as likelihood-
weighted sampling. Here we draw samples according to f and assigns equal probability to
each sample in the sample set [22]:

xn is drawn according to f

pxn � N�� (23)

In many cases, likelihood-weighted sampling can easily be implemented using rejection sam-
pling [36].

2. Uniform sampling. If g is uniform over (a superset of) the support of f , we will call the
sampling algorithm uniform sampling. This sampling algorithm draws values randomly (uni-
formly) from the support of f (which is assumed to be bounded), and assigns to each value x
a probability proportional to its density f�x�:

xn is drawn uniformly from dom�f�

pxn � f�xn�

�
NX
i��

f�xi�

���
(24)

Uniform sampling covers the domain of a density uniformly regardless of the nature of the density
function. Likelihood-weighted sampling populates the space according to f , so that the density
of sample is proportional to the density f . Likelihood-weighted sampling can be said to “waste”
fewer samples in low-likelihood regions of f [41]. In other words, if Xu and Xlw are sample sets
generated from the same distribution using uniform sampling, and likelihood-weighted sampling,
respectively, the following holds true in expectation:X

hx�pxi�Xu

f�x� �
X

hx�pxi�Xlw

f�x� (25)

were the equality holds in expectation if and only if f is uniform [51]. Henceforth, we will focus
our attention on likelihood-weighted sampling whenever we have an explicit representation of a
probability distribution (and importance sampling otherwise).

Monte Carlo Hidden Markov Models 7

(a) (b)

Figure 1: (a) Data set (b) partitioned by a density tree.

Figure 1a shows a sample set drawn by likelihood-weighted sampling from a distribution that
resembles the shape of a sine wave in 2D. All probabilities px of the sample set shown there are
the same, and the samples are concentrated in a small region of the ��. In practice, likelihood-
weighted sampling is often given preference over uniform sampling—specifically if the target
density is known to only populate (with non-zero measure) a small subspace of its domain.

Both sampling methods can equally be applied to sample from a sample set (resampling). Let
X be a sample set. Under uniform sampling, a new sample set is generated by randomly drawing
samples hx� pxi from X with a uniform distribution (regardless of the px values). The px-values
in the new sample set are then re-normalized so that they add up to 1. Under likelihood-weighted
sampling, samples are drawn from X according to the (discrete) probability distribution induced
by their px-values. Each sample is then assigned the same probability. Sampling from sample sets
plays an important role in the Monte Carlo HMM algorithm described below.

3.2 Asymptotic Consistency

The central idea of sampling is to represent density functions by finite sample sets, which are com-
putationally advantageous. So what does it mean for a sample set X to “represent” a density f?
Obviously, sample sets represent discrete distributions and thus cannot represent distributions that
possess densities (hence are continuous). However, we will call a sampling method asymptotically
consistent if for N ��, X converges to f with probability 1 when integrated over the system of
half-open Borel sets:

lim
N��

X
hx�pxi�X

Ix��x�x� px �

Z x�

x�

f�x� dx w.p. 1 (26)

Recall the system of half-open intervals is an inducing system for the sigma algebra over the �k;
hence, it suffices to show convergence for those sets.

A key observation is that both sampling algorithms are asymptotically consistent—as are all
importance sampler with f�x� � � �� g�x� � � [51]. This is formalized for the more im-

8 Sebastian Thrun and John Langford

portant likelihood-weighted sampling technique in the following theorem, which also provides a
probabilistic error bound for the finite case.

Theorem 2. The likelihood-weighted sampling method is asymptotic consistent. For finite N ,
� � � and x� � x�, the likelihood that the error between a density f and a sample X is larger than
� can be bounded as follows:

Pr

�
�
������
X

hx�pxi�X
Ix��x�x� px 	

Z x�

x�

f�x� dx

������ � �

�
A � � e���

�N (27)

Thus, according to the theorem the error between f and its sample decreases at the familiar rate
�p
N

.

Proof. The convergence follows directly from the Central Limit Theorem (see also [13, 41,
51]). The bound follows from the Hoeffding bound, under the observation that for any half-
open interval �x�� x�� each sample can be viewed as a zero-one “guess” of the size of the areaR x�
x�

f�x� dx. �

More generally, the convergence rate of importance sampling is in O� �p
N
� if f�x�

g�x� ��. The
variance of the error depends on the “mismatch” between f and g (see e.g., [51], pg. 33). The N
will be reduced by a constant factor of maxx

f�x�
g�x� �� for appropriate g�x�.

3.3 Density Trees

While sample sets are sufficient to approximate continuous-valued distributions, they differ from
those in that they are discrete, that is, even in the limit they assign non-zero likelihood to only
a countable number of points. This is problematic if one wants to combine densities represented
through different sample sets: For example, let f and g be two density functions defined over
the same domain, and let X be a sample of f and Y a sample of g. Then with probability 1,
none of the samples in X and Y are identical, and thus it is not straightforward how to obtain an
approximation of their product f
 g from X and Y . Notice that multiplications of densities are
required by the Baum-Welch algorithm (see e.g., Equation (13)).

Density trees, which are quite common in the statistical literature [24, 35, 38, 39], transform
sample sets into density functions. Unfortunately, not all tree growing methods are asymptoti-
cally consistent when applied to samples generated from a density f . We will describe a simple
algorithm which we will prove to be asymptotically consistent.

Our algorithm annotates each node in the tree with a hyper-rectangular subspace of dom�f�,
denoted by V (or Vi for the i-th node). Initially, all samples are assigned to the root node, which
covers the entire domain of f . A node i is split whenever the following two conditions are fulfilled:

1. At least
p
N samples hx� pxi � X fall into in Vi.

2. Its depth, i.e., its distance from the root node, does not exceed b�� log�Nc.

If a node is split, its interval v is divided into two equally sized intervals along its longest dimen-
sion. These intervals are assigned to the two children of the node. Otherwise, a node becomes a
leaf node of the density tree.

Monte Carlo Hidden Markov Models 9

... ...

... ...
... ... (1−ρ)

(1−ρ) ρ

(1−ρ) ρ2

(1−ρ) ρ3

 ρ4

Figure 2: Density tree. Each branch cuts the area under a node into two equally-sized, rectangular halves, shown in
grey.

An example of such a density tree defined over �� is illustrated in Figure 2. Here the root node
covers the entire domain of f . Each child covers exactly half the space of each parent node. The
areas covered by each leaf are mutually exclusive; their union covers the entire space. Figure 1b
shows a density tree generated for the sample set shown in Figure 1a. The reader may notice
that the criteria of the conditions above have been chosen to facilitate our proof of asymptotic
consistency; in practice, a much wider range of criteria for stopping tree growth can be applied.

Density trees define density functions that continue discrete sample sets into �k. Let f be a
density function, X a sample drawn from this density, and for all x � dom�f� let i�x� denote the
leaf whose region Vi contains x. Furthermore, let 	i denote the relative frequency of samples in
the i-th node weighted by their respective px values:

	i �
X

hx�pxi�X
Ix�Vi px (28)

Then the density function of a tree, denoted 	f , is defined as follows:

	f�x� �
	i�x�
jVi�x�j

��x � dom�f�� (29)

The numerator of (29) describes the weighted relative frequency that a sample falls into the interval
of the node i�x�. The denominator is the size of the interval, which is necessary to transform a
relative frequency into a density over the interval Vi�x�.

10 Sebastian Thrun and John Langford

The density function 	f�x� can be equally defined for internal nodes (non-leaf nodes). This will
be important below, where estimates at different levels of the tree are mixed for regularization.

