PAGE
13

Dialog Structure for Task-Oriented Conversations

by

Ananlada Chotimongkol

Language Technologies Institute

School of Computer Science

Carnegie Mellon University
76-379

Technical Communications for Engineers
May 6, 2003

Table of Contents

iiList of Figures

iiiList of Tables

iiiList of Tables

ivAbstract

ivAbstract

11.
Executive Summary

22.
Introduction

33.
Dialog Structure and Annotation

33.1.
Dialog structure

43.2.
Data representations

43.3.
Operations

43.4.
Dialog annotation

64.
Experiments

64.1.
Map task

64.1.1.
Dialog structure

94.1.2.
Data representations

94.1.3.
Operations

104.2.
Plane simulation task

104.2.1.
Dialog structure

104.2.2.
Data representations

114.2.3.
Operations

125.
Future Works

125.1.
Iterative supervised learning

14References

List of Figures

5Figure 1: A part of a conversation excerpted from a dialog in a map task

6Figure 2: An example of dialog annotation of a conversation in a map task

7Figure 3: A giver’s map

8Figure 4: A follower’s map

9Figure 5: An example of a line segment form

10Figure 6: A sample dialog in a plane simulation task

List of Tables

4Table 1: Discourse-oriented operations

9Table 2: Task-oriented operations in a map task

11Table 3: Task-oriented operations in a plane simulation task

Abstract

This report describes a three-level organization of a dialog structure: task, episode and concept which emphasizes the domain information transferred between conversation’s participants. In addition, it also describes the representations of the domain information and the operations required to update the representations according to the information exchanged in a conversation. A dialog structure and operations are annotated in an XML format. The proposed structure was verified on the conversations from two different domains: a map domain and a plane simulation domain. A dialog structure, data representations and operations of each domain are described. The experiments show that the proposed dialog structure can capture all necessary domain information in two different domains. The report also suggests the possibility of building a computer system that can automatically learn such a dialog structure from dialog transcription by using an interactive supervised learning process.

1. Executive Summary

A dialog system is a computer system that helps users obtain the information they want or resolve the problems by using natural spoken language as a method of communication. However, building such a system required intensive effort especially in acquiring the domain information e.g. ‘what is the important pieces of information in the domain?’ and ‘what needs to be done in order to complete the task?’ Currently, this knowledge engineering part is done by a domain expert. The ultimate goal of this research is to develop an algorithm that can automatically learn from human-human conversations a dialog structure and all information that is necessary for creating a system that can take over one of the participants’ role.

In this report, we propose a dialog structure that emphasizes the domain information transferred between conversation’s participants. The structure is based on the form-filling structure used by most of the information-accessing dialog systems. Our proposed structure is a three-level organization: task, episode and concept.

· A task is a subset of a conversation that serves a particular goal of a dialog.

· An episode or a topic is a set of utterances that corresponds to the sub-task.

· A concept is a word that carries important information in the domain.

In a travel-planning domain, the task is reserving a flight; the episodes are negotiating the first leg and negotiating the return leg, and the concepts are city name, airport name, date, etc.

We use two types of data repositories, a form and a list, to store the concepts. A list is used to store the concept that needs to be retained throughout the course of the dialog while a form is used for the concept that is local to each episode. Each domain requires different number of forms and lists.

Each episode contains a sequence of operations that is necessary for achieving a sub-goal of that episode. We use an operation to update the concepts stored the data representation according to the information exchanged in the conversation. There are two types of operations: a task-oriented operation and a discourse-oriented operation. A task-oriented operation is an operation that is specific to a particular task. A discourse-oriented operation is an operation that is general across all the types of goal-oriented dialogs. The examples of discourse-oriented operations are, acknowledgement, confirmation and repeat.

We verified our proposed structure with human-human conversations from two different domains: a map domain and a plane simulation domain. The annotation for a dialog structure and operations is in XML format. The experiments show that the proposed dialog structure can capture all necessary domain information in both domains.