3.4 Asymptotic Consistency of Density Trees

An important result is the asymptotic consistency of density trees. This result, which justifies
the use of density trees are non-parametric approximation, will be formalized in the following
theorem:

Theorem 3. Density trees are asymptotically consistent, that is, for all x�� x� � dom�f� with
x� � x� and for any density tree 	f�x� generated from a sample set X generated from a density f ,
the following holds true:

lim
N��

Z x�

x�

	f�x� dx �

Z x�

x�

f�x� dx w.p. 1� (30)

We will first prove a related result, namely that of pointwise stochastic convergence

lim
N��

	f�x� � f�x� ��x � dom�f�� w.p. 1 (31)

which under the assumptions made in this paper implies the theorem. The proof is carried out in
two stages, each of which is described by its own lemma.

Lemma 1. The density 	f converges to a function �f which is defined through the same tree as
	f , but with the weighted relative frequencies 	i replaced by their true frequencies, denoted �i:

�i �

Z
Vi

f�x� dx� (32)

Lemma 2. The density 	f converges to f .
Proof of Lemma 1. For each leaf i, the Hoeffding bound states that

Pr�j �i 	 	ij � �� � � e���
�N � (33)

Our tree growing rule limits the depth of the tree to b�� log�Nc. Hence, there are at most

�
�

�
log�N � N

�

� (34)

nodes in the tree. Thus, the probability that there exists a leaf whose empirical frequency 	i
deviates from the true probability �i is bounded by

Pr�� leaf i
 j �i 	 	ij � �� � � N
�

� e���
�N � (35)

The error of the empirical frequency estimates is now translated into density errors. Recall that
according to (29), the relative frequency is related to the density of a tree by the volume Vi of each
leaf. Consequently,

j �f�x�	 	f�x�j � jVij�� j �i 	 	ij (36)

Monte Carlo Hidden Markov Models 11

Observing that the volume of the interval covered by a leaf jVij is at least N� �

� —which directly
follows from the depth limit imposed when growing density trees—we obtain

j �f�x�	 	f�x�j � N� �

� j �i 	 	ij (37)

� N
�

� j �f�x�	 	f�x�j � j �i 	 	ij (38)

Substituting this into (35) yields:

Pr�j �f�x�	 	f�x�j � N
�

� �� � � N
�

� e���
�N � (39)

which with the substitution �� � N
�

� � leads to the following error bound between 	f and �f :

Pr�j �f�x�	 	f�x�j � ��� � � N
�

� e���
��
p
N � (40)

Obviously, the right hand-size of (40) converges to 0 as N ��, which proves pointwise conver-
gence of 	f to �f . �

It remains to be shown that �f converges of f .
Proof of Lemma 2. It suffices to show that with high likelihood, any leaf i that covers an inter-

val with non-zero measure, i.e.,

�i � � (41)

will be split infinitely often as N is increased. The desired convergence then follows directly from
the fact that f obeys a Lipschitz condition. The proof is given for likelihood-weighted sampling.

Let i be a leaf node, and let depth�i� denote its depth. Furthermore, let ni be the number of
samples in node i:

ni �
X

hx�pxi�X
Ix�Vi � N 	i (42)

The second equality exploits the assumption that samples are generated by likelihood-weighted
sampling. Recall that the node i is split if ni �

p
N , for sufficiently large N . Without loss of

generality, let us assume that

N � max

�
�

��i 	 ���
� �depth�i�

�
and � � �i (43)

The second term in the max ensures that the depth limit b�� log�Nc in the tree growing rule does
not restrict splitting node i. The other assumptions (43) imply that

�i �
�p
N

� � (44)

The Hoeffding bound now yields the desired result:

Pr��i 	 	i � �� � e���
�N (45)

�� Pr

�
�p
N

� �	 	i � �

	
� e���

�N (46)

12 Sebastian Thrun and John Langford

� Pr

�
�p
N

� 	i

	
� e���

�N (47)

� Pr

�
�p
N

�
ni
N

	
� e���

�N (48)

� Pr

p

N � ni
�

� e���
�N (49)

Thus, with high probability ni �
p
N and node i is split. The pointwise convergence of �f to f

now follows from our assumption that f is Lipschitz. �

Proof of the Theorem 3. We have already shown that

lim
N��

	f�x� � f�x� w.p. 1 and �x � dom�f�� (50)

Theorem 3 follows trivially from the triangle inequality, since dom�f� is bounded and Lipschitz
(which implies that f is bounded). �

The termination conditions for growing trees (see itemized list in Section 3.3) where chosen
to facilitate the derivation of Theorem 3. In practice, these conditions can be overly restrictive,
as they often require large sample sets to grow reasonable-sized trees. Our actual implementation
sidesteps these conditions, and trees are grown all the way to the end. While the convergence
results reported here are not applicable any longer, our implementation yielded much better per-
formance specifically when small sample sets were used (e.g., 100 samples).

4 Regularization Through Shrinkage and Annealing

We will now resume our consideration of GHMMs. The continuous nature of the state space in
GHMMs, if represented by arbitrary sample sets and/or trees, can easily overfit any data set, no
matter how large. This is because GHMMs are rich enough to assign a different state to each
observation in the training data (of which there are only finitely many), making it essentially
impossible to generalize beyond sequences other than the ones presented during training. A similar
problem arises in conventional HMMs, if they are given more states than samples in the data set.
In GHMMs the problem is inherent, due to the topology of continuous spaces. Thus, some kind
of regularization is needed to prevent overfitting from happening.

Our approach to regularization is based on shrinkage [50]. Shrinkage is a well-known statisti-
cal technique for “lumping together” different estimates from different data sources. In a remark-
able result by Stein [50], shrinking estimators were proven to yield uniformly better solutions over
unbiased maximum-likelihood estimators in multivariate Gaussian estimations problems (see also
[53]). Shrinkage trees were introduced in [32]. Instead of using the density estimates at the leafs
of a tree, shrinkage trees mix those densities with densities obtained further up in the tree. These
internal densities are less specific to the region covered by a leaf node; however, their estimates
are usually obtained from more data, making them less susceptible to variance in the data.

Figure 3 shows an example using shrinkage with an exponential factor, parameterized by �
(with � � � � �). Here each node in the tree, with the exception of the root node, weighs its
own density estimate by �� 	 ��, and mixes it with the density estimate from its parent using the
weighting factor �. As a result, every node along the path contributes to the density estimate at the

Monte Carlo Hidden Markov Models 13

... ...

... ...
... ... (1−ρ) σm

(1−ρ) ρ σl

(1−ρ) ρ2 σk

(1−ρ) ρ3 σj

 ρ4 σi

node i

node j

node k

node l

node m

Figure 3: Shrinkage for complexity control. The density of each node is an exponentially weighted mixture of densities
of the nodes along the path to the leaf. Shown here is an example for node m, whose path leads through nodes i, j, k,
and l. The �-terms describe the mixture coefficients for this example. If � is 0, only the leaf estimate is used. For larger
values of �, estimates from data beyond the leaf data are used to estimate the target density.

leaf; however, its influence decays exponentially with the distance from the leaf node. Obviously,
the value of � determines the amount of shrinkage. If � � �, only the root node is consulted,
hence, the probability density induced by the tree is uniform. If � � �, on the other hand, there is
no shrinking and only the estimates in the leaf nodes determine the shape of the density function.
For intermediate values of �, estimates along the entire path are combined.

Since the optimal value of � is problem-specific—de facto it depends on the nature of the
(unobservable) state space—our approach uses annealing and cross validation to determine the
best value for �. More specifically,

��n� � ��n�� (51)

where �� � � is a constant (e.g., 0.9) and n denotes the iteration counter of the Baum-Welch
algorithm (starting at 1). Thus, � starts with ���� � �, for which nothing can be learned, since
every density is uniform. The parameter � is then annealed towards zero in an exponential fashion.
Cross validation (early stopping) is applied to determine when to stop training.

14 Sebastian Thrun and John Langford

Table 1: The MCHMM algorithm at-a-glance.

Model Initialization: Initialize � � f�� �� �g by three randomly drawn sets of samples of the appropriate
dimension. Generate density trees from these samples. Set � � �, and chose an initial sample set size
N � �.

E-step:

1. Copy the sample set representing � into �� (c.f., (9)).

2. Set �T � �.

3. Computation of �t (c.f., (11)). For each t with � 	 t � T do:

(a) Generate N samples hx�� px�i from the sample set representing �t�� using likelihood-
weighted sampling.

(b) For each sample hx�� px�i, generate the conditional density ��x j x�� using the tree-version of
�. Sample a single x from this tree, using likelihood-weighted sampling.

(c) Set px to a value proportional to ��Ot j x�, where Ot is the t-th observation in the data set.
This density value is obtained using the tree representing �.

(d) Generate a tree from the new sample set.

4. Computation of �t (c.f., (12)). For each t with � � t 	 T do:

(a) Generate N samples hx�� px�i from the sample set representing �t�� using likelihood-
weighted sampling.

(b) For each sample hx�� px�i, generate the conditional density ��x� j x� using the tree-version of
�. Sample a single x from this tree, using likelihood-weighted sampling.

(c) Set px to a value proportional ��Ot�� j x
��, where Ot�� is the t��-th observation in the data

set. This density value is obtained using the tree representing �.
(d) Generate a tree from the new sample set.

5. Computation of
t (c.f., (13)). For each t with � � t � T do:

(a) Generate N�� sample from �t by likelihood weighted sampling and assign to each sample
hx� pxi a probability proportional to �t�x�, using the tree approximation of �t.

(b) Generate N�� sample from �t by likelihood weighted sampling and assign to each sampled
hx a probability px proportional to �t�x�, using the tree approximation of �t.

M-step:

1. Estimation of the new state transition density� (c.f., (16)): PickN random times t � f�� � � � � T��g
and generate samples hx� pxi and hx�� px�i from
t, and
t��, respectively, by likelihood-weighted
sampling. Add h�x� x��� N��i into the sample set representing �. Generate a tree from the sample
set.

2. Estimation of the new observation density � (c.f., (17)): Pick N random t � f�� � � � � Tg and
generate a sample hx� pxi from
t by likelihood-weighted sampling. Add h�x�Ot�� N

��i into the
sample set representing �. Generate a tree from the sample set.

3. Estimation of the new initial state distribution� (c.f., (15)): Copy the sample set
� into �. Generate
a tree from the sample set.

Annealing: Set � � ���. Stop when the likelihood of an independent cross-validation set is at its maxi-
mum.

Sample set size: Increase N .

Monte Carlo Hidden Markov Models 15

5 Monte Carlo HMMs

We are now ready to present the main algorithm of this paper, along with the main theoretical
result: The Monte Carlo algorithm for GHMMs, called Monte Carlo hidden Markov models (in
short MCHMM). A MCHMM is a computational instantiation of a GHMM that represents all
densities through samples and trees. It applies likelihood-weighted sampling for forward and
backward projection (c.f., Equations (11) and (12)), and it uses annealing and cross-validation to
determine the best shrinkage factor. To ensure convergence, the number of samples N is increased
over time.

The learning algorithm for MCHMM is depicted in Table 1. MCHMMs use both sample-
based and tree representations during learning. After learning, it suffices to store only the tree-
based version of the model � � f�� �� �g; all sample sets can be discarded. When applying
a trained MCHMM to a new data set (e.g., for analysis, prediction, or classification), only the
“forward” densities �t�x� have to be estimated (just like in conventional HMMs, Kalman filters
[21, 31], or dynamic belief networks [8, 45]). For that, no trees have to be grown. Instead,
samples for �t���x� are obtained by sampling from the sample set representing �t�x� (see also
Section 3.1) and the tree representing �. The px-values of �t���x� are determined using the tree
representing �. This recursive resampling technique, known as sampling/importance resampling
[44, 49] applied to time-invariant Markov chains, converges at the rate ��

p
N (if T is finite, c.f.,

Section 3.2). Sampling/importance resampling, which will further be discussed in Section 8, has
been successfully applied in domains such as computer vision and robotics [11, 18].

6 Error Analysis and Convergence Results

This section presents the major convergence result for MCHMM. Under mild assumptions, MCH-
MMs can be shown to converge with probability 1 to models � that locally maximize likelihood;
just like conventional HMMs. The proof builds on the well-known results for discrete HMMs (see
g.e., [2, 19, 20, 33, 47]), and shows that if the sample size N is sufficiently large, the deviation
between the MCHMMM and the corresponding GHMM can be bounded arbitrarily tightly with
high probability, exploiting the asymptotic consistency of the two major approximations: samples
and density trees.

6.1 Relative Error

The process of Monte Carlo simulation introduces error into the Baum-Welch algorithm. In order
to understand how this affects convergence, we need to understand how an initial error will prop-
agate through an EM step. This analysis will also cover errors introduced in the middle of an EM
step as long as such errors converge to 0 with large samples, because errors introduced in mid-step
will be indistinguishable from an error introduced at the beginning of the calculation.

What we would like to prove is that a small absolute initial error will imply a small absolute
final error. Unfortunately, this is not possible because several calculations are normalized integrals
of products. Consider the integral

R
x f�x�g�x�dx. If f�x� � step�x	 ���� and g�x� � �	 f�x�

then
R
x f�x�g�x� dx � �. However, if �f�x� � f�x� � � and �g�x� � g�x� � � are integrated, we

16 Sebastian Thrun and John Langford

get a non-zero integral:
R �
x��

�f�x��g�x�dx � �. First, notice that the calculation of �t�x� is of this
form. Assume, for the moment, that �t�x� � �. Then 	t�x� � �t�x��

R
�t�x

��dx�. Consequently,
if �t�x� was small (� �) everywhere, �	t�x� can potentially be very far from 	t�x�. Furthermore,
any allowable error can produce an arbitrarily large error in the output.

However, if we have a small relative error,

�f�x�	 f�x�

f�x�
� � (52)

we will be able to prove that a small initial error implies a small final error. The restriction to
small relative error is significant because density trees only guarantee a small absolute error. An
extra assumption must be placed on the initial distribution in order to guarantee that the density
tree produced by sampling from the distribution will have small relative error.

To simplify the proof that a small initial error produces a small final error, we only consider
transforming functions to first order, f��x� � f��x���x	 x�. There is no zeroth order error because
the limit as the relative error approaches � is f�x�, lim�x�x f��x� � f�x�. Higher order error
becomes small quickly for all transforming functions which we consider. Consequently, we will
be able to state that for all �� �, there exists some number of samples, N , s.t. f��x� 	 f�x� �
f ��x���x	 x� � � with probability �	 �.

Our analysis does not consider the shrinkage factor �, which, since limn�� ��n� � �, has
asymptotically no effect.

6.2 Convergence of MCHMMs

We will now state the central result of this section: the MCHMM convergence theorem and an
important corollary. The proof of the theorem will be developed throughout the remainder of this
section.

Theorem 4 (MCHMM Convergence Theorem). If approximation of the underlying distribu-
tions by density trees causes only a finite relative error which decreases to � as N �� and an EM
step in a GHMM starting with ��n�� ��n�� ��n� produces output distributions ��n���� ��n���� ��n���

then for all �� � there exists an N s.t. the output of an MCHMM iteration taking ��n�� ��n�� ��n� as
inputs with probability �	� satisfies j��n����x�	���n����x�j � �, j��n����x�jx�	���n����x�jx�j �
�, and j��n����Otjx�	 �

��n����Otjx�j � � where �
��n���, �

��n���, and �
��n��� are the output dis-

tributions of the MCHMM iteration.
The proof of Theorem 4 will be presented below, after introducing a collection of useful lem-

mas. However, Theorem 4 implies the following important corollary:
Corollary. Under the same assumptions as in Theorem 4, any strictly monotonically increas-

ing schedule of N ’s will cause a MCHMM to converge to a local maximum in with probability
1.