In order to achieve our ultimate goal, which is to automatically create a dialog system that can take over one of the participants’ role in a conversation, we need an algorithm that can learn the proposed dialog structure, data representations and operations from the transcription of human-human conversations. However, some of these components are quite difficult to learn from just a dialog transcription. Nevertheless, we believe that if we give a learning system some additional information, it should be able to learn the components. Therefore, we propose an iterative supervised learning process as a solution. In an iterative supervised learning system, a human, not necessary a domain expert, annotates a dialog structure and operations for a couple of episodes. A learning system learns the required components from human annotation, annotates the rest of the transcript and then asks for feedback. The system iteratively learns from the feedback until a human satisfies with the result. An iterative supervised learning system will make the learning problem more probable, but at the same time minimizes human effort in providing the hints.

2. Introduction

A dialog system is a computer system that can communicate with users in a natural spoken language. A dialog system help users obtain the information they want or resolve the problems by using a natural conversation as if they are talking to a human assistant. The examples of a dialog system are, a travel planning system, Communicator, [Rudnicky et al., 1999] which helps a user make flight, hotel and car reservations and a weather forecast system, Jupiter, [Zue et al., 2000] which provides a weather information of a requested city. Both systems are telephone-based dialog systems that communicate with a user over a telephone line.

However, building such a system required intensive effort especially in acquiring the domain information e.g. ‘what is the important pieces of information in the domain?’ and ‘what needs to be done in order to complete the task?’ In an air ticket reservation system, the system has to know that the important information in this domain is a departure city, an arrival city, departure date, etc. And what the system has to do is to acquire this information from a user, search a database for the requested flight and then present it to a user for a reservation confirmation. In current dialog systems, this knowledge is provided by a human who is familiar with the domain. It takes a lot of human effort to come up with the correct and completed domain information. Moreover, in some domains, it is quite difficult to find a domain expert such as a military maintenance and repair task [Bohus 2002].

In many domains, there exist collections of human-human conversations. Even there isn’t one, we can collect it quite easily. For example, in a travel-planning domain, we can collect human-human conversations in this domain by recording conversations between travel agents and clients. These corpora are useful resources for learning domain information and dialog structures.

The ultimate goal of this research is to develop an algorithm that can automatically learn from human-human conversations a dialog structure and all information that is necessary for creating a system that can take over one of the participants’ role. We observed that a goal-oriented human-human conversation has a clear structure. When two persons engage in a conversation that has a specific goal, they organize their conversion so that the main ideas are clearly communicated and understood. We believe that by identifying this structure we will able to acquire the necessary information for creating a dialog system.

There are many proposed dialog structures in the past such as [Carletta, 1996]. However, those dialog structures are based on a linguistic theory which tries to describe discourse phenomena such as an instruction, a query and a reply rather than the domain information communicated by participants. Since we focus our attention on task-oriented conversations, we need a dialog structure that ties closely to this type of dialog rather than an abstract discourse-level structure that is generalized for all types of dialogs.

Our proposed structure is based on the form-filling structure used by most of the information-accessing dialog systems such as a travel-planning system, Communicator. We believe that the form-filling structure can describe not only an information-accessing dialog, but also all other types of goal-oriented dialogs.

In this report, we first describe the form-filling dialog structure, then verify our proposed structure on two different types of goal-oriented dialogs: a map task and a plane simulation task. At the end of this report, we propose a solution for our ultimate goal, a learning system that can learn a dialog structure automatically from the transcription of human-human conversations.

3. Dialog Structure and Annotation

In this section, we describe our proposed dialog structure and annotation. First we describe the three-level structure. We also describe other two elements that are necessary for capturing important information and phenomena in a dialog, data representations of domain information and operations for manipulating the information.

3.1. Dialog structure

We propose a three-level organization for goal-oriented dialogs. The organization is derived from our study of human-human conversations in a travel planning domain and our experience in implementing a travel-planning dialog system using a form-filling structure. The three levels in the structure are task, episode or topic, and concepts.

1) Task

A task is a subset of conversation that serves a particular goal of a dialog. Conversations in some domains can have different goals. For example, conversations between a customer and a customer service representative can range from billing inquiry to technical support. Each task has specific characteristic that can identify the goal of the task.