Proof of the corollary. The convergence of GHMMs is a straightforward extension of the well-
known convergence proof for HMMs as outlined in the proof of Theorem 1. The action of a
GHMM iteration causes movement through the space of distributions. We can view this action of
a GHMM iteration as inducing a vector field in the (infinite dimensional) space of distributions
with a magnitude proportional to the change in likelihood and a direction given by ��n��x� x�� 	

Monte Carlo Hidden Markov Models 17

��n����x� x��. The action of an MCHMM with probability �	 � will have a result in a perturbed
vector with the error bounded by �. The repeated action of a MCHMM with N increasing will
create a Cauchy sequence where the � decreases to � and � decreases to �. This Cauchy sequence
will limit to local maxima with probability 1. �

It is important to notice that this corollary does not state that an MCHMM and GHMM starting
with the same distribution will converge to the same local maximum. Such a result will gener-
ally not hold true, as the finiteness of N might influence the specific local maximum to which a
MCHMM converges.

It is also interesting to note that the noise introduced by MCHMMs in the convergence step
may be beneficial. The argument is informal because the noise of an MCHMM has both systematic
(due to representation) and random (due to sampling) effects. First, consider a GHMM which
accidentally starts out at a local minimum (or a saddle point). The GHMM might be stuck here,
but a MCHMM will, with probability 1, step off of the local minima and move towards a local
maxima. In addition, consider a landscape containing many local maxima on it’s flanks. A GHMM
could easily become trapped in a local maxima while an MCHMM with a low N will be kicked
out of the local maxima with high probability. In this way, an MCHMM could gain some of the
benefits of simulated annealing.

6.3 Propagation of Error

Before we can prove the MCHMM convergence theorem, we will need to develop an analysis of
the propagation of errors through transforming functions.

Let us start by assuming that we have some initial error ��x� � ��x� � ��x�, ��xjx�� �
��xjx�� � ��x� x

�� and ��Otjx� � ��Otjx� � ��Ot� x�. These errors can, for example, be the
errors introduced by approximating a distribution with density trees. It will also be convenient to
talk about the relative error

r
��x� �

������x�

��x�

���� (53)

r
��xjx�� �

������xjx��
��xjx��

���� (54)

r
��Otjx� �

������Otjx�
��Otjx�

���� (55)

r
f �y� �

����f �y�

f�y�

���� (56)

and the largest relative error over the input range

r
� � max

x
r
��x� (57)

r
� � max

x�x�
r
��xjx�� (58)

r
� � max

x�Ot

r
��Otjx� (59)

r
f � max

y
r
f �y� (60)

18 Sebastian Thrun and John Langford

The propagation of errors through individual calculations of Baum-Welch will be characterized by
taking a derivative. Let �x � x��x�. The definition of a derivative is d

dx
f�x� � lim�x�x

f��x��f�x�
�x�x .

As the difference between 2 distributions, �x and x approaches �, the difference between the re-
sulting calculations, f��x� and f�x�, will approach f��x��x� implying f �x� � f��x�	 f�x� �
f ��x��x� in the limit that �x�� �. In particular,

f�g�x� � f �x� � g�x� (61)

 g
f
�x� �

	g�x�f �x� � f�x�g�x�

f�x��
(62)

fg�x� � f�x�g�x� � g�x�f �x� (63)

R
f

�

Z
f (64)

The last statement is only true for integration over compact regions with finite valued f�x�, be-
cause

R �f�x� 	 f�x�dx �
R �f�x�dx 	 R

f�x�dx under these assumptions. These assumptions
were already made to prove convergence of density trees so they are not an additional restriction.

6.4 Error Bounds for Auxiliary Variables

Given the above rules and notation we can calculate how the error will propagate through the cal-
culation of a �t�x�. The following lemmas establish bounds on the relative errors of all quantities
calculated in a Baum-Welch iteration given some initial error. These lemmas are necessary to
prove the MCHMM convergence theorem.

Lemma 3. r
�t � �t	 ���r

� �r
�� � r

� to first order.
Proof. According to the property (64),

�t � R
�t����

�x� �

Z
x
�t�����x� dx (65)

Using (63), this expression is equivalent to

�

Z
x
��x���x��t��

�x� � ��x��t���x���x� � ��x��t���x���x� dx

�

Z
x
��x���x��t���x�

�
�t��

�x�

�t���x�
�

��x�

��x�
�

��x�

��x�

	
dx (66)

Notice that the integral can be bounded by a maximum,

�t � �t�x�max
x

������t��
�x�

�t���x�
�

��x�

��x�
�

��x�

��x�

����
	

(67)

and,

�t � 	�t�x�max
x

������t��
�x�

�t���x�
�

��x�

��x�
�

��x�

��x�

����
	

(68)

Monte Carlo Hidden Markov Models 19

Division by �t�x�and application of the triangle inequality yields the relative error bounds

�t

�t�x�
� max

x

������t��
�x�

�t���x�

�����
������x�

��x�

�����
������x�

��x�

����
	

(69)

�t

�t�x�
� 	max

x

������t��
�x�

�t���x�

�����
������x�

��x�

�����
������x�

��x�

����
	

(70)

Consequently, we have that r
�t � r

�t��
�r

� �r
� The equation is recursive, terminating for

t � � with r
��

� r
�. At each step in the recursion, at most r

� �r
� is added to the error which

implies

r
�t
� �t	 ���r

� �r
�� � r

�

which proves Lemma 3. �

The calculation of the relative �t error is analogous, and the resulting bound it stated in the
following lemma:

Lemma 4. r
�t
� �T 	 t��r

� �r
�� to first order.

The proof is omitted, since it is similar to the proof for r�t .
The calculation of the error of 	t is more difficult.
Lemma 5. r

� � ��r
� �r

�� � ��r
� � �T 	 ���r

� �r
��� to first order.

Proof. To simplify the notation, we will assume a t subscript in the following proof. The
results are independent of t.

��x� � ��R
��

�x�

�
���x�

R
x ��x���x�dx 	 ��x���x�R

��
�x�

�
R
x ��x���x��

�

�
���x���x� � ��x���x��

R
x ��x���x�dx

�
R
x ��x���x�dx�

�

	��x���x�
R
x���x���x� � ��x���x��dx

�
R
x ��x���x�dx�

�

� ���x���x� � ��x���x��
R
x ��x���x�dx

�
R
x ��x���x�dx�

�

�
��x���x��

R
x ��x���x�dx�maxx

���	��x�
��x�

���� ���	��x�
��x�

����
�
R
x ��x���x�dx�

�

� ��x���x�

h
	��x�
��x� �

	��x�
��x�

i
�maxx

���	��x�
��x�

���� ���	��x�
��x�

����R
x ��x���x�dx

(71)

Through similar manipulations, we get:

��x� � 	��x���x�
h
	��x�
��x� �

	��x�
��x�

i
�maxx

���	��x�
��x�

���� ���	��x�
��x�

����R
x ��x���x�dx

(72)

20 Sebastian Thrun and John Langford

Now, we can divide by a factor of 	 to get

r
� � ��r

� �r
�� (73)

and apply Lemmas 3 and 4 for any value of t to get

r
� � ��r

� � �T 	 ���r
� �r

��� (74)

which completes the proof. �

The bounds for r
	 are similar to those of r

� , as documented by the following lemma.
Lemma 6. r

	 ���r
� � �T 	 ���r

� �r
��� to first order.