2) Episode

A rather complex task can be divided into a set of smaller tasks or sub-tasks. For example, a travel-planning task can be divided into the following sub-tasks: first leg negotiation, return leg negotiation, hotel reservation and car reservation. An episode or a topic is a set of utterances that corresponds to each of these sub-tasks. An episode is equivalent to a form in a dialog system that used a form-filling structure.

3) Concept

A concept is an important piece of domain information that the participants would like to communicate in the dialog. A concept is an abstraction or a type of information while a member or a concept member is an actual word that belongs to that concept. In an air-travel domain, the concepts are city name, airport name, date, etc. The members of a concept city name are Pittsburgh, Boston, Denver, etc. A concept is equivalent to a slot in a form-filling structure.

3.2. Data representations

Data representations are the actual repositories of the concepts. Since our dialog structure is based on a form-filling structure, a primary data representation is a form. A form contains a set of related concepts that is essential for performing a sub-task in each episode. Sometimes, we need other types of representations besides a form. One type of a data representation that is commonly used is a list. A list contains a set of concept words of the same type with additional attributes. A list differs form a form in the way that a list retains the information throughout the course of the dialog while a form retains the information only for each episode.

The number of forms and lists required in each episode varies from task to task. For example, a map task discussed in section 4.1 requires one form and two lists, while a plane simulation task discussed in section 4.2 requires two forms and two lists.

3.3. Operations

We use an operation to update the information stored in the data presentations. Each episode contains a sequence of operations that is necessary for achieving a sub-goal of that episode. There are two types of operations: a task-oriented operation and a discourse-oriented operation.

1) Task-oriented operation

A task-oriented operation is an operation that is specific to a particular task. Since a goal of each task is different, a set of operations required for achieving that goal is also different. The detail of task-oriented operations is described in the operations sub-sections, section 4.1.3 for a map task and section 4.2.3 for a plane simulation task.

2) Discourse-oriented operation

A discourse-oriented operation is an operation that is general across all types of goal-oriented dialogs. A list of discourse-oriented operations is given in Table 1.

	Operation
	Description

	acknowledge
	Give a response to indicate that the communication of previous utterances is successful.

	clarify
	Clarify or disambiguate information that has already been discussed by adding more specific information or adding additional information.

	confirm
	Confirm the information that has been discussed.

	overview
	Give an overview for the next episode.

	repeat
	Repeat the same information again.

	start_over
	Scratch out all the information for that episode.

Table 1: Discourse-oriented operations
3.4. Dialog annotation

We use XML to annotate the 3-level structure and the operations in the conversations. The sample dialog in Figure 1 was excerpted from a conversation in a map task. The corresponding XML annotation of this sample dialog is given in Figure 2. The detail of a map task corpus and its dialog structure annotation are given in section 4.2.

The sample dialog is the second episode in the conversation. This episode composes of 3 task-oriented operations and 2 discourse-oriented operations. Concepts inside the operation are the information that will be modified in the associated data representations. For example, the first task-oriented operation, a check_landmark operation, will mark a resolution attribute of the landmark tribal settlement as false.

GIVER: and then, do you have a tribal settlement?

FOLLOWER: no.

GIVER: well go along the bottom of the page ... and.

FOLLOWER: to the left?

GIVER: uh-huh sorry to the left, until you're a couple of centimetres in from the left-hand side of the page.

FOLLOWER: okay.

GIVER: and a couple in from the bottom of the page, right?

FOLLOWER: okay right ... right.

[image: image1.png]Figure 1: A part of a conversation excerpted from a dialog in a map task

[image: image2.png]Figure 2: An example of dialog annotation of a conversation in a map task

4. Experiments

We verified our proposed dialog structure with human-human conversations from two different domains that are not information-accessing task. These two domains are a map task and a plane simulation task.

4.1. Map task

We used a subset of conversations taken from the HCRC Map Task corpus [Anderson 1991] created by the Human Communication Research Centre at University of Edinburgh and Glasgow. A conversation in a map task is a conversation between two participants: a giver and a follower. Each of them has a map that the other cannot see. A giver’s map has a route marked on it while a follower’s map doesn’t have a route. The detail of both maps may not be the same. The goal of the task is to reproduce a giver’s route on a follower’s map. A giver is responsible for giving a follower instructions on how to draw the route. Figure 3 and Figure 4 show a giver’s map and a follower’s map, respectively. A conversation that corresponds to these maps is shown in Figure 1.

4.1.1. Dialog structure

A three-level organization of conversations in a map task is given below.

1) Task: draw a route on a follower’s map

2) Episode: draw a segment of the route

3) Concept: landmark, direction and distance

Figure 3: A giver’s map

Figure 4: A follower’s map

4.1.2. Data representations

We use both a form and a list to represent the concepts in a map task.

1) Line segment form

A line segment form captures information about a segment of the route discussed in each episode. The form composes of 3 components: the origin of the segment, a series of movements and the destination of the segment. An origin and a destination is a landmark or a location description (with a reference to a landmark). An origin is optional except for the first episode since it can be inferred from the destination of the previous segment. We mark the inferred origin in italic and put it in parentheses. A movement can be described by combining some of the following concepts: direction, distance and a reference landmark or a location description. Figure 5 shows a line segment form at the end of the conversation in Figure 1. The underlined concept is the concept that was confirmed by a confirmation operation.

2) Landmark lists

We used two lists of landmarks for grounding purpose, one for a giver and one for a follower.

Figure 5: An example of a line segment form
	Type
	Operation
	Description

	Grounding
	check_landmark
	Check the existence of a landmark

	
	define_landmark
	Define the landmark that is missing from one of the participants' maps

	
	check_position
	Check the current position of the follower on the map

	Form-filling
	movement
	Give an instruction on how to draw a segment of the route on the map

 Table 2: Task-oriented operations in a map task
4.1.3. Operations

There are two types of operations in a map task: a grounding operation and a form-filling operation. Each type of the operation associates with each data representation. Grounding operations manipulate the landmark lists while form-filling operations manipulate a line segment form. Task-specific operations in a map task are given in Table 2.

4.2. Plane simulation task

The plane simulation corpus was collected by University of Colorado at Boulder. The original purpose of this corpus is to look at participants’ teamwork and then categorize each session as good or bad using latent semantic analysis. The task is a military task involves 3 participants working on a plane simulation. The goal of the conversation is to take pictures of given targets. Each participant plays a different role in the task. The roles are a pilot, a navigator and a photographer. A pilot has to control the plane according to speed and altitude restrictions. A plane has to be at certain distance from a target before a photographer can take a picture. Figure 6 shows a sample dialog in a plane simulation task.

Figure 6: A sample dialog in a plane simulation task
4.2.1. Dialog structure

A three-level organization of conversations in a plane simulation task is given below.

1) Task: take pictures of a given list of targets

2) Episode: take a picture of one target

3) Concept: target, waypoint, distance, speed and altitude

4.2.2. Data representations

We use two lists and two forms to represent the concepts in a plane simulation task.

1) Target list

A target list is an ordered list of the targets that they have to take a picture. The first half of the list is ordered according to the negotiation about the sequence of targets namely which target is the first target to achieve and so on. The targets in second half of the list are the ones that haven’t been discussed about the sequence. They are ordered according to the order that they get added. The target in black is the target of the current episode.

2) Route

A route is a list contains a sequence of destinations. It represents the route of the plane. The destination can be either a waypoint or a target. The one in black is the current destination.

3) Restriction form

A restriction form captures all the plane restrictions: distance form a target, altitude and speed.

4) Plane status form

A plane status form represents the status of the plane in term of distance from destination, altitude and speed.

Figure 7 shows the four data representations: a target list, a route, a restriction form and a plan status form at the end of the conversation in Figure 6. The underlined concept is the concept that was confirmed by a confirmation operation.