The proof of Lemma 6 is analogous to that of Lemma 5 and therefore omitted. Notice that the
bounds of r

	 and r
� are independent of t.

The M step calculations are done similarly. Let �� = the next � distribution, �� =the next �
distribution, and �� = the next � distribution. Then the following lemmas provide bounds for the
error of ��, ��, and ��.

Lemma 7. r
�� � ��r

� � �T 	 ���r
� �r

��� to first order.
Proof. Lemma 7 follows from Lemma 5, since r

�� � r
��

.
Lemma 8. r

�� � ��r
� � �T 	 ���r

� �r
��� to first order.

Proof. By property (62),

���x
�jx� � P

�P
�

�x�jx�

�

�
	
�
T��X
t��

	t�x�

P 	�x� x

�� �

�
T��X
t��

t�x� x
��

P ��x�

�
�
PT��

t�� 	t�x�
��

�

�
	
�
T��X
t��

	t�x�

�
T��X
t��

	t�x� x
��

�

�
T��X
t��

t�x� x
��

�
T��X
t��

�t�x�

�
�
PT��

t�� 	t�x�
��

�

�
T��X
t��

t�x� x
��

� �
	
PT��

t�� 	t�x� x
��PT��

t��
t�x� x��
�

PT��
t�� �t�x�PT��
t�� 	t�x�

�
�PT��

t�� 	t�x�

�
�
T��X
t��

t

�
max
t

�
	t

t
�

�t

	t

	
�PT��

t�� 	t
(75)

and, analogously,

���x
�jx� � 	

�
T��X
t��

t

�
max
t

�
	t

t
�

�t

	t

	
�PT��

t�� 	t
(76)

These equations are of the form:

���x
�jx� � ��x�jx�max

t

�
	t

t
�

�t

	t

	
(77)

Monte Carlo Hidden Markov Models 21

and

���x
�jx� � 	��x�jx�max

t

�
	t

t
�

�t

	t

	
(78)

which implies that r
�� � �r

	 � r
��. The lemma follows from the bounds for r

� and r
	

stated in Lemma 5 and 6. �

Lemma 9. r
�� � ��r

� � �T 	 ���r
� �r

��� to first order.
The proof is analogous to the proof of Lemma 8.
Theorem 5. The error introduced in a round of Baum-Welch with some initial r��

r
�� and

r
� to first order is r

�� � ���T 	 ���r
� �r

�� �r
��,

r
�� � ���T 	 ���r

� �r
�� �r

��, and
r
�� � ���T 	 ���r

� �r
�� � r

��.
Proof. Theorem 5 follows directly from Lemmas 7 to 9. �

6.5 Implications for MCHMMs

The analysis of error propagation for GHMMs implies that as N � � and the relative errors
approach � the error of a step in the generalized Baum-Welch algorithm tends towards the first
order errors: �� � �
 �N
r

�� � ���T 	 ���r
� � r

�� � r
�� � �, r

�� � ���T 	 ���r
� �

r
���r

����, and r
�� � ���T 	���r

��r
���r

����. These first order errors also converge
to �.

lim
N��

r
�� � � (79)

lim
N��

r
�� � � (80)

lim
N��

r
�� � � (81)

We are now ready to present the central result of this section, a proof of convergence for MCH-
MMs.

Proof of Theorem 4 (MCHMM Convergence Theorem). According to Theorem 5, the first or-

der relative errors of �
��n���, �

��n���, and �
��n��� are linear in the relative errors of �

��n�, �
��n�,

and �
��n�. By assumption, in the limit as N �� these errors go to � with probability 1, implying

the theorem. �

MCHMMs converge to a local maximum, under the additional assumption that the relative
error of all distributions converge to � as N � �. Notice that the � parameter was not used
here—the � parameter selects between various models, while we only proved convergence within
one model. However, since � 	� �, its effect vanishes over time.

The MCHMM Convergence Theorem establishes the soundness of our algorithm, and shows
that MCHMMs can indeed be applied for learning a large range of non-parametric statistical mod-
els with real-valued state and observation spaces. Empirical results using finite sample sets, de-
scribed in the next section, suggest that the algorithm is stable even for small sample set sizes, and
indeed maximizes data likelihood in a Monte Carlo-fashion.

22 Sebastian Thrun and John Langford

Figure 4: Examples of gestures. The first two gestures were drawn counterclockwise; whereas the other two were
drawn clockwise. The MCHMM learning task is to differentiate them.

7 Experimental Results

We have applied MCHMMs to two problems, an artificial one which was chosen for demonstration
purposes, and a more difficult real-world gesture recognition problem. The experiments address
the following questions:

� Do MCHMMs converge empirically? If so, how good are the resulting MCHMMs?

� What accuracies can be obtained when using MCHMMs for discrimination?

� How does the sample set size affect computational and accuracy trade-offs?

The first data set, called the noisy oscillation dataset, consists of multiple sequences that basi-
cally oscillate around two points. Observations are 10-dimensional and governed by

Ot �

�
����� � �t��� ���� � �t��� ���� � �t�
� � � � � ���� � �t���� if t odd
����� � �t��� ���� � �t��� ���� � �t�
� � � � � ���� � �t���� if t even

(82)

where �t�i (with � � t � �� and � � i � ��) are independent and identically distributed noise
variables with zero-centered triangular distribution over �	����� �����. To test the discriminatory
accuracy of the learned model, we also generated a second, similar data set:

Ot �

�
����� � �t��� ���� � �t��� ���� � �t�
� � � � � ���� � �t���� if t odd
����� � �t��� ���� � �t���� ���� � �t�
 � � � � ���� � �t���� if t even

(83)

using new, independent noise variables. Notice that despite the fact that there is a good amount
of noise in the data, these data sets are relatively easy to discriminate, since their observations fall
into different regions in the ���.

The second data set consisted of a collection of hand-drawn gestures, represented in ��. Fig-
ure 4 shows examples. Once drawn, all gestures in our data base look quite similar. However,
some of the gestures were drawn clockwise, whereas others were drawn counterclockwise. Here
we are interested in discriminating clockwise from counterclockwise gestures. Notice that this
problem is more difficult then the artificial one, as the observations alone (stripped of their tem-
poral order) are insufficient for discrimination; instead, the MCHMM has to learn a meaningful
model of the internal state.

Monte Carlo Hidden Markov Models 23

2 4 6 8 10 12 14 16 18 20
Iteration Baum-Welch

0

10

20

30

40

50

60

70

80

L
o

g
 s

co
re

 o
f

tr
ai

n
in

g
 d

at
a

2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

80

Figure 5: Log score of training data as a function of the iteration of EM, for the synthetic data set. Top curve: 1000
samples for all densities. Middle curve: 1000 samples for � and �, 100 samples for �, �, �, and �. Bottom curve: 100
samples for � and �, 10 samples for �, �, �, and �. These graphs illustrate that MCHMMs tend to maximize the data
likelihood, even in the finite case. Each result is averaged over 10 independent experiments; 95% confidence bars are
also shown.

Figures 5 and 6 show results obtained for the first dataset. Shown in both figures are curves
that characterize the “log score” as a function of the number of iterations. This score is the real-
valued analogue to the likelihood; however, since densities can be larger than one, the score can
also be larger than one, and hence its logarithm is not bounded above.

The curves in Figure 5 show average log score for the training set as a function of the number
of iterations, averaged over 10 independent experiments (each curve). The different curves were
obtained using different numbers of samples which, contrary to the theoretical results, were kept
constant throughout the experiments:

Sample set size N for� � � �� � �� �� 	� �

top curve: 1,000 1,000
middle curve: 1,000 100
bottom curve: 100 10

Figure 5 also provides 95% confidence bars for these results. The difference in absolute levels to
which the scores appear to converge stem from the fact that the maximum tree depth, and hence
the maximum of the tree density 	f , is a function of the sample set size; hence, if the number of
samples is small, the tree will remain shallow. The key observation, however, is their monotonicity.
These curves demonstrate that each iteration in MCHMM indeed increases the data likelihood (or
leaves it unchanged), even if only finitely many samples are used. This finding, which we also
consistently observed for other data sets and parameter settings, illustrate that MCHMMs are
well-behaved in practice, that is, the finiteness of the sample set appears not to cause catastrophic
problems.

24 Sebastian Thrun and John Langford

2 4 6 8 10 12 14 16 18 20
Iteration Baum-Welch

-1

-2

0

1

2

3

4

5

6

7

8

L
o

g
 s

co
re

 o
f

te
st

in
g

 d
at

a

2 4 6 8 10 12 14 16 18 20

-1

-2

0

1

2

3

4

5

6

7

8

Figure 6: Log score of testing data as a function of the iteration of EM, for the synthetic data set. The top curve shows
the log score of data generated from the model used in training, whereas the bottom curve shows the log score for data
generated from a different model. 95% confidence bars are also shown.

Figure 6 shows results for independent testing data. The upper curve in Figure 6 depicts the log
score for set of random sequence that are generated from the same model as the training sequences.
The bottom curve depicts the log score for independently generated sequences using the other
model, for which the MCHMM was not trained. In both cases, only a single data set (of length
20) was used for training, and testing was performed using 20 data sets generated independently.
N � ��� samples were used throughout for all densities �, �, 	, and �, and N � �� ��� samples
were used for � and �, to account for their higher dimensionality. The initial shrinkage factor was
� � �, which was annealed down at the rate �� � ���. In all experiments, the dimension of the
state space was k � �. The results obtained for lower-dimensional observation spaces, which are
not shown here, were even better. In all cases, the score clearly reflected that the MCHMM had
learned a good model. The classification accuracy for test sets was consistently 100%.

The result in Figure 6 illustrate the discriminative power of MCHMM for this data set. It also
demonstrates the effect of annealing: The testing data likelihood is maximal at iteration 6 (thus
the optimal � is 	� � ����), beyond which the MCHMM starts overfitting the data. In our experi-
ments, the optimal stopping point was consistently found within �� step, using a single, indepen-
dently generated sequence for cross-validation. In all our experiments, the MCHMM consistently
discriminated the two different classes without error, regardless of the settings of the individual
parameters (we did not run experiments with N � ��). The bars in Figure 6 are confidence bars
at the 95% confidence level.

Figure 7 shows the corresponding result for the more difficult gesture recognition problem.
These results were obtained using a single gesture for training only, and using 50 gestures for
testing. The top curve depicts the log score for gestures drawn in the same direction as the training
gesture, whereas the bottom curve shows the log scores for gestures drawn in opposite direction.
As easily noticed in Figure 7, the difference between classes is smaller than in Figure 6—which

Monte Carlo Hidden Markov Models 25

2 4 6 8 10 12 14 16 18 20 22 24 26
Iteration Baum-Welch

0

1

2

3

L
o

g
 s

co
re

 o
f

te
st

in
g

 d
at

a

2 4 6 8 10 12 14 16 18 20 22 24 26

0

1

2

3

Figure 7: Log score for the gesture data base, obtained for independent testing data. The top curve shows the log score
of gestures drawn in same same way as the training gesture, whereas the bottom curve shows the log score of gestures
drawn in opposite direction.

comes at no surprise—, yet the score of the “correct” class is still a factor of 4 to 5 larger than
that of the opposite class. Figure 7 also shows the effect of annealing. The best shrinkage value
is obtained after 12 iterations, where � � ����. As in the previous case, cross-validation using a
single gesture performs well. On average, the classification accuracy when using cross-validation
for early stopping is 86.0%. This rate is remarkably high, given that only a single gesture per class
was used for training.

A key advantage of MCHMM over HMMs lies in the ease of trading off computational com-
plexity and accuracy. In conventional HMM, the computational complexity is fixed for any given
(trained) model. In contrast, MCHMM permit variable sampling set sizes during run-time, after
the model is trained. This leads to a nice any-time algorithm [9, 58]. Once trained, a MCHMM can
control its computational complexity on-line by dynamically adjusting the sample size, depending
on the available resources. The any-time property is important for many real-world applications,
where computation resources are bounded. To the best of our knowledge, the any-time nature is a
unique property of MCHMMs, which is not shared by previous HMM algorithms.

Figure 8 illustrates the trade-off between computation and accuracy empirically for the gesture
data base. Shown there is the trade-off between the number of samples and the likelihood of the
testing data. Notice that the horizontal axis is logarithmic. All of these points are generated using
a model � obtained using early stopping. The sample set size was generated after training, to
investigate the effect of computational limitations on the on-line performance of the MCHMM.
As in Figure 7, the top curve in Figure 8 depicts the log score of gestures drawn in the same
direction as the training data, whereas the bottom curve shows the log score of gestures drawn in
opposite direction.

The result in Figure 8 illustrates that the score (and hence the accuracy) of both data sets in-
creases with the sample set size. This is not surprising, as the accuracy of the approximations

26 Sebastian Thrun and John Langford

10 20 50 100 200 500 1000
Sample Set Size

1

2

3
L

o
g

 s
co

re
 o

f
te

st
in

g
 d

at
a

10 20 50 100 200 500 1000

1

2

3

Figure 8: Trade-off between sample set size and log score, for the gesture data set. The more samples are available, the
higher the score, and hence the more accurate the results. However, even extremely small sample sets yield reasonable
discrimination.

increases with the sample set size. In addition, Figure 8 suggests that the distance between clock-
wise and counterclockwise gestures is approximately constant in log score space (hence it grows in
score). This illustrates that better results are achieved with larger sample sets. In our experiments,
however, even small sample sets yielded good discrimination (after training with larger sample
sets). For example, we observed on average 16% classification error with N � �� samples. The
processing of such sample sets is several orders of magnitude faster than the hand motion involved
in gesture generation. This makes MCHMMs extremely fast for on-line tracking and discrimina-
tion in this domain.

Following suggestions by Koller�, we evaluated the utility of smoothing in the context of
MCHMMs [13, 24]. Smoothing transforms those sample sets that represent posteriors over states
(� and �) into more compact representations such as density trees, which are then used for
likelihood-weighted sampling instead of the original samples. To apply smoothing to MCHMMs,
the basic learning algorithm (see Table 1) was modified as follows:

Step 3a: Generate N samples hx�� px�i from the tree representing �t�� using likelihood-weighted
sampling.

Step 4a: Generate N samples hx�� px�i from the tree representing �t�� using likelihood-weighted
sampling.

Notice that this is a minor modification of the basic algorithm, as trees are readily computed
for the various densities � and �; but now they are also used for likelihood-weighted sampling.
Obviously, smoothing reduces the variance of the various � and � at the cost of increasing bias. It
has been suggested that smoothing with density trees can further improve performance [24].

�personal communication

Monte Carlo Hidden Markov Models 27

2 4 6 8 10 12 14 16 18 20 22 24 26
Iteration Baum-Welch

0

1

2

3

L
o

g
 s

co
re

 o
f

te
st

in
g

 d
at

a

2 4 6 8 10 12 14 16 18 20 22 24 26

0

1

2

3

Figure 9: MCHMMs with (black curve) and without (grey curve) density tree smoothing of � and �, under otherwise
equal conditions. Each curve plots the log score of the testing data as a function of the number of Baum-Welch iterations.
The grey curve is equivalent to the top curve in Figure 7. These results illustrate the negative effect of smoothing on
log score of the testing data.

Unfortunately, in our experiments we were unable to confirm the utility of smoothing in the
context of MCHMMs. For the artificial data set, the generalization performance of MCHMMs
with smoothing was indistinguishable from that obtained without smoothing, both in terms of log
score of the testing data and the class discrimination accuracy. Smoothing actually worsened the
performance for the gesture data set. Figure 9 shows the log score of testing data using smoothing
(black curve), and compares it with the corresponding log scores obtained without smoothing
(gray curve, copied from Figure 7). Smoothing was found to reduce the log score of the testing
data; thus, MCHMMs trained with smoothing are less capable of “explaining” new examples.
This is not surprising, as smoothing is not an information loss-free operation, and it is not clear
that the inductive bias provided by a tree representation is beneficial. The reduction of the log
score led to a slight reduction of the discrimination accuracy. Using cross-validation, the average
classification accuracy for MCHMMs with smoothing was 82.0%, which is 4.0% smaller than the
accuracy obtained without smoothing.

8 Related Work

Hidden Markov Models [2, 43] have been successfully applied to a huge range of applications
requiring temporal signal processing. As indicated in the introduction of this paper, most state-of-
the-art speech recognition systems rely on HMMs (see, for example, the various papers in [54]).
Recently, extensions of HMMs have been successfully applied in the context of mobile robotics
[23, 48, 52], where they have led to improved solutions of the concurrent mapping and localization
problem, which is generally acknowledged as one of the most difficult problems in robotics [6, 25].

28 Sebastian Thrun and John Langford

These are just two examples of successful application areas of HMM; the number of successful
applications is numerous.

Most HMM algorithms differ from MCHMMs in that they only apply to discrete state and
observation spaces. While the majority of HMM approaches represent states individually (in a
flat way), some more recent approaches have extended HMMs to loosely coupled factorial repre-
sentations [15, 46], which represent state by features but are nevertheless discrete. Others have
successfully proposed HMM models that can cope with real-valued observation spaces [29, 19].
Our approach generalizes HMMs to continuous state and observation spaces with a large, non-
parametric range of state transition and observation densities. It also differs from previous HMM
approaches in that it provides a mechanisms for complexity control (regularization); in previous
approaches, the complexity of the internal state space had to be calibrated carefully by hand. Fi-
nally, MCHMMs provide a mechanisms to trade off computational requirements and accuracy in
an any-time fashion, which differs from previous approaches whose computational requirements
were not adjustable during run-time [9, 58]. We envision that all of these advances are important
for a broad range of practical problems.

Sampling techniques, one of the two methods used for density approximation in MCHMMs,
have recently gained popularity in the applied statistics and AI literature. Various researchers have
applied sampling methods in the context of state estimation in dynamical systems [3, 13, 22, 30,
41] and learning [7]. A nice introduction into the use of sampling for density approximation can be
found in [36]. Our approach to state estimation (computation of the �s) is essentially equivalent
to the condensation algorithm proposed by Isard and Blake [18] and the Markov localization
algorithm proposed by Dellaert and colleagues [11, 10], both of which are basically versions of
the well-known sampling/importance resampling (SIR) algorithm [44, 49]. Similar approaches are
known as particle filters [41], bootstrap [14], and survival of the fittest [22]. All these approaches
are concerned with state estimation in an HMM-like or Kalman filter-like fashion. Thus, they rely
on the a priori availability of � and �, which are learned from data by the MCHMM algorithm
proposed here. To our knowledge, the application of sampling-based methods to learning non-
parametric state transition models and observation models in HMMs is new, as is our proposal for
the integration of a forward (�) and backward (�) phase using trees. The theoretical results in this
paper demonstrate that our approach can be applied to a large class of problems, assuming that
sufficiently many samples are used. Trees have frequently been used for density approximation,
most recently in [24, 35, 38, 39]. However, we are not aware of a proof of asymptotic consistency
for density trees, although we suspect that such a result exists.

9 Conclusion

We have presented a new algorithm for hidden Markov models, called Monte Carlo Hidden
Markov Models (MCHMM). MCHMMs extend HMMs to real-valued state and observation spaces.
They represent all densities by samples, which are transformed into probability density functions
using density trees. Both representations were proven to be asymptotically consistent under mini-
mal assumptions on the nature of the density that is being approximated. Because the continuous
state spaces are rich enough to fit (and over-fit) arbitrary data sets, our approach uses shrinkage
to reduce its complexity. The shrinkage parameter is gradually annealed down over time, and

Monte Carlo Hidden Markov Models 29

cross-validation (early stopping) is used to select the best model complexity. The pervasive use of
Monte Carlo sampling led to the design of an any-time implementation, capable of dynamically
trading off computational complexity and the accuracy of the results. Consequently, MCHMMs
are well-suited for time-critical applications that are frequently encountered in the real world.

We have proved the asymptotic consistency of MCHMMs for a large class of probability den-
sity functions. Empirical results, carried out in an artificial domain and a more challenging ges-
ture recognition domain, demonstrate the our approach generalizes well even when trained with
extremely scarce data. Additional experiments characterize the natural trade-off between sample
set size and accuracy, illustrating that good results may be achieved even from extremely small
sample sets.

While the theoretical results of this paper hold only in the limit, actual applications have to live
with finite sample sets. Thus, an interesting and open question is under what conditions MCHMM
with finite sample sets converges, and what error to expect. While principal error bounds of this
type are relatively easy to obtain in static approximation setting, the recursive nature of Baum-
Welch makes it difficult to obtain bounds for MCHMM. The empirical results described here,
however, suggest that MCHMM is a robust method that works well in practice even with relatively
small sample sets.

We conjecture that MCHMMs are better suited for many real-world application domains such
as speech and robotics applications than conventional HMMs, for primarily three reasons: their
support of continuous representations of observations and state, their built-in mechanisms for
model selection, which reduces the burden of picking the “right” model (e.g., number of states
in conventional HMMs), and, finally, their support of any-time computation, which makes them
extremely compliant in time-critical applications with bounded computational resources.

Acknowledgement

The authors gratefully acknowledge inspiring discussions with Frank Dellaert, Nir Friedman, Di-
eter Fox, Daphne Koller, and Larry Wasserman.

References

[1] P. Baldi and Y. Chauvin. Smooth online learning algorithms for hidden Markov models.
Neural Computation, 6:307–318, 1994.

[2] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state markov
chains. Annals of Mathematical Statistics, 37:1554–1563, 1966.

[3] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proceed-
ings of Uncertainty in Artificial Intelligence, pages 33–42, Madison, WI, 1998.

[4] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. Experiences with an interactive museum tour-guide robot. Technical Report
CMU-CS-98-139, Carnegie Mellon University, Computer Science Department, Pittsburgh,
PA, 1998.

30 Sebastian Thrun and John Langford

[5] E. Charniak. Statistical Language Learning. MIT Press, Cambridge, Massachusetts, 1993.

[6] I.J. Cox. Blanche—an experiment in guidance and navigation of an autonomous robot vehi-
cle. IEEE Transactions on Robotics and Automation, 7(2):193–204, 1991.

[7] J.F.G. de Freitas, S.E. Johnson, M. Niranjan, and A.H. Gee. Global optimisation of neural
network models via sequential sampling-importance resampling. In Proceedings of the In-
ternational Conference on Spoken Language Processing (ICSLP), Sydney, Australia, 1998.

[8] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Compu-
tational Intelligence, 5(3):142–150, 1989.

[9] T. L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceeding of Sev-
enth National Conference on Artificial Intelligence AAAI-92, pages 49–54, Menlo Park, CA,
1988. AAAI, AAAI Press/The MIT Press.

[10] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation algorithm for robust,
vision-based mobile robot localization. Submitted for publication, 1998.

[11] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots.
Submitted for publication, 1998.

[12] A.P. Dempster, A.N. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[13] A Doucet. On sequential simulation-based methods for bayesian filtering. Technical Report
CUED/F-INFENG/TR 310, Cambridge University, Department of Engineering, Cambridge,
UK, 1998.

[14] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York,
1993.

[15] Z. Ghahramani and M.I. Jordan. Factorial hidden markov models. In Advances in Neu-
ral Information Processing Systems 8 (NIPS), pages 472–478, Cambridge, MA, 1996. MIT
Press.

[16] B. Hannaford and P. Lee. Hidden markov model analysis of force torque information in
telemanipulation. International Journal of Robotics Research, 10(5):528–539, 1991.

[17] J. Henderson, S. Salzberg, and K. Fasman. Finding genes in human DNA with a hidden
Markov model. In Proceedings of Intelligent Systems for Molecular Biology ’96, Washington
University, St. Louis, MI, 1996.

[18] M. Isard and A. Blake. Condensation: conditional density propagation for visual tracking.
International Journal of Computer Vision, in press 1998.

[19] B.H. Juang. Maximum likelihood estimation for mixture multivariate stochastic observations
of markov chains. AT&T Technical Journal, 64(6), 1985.

Monte Carlo Hidden Markov Models 31

[20] B.H. Juang, S.E. Levinson, and M.M. Sondhi. Maximum likelihood estimation for multi-
variate mixture observations of markov chains. IEEE Transaction and Information Theory,
32(2), 1986.

[21] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. ASME,
Journal of Basic Engineering, 82:35–45, 1960.

[22] K. Kanazawa, D. Koller, and S.J. Russell. Stochastic simulation algorithms for dynamic
probabilistic networks. In Proceedings of the 11th Annual Conference on Uncertainty in AI,
Montreal, Canada, 1995.

[23] S. Koenig and R. Simmons. Passive distance learning for robot navigation. In L. Saitta,
editor, Proceedings of the Thirteenth International Conference on Machine Learning, 1996.

[24] D. Koller and R. Fratkina. Using learning for approximation in stochastic processes. In
Proceedings of the International Conference on Machine Learning (ICML), 1998.

[25] D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. AI-based Mobile Robots: Case
studies of successful robot systems, Cambridge, MA, 1998. MIT Press.

[26] A. Krogh, I.S. Mian, and D. Haussler. A hidden markov model that finds genes in e. coli
dna. Nucleic Acids Research, 22:476–8–4778, 1994.

[27] K.-F. Lee. Automatic Speech Recognition: The Development of the SPHINX System. Kluwer
Publishers, Boston, MA, 1989.

[28] K.-F. Lee. Context-dependent phonetic hidden markov models for speaker-independent con-
tinuous speech recognition. In A. Waibel and K.-F. Lee, editors, Readings in Speech Recog-
nition. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990. Also appeared in the IEEE
Transactions on Acoustics, Speech, and Signal Processing.

[29] L.A. Liporace. Maximum likelihood estimation for multivariate observations of markov
sources. IEEE Transactions in Information Theory, 28(5), 1982.

[30] J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the
American Statistical Association, 93, 1998.

[31] P. Maybeck. Stochastic Models, Estimation, and Control, Volume 1. Academic Press, Inc,
1979.

[32] A. McCallum, R. Rosenfeld, T. Mitchell, and A.Y. Ng. Improving text classification by
shrinkage in a hierarchy of classes. In Proceedings of the International Conference on Ma-
chine Learning (ICML), 1998.

[33] G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley Series in Prob-
ability and Statistics, New York, 1997.

[34] M. Meilă and M.I. Jordan. Learning fine motion by markov mixture of experts. In Advances
in Neural Information Processing Systems 8 (NIPS), pages 1003–1009, Cambridge, MA,
1996. MIT Press.

32 Sebastian Thrun and John Langford

[35] A.W. Moore, J. Schneider, and K. Deng. Efficient locally weighted polynomial regression
predictions. In Proceedings of the International Conference on Machine Learning. Morgan
Kaufmann Publishers, 1997.

[36] R.M. Neal. Probabilistic inference using markov chain monte carlo methods. Technical Re-
port CRG-TR-93-1, Dept. of Computer Science, University of Toronto, Toronto, CA, 1993.

[37] R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse,
and other variants. In M.I. Jordan, editor, Learning in Graphical Models. Kluwer Academic
Press, 1998.

[38] S. M. Omohundro. Efficient Algorithms with Neural Network Behavior. Journal of Complex
Systems, 1(2):273–347, 1987.

[39] S. M. Omohundro. Bumptrees for Efficient Function, Constraint, and Classification Learn-
ing. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural
Information Processing Systems 3. Morgan Kaufmann, 1991.

[40] A.G. Pedersen, P. Baldi, S. Brunak, and Y. Chauvin. Characterization of prokaryotic and
eukaryotic promoters using hidden markov models. In Proceedings of Intelligent Systems
for Molecular Biology ’96, Washington University, St. Louis, MI, 1996.

[41] M. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filter. Journal of the
American Statistical Association, 1999. Forthcoming.

[42] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. In Proceedings of the IEEE. IEEE, 1989. IEEE Log Number 8825949.

[43] L.R. Rabiner and B.H. Juang. An introduction to hidden markov models. In IEEE ASSP
Magazine, 1986.

[44] D.B. Rubin. Using the SIR algorithm to simulate posterior distributions. In M.H. Bernardo,
K.M. an DeGroot, D.V. Lindley, and A.F.M. Smith, editors, Bayesian Statistics 3. Oxford
University Press, Oxford, UK, 1988.

[45] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 1995.

[46] L.K. Saul and M.I. Jordan. Exploiting tractable substructures in intractable networks. In
Advances in Neural Information Processing Systems 8 (NIPS), pages 486–492, Cambridge,
MA, 1996. MIT Press.

[47] H. Shatkay. Learning Models for Robot Navigation. PhD thesis, Computer Science Depart-
ment, Brown University, Providence, RI, 1998.

[48] H Shatkay and L. Kaelbling. Learning topological maps with weak local odometric infor-
mation. In Proceedings of IJCAI-97. IJCAI, Inc., 1997.

Monte Carlo Hidden Markov Models 33

[49] A.F.M. Smith and A.E. Gelfand. Bayesian statistics without tears: a sampling-resampling
perspective. American Statistician, 46:84–88, 1992.

[50] C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal dis-
tribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and
Probability 1, pages 197–206. University of California Press, 1955.

[51] M.A. Tanner. Tools for Statistical Inference. Springer Verlag, New York, 1993. 2nd edition.

[52] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and local-
ization for mobile robots. Machine Learning, 31:29–53, 1998. also appeared in Autonomous
Robots 5, 253–271.

[53] V. Vapnik. Estimations of dependences based on statistical data. Springer Publisher, 1982.

[54] A. Waibel and K.-F. Lee, editors. Readings in Speech Recognition. Morgan Kaufmann
Publishers, San Mateo, Californien, 1990.

[55] A. S. Weigend and N. A. Gershenfeld, editors. Time Series Prediction. Addison-Wesley,
Reading, MA, September 1993.

[56] G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report TR 95-041,
University of North Carolina, Department of Computer Science, 1995.

[57] G. Winkler. Image Analysis, Random Fields, and Dynamic Monte Carlo Methods. Springer
Verlag, Berlin, 1995.

[58] S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms. In S. Natara-
jan, editor, Imprecise and Approximate Computation. Kluwer Academic Publishers, Dor-
drecht, 1995.