Figure 7: Data representations for a plane simulation task
4.2.3. Operations

	Type
	Operation
	Description

	Target list manipulation
	add_target
	Add a target to a target list

	
	remove_target
	Remove a target from a target list

	
	add_next_target
	Add a target as the next target to be in focus in a target list

	
	set_target
	Set the target of the current episode

	Route creation
	goto
	Make a target or a waypoint a current destination

	
	add_next_distination
	Add a target or a waypoint as a next destination in the route

	Form-filling
	restriction
	Set the restriction for the plan

	
	status
	Report the plane status

Table 3: Task-oriented operations in a plane simulation task

There are 3 types of operations: a target list manipulation operation, a route creation operation and a form-filling operation. Target list manipulation operations associate with a target list while route creation operations associate with a route. For form-filling operations, a restriction operation modifies the data in a restriction form while a status operation modifies the data in a plane status form.

5. Future Works

In the previous segment, we showed that the proposed dialog structure could capture all necessary domain information in two different domains bedsides the information-accessing domain in which a form-filling structure was derived from.

In order to achieve our ultimate goal, which is to automatically create a dialog system that can take over one of the participants’ role in a conversation, we need an algorithm that can learn the proposed dialog structure, data representations and operations from human-human conversations transcription. Specifically, a learning system has to resolve the following problems:

1) Concept identification

The system has to identify all the important words in the domain and then groups words that belong to the same concept type together.

2) Episode boundary detection

3) Data representation selection

The system has to decide on the types and the number of the representations that it will use to represent the domain information, i.e. how many forms and lists should be used. The system also has to choose which concept will be represented in each data representation.

4) Operation identification

The system has to identify all the operations that are necessary in the domain.

5) Task classification

For the domain that each conversation can have a different goal, the system has to classify the type of the conversation according to the goal.

Some of these problems are quite difficult to solve from just a dialog transcription. For example, to come up with appropriate data representations required completed understanding of the domain. However, we believe that if we give a learning system some additional information, it should be able to solve the problems above.

5.1. Iterative supervised learning

Even though we decided to provide a learning system some additional information, that information shouldn’t require a lot of human effort. On the other hand, if we don’t give the system enough information, it may not be able to solve the problem or it may produce an incomplete solution. Therefore, our goal is to minimize the effort required on the human side namely compromising between the effort in providing the hint and the effort in correcting a learning system mistakes.

We propose an iterative supervised learning process as a solution to this learning problem. The learning process is as the following:

1) A human, not necessary a domain expert, studies the new domain for about an hour and annotates a dialog structure and operations on the transcript similar to the one in Figure 2 for a couple of episodes.

2) A learning system learns human annotation and annotates the rest of the transcript. Then the system asks for feedback from a human.

3) A human correct some of the system mistakes, if not all, and have a system learns from the correction. The learning process then iterates between step 2) and 3).

We believe that an iterative supervised learning system will make the learning problem more probable, but at the same time minimizes human effort in providing the hints.

References

[Anderson1991] Anderson, A., Bader, M., Bard, E., Boyle, E., Doherty, G. M., Garrod, S., Isard, S., Kowtko, J., McAllister, J., Miller, J., Sotillo, C., Thompson, H. S. and Weinert, R., “The HCRC Map Task Corpus”, Language and Speech, 34, pp. 351-366.

[Bohus2002] Bohus, D. and Rudnicky, A.I., “LARRI: A Language-Based Maintenance and Repair Assistant”, ISCA Tutorial and Research Workshop on Multi-Modal Dialogue in Mobile Environments, Kloster Irsee, Germany, 2002.

[Carletta1996] Carletta, J., Isard, A., Isard, S., Kowtko, J., Doherty-Sneddon, G., Anderson, A., HCRC dialogue structure coding manual, 1996.

[Rudnicky1999] Rudnicky, A. I., Thayer, E., Constantinides, P., Tchou, C., Shern, R., Lenzo, K., Xu, W., Oh, A., “Creating natural dialogs in the Carnegie Mellon Communicator system,” Proceedings of EUROSPEECH 1999, Budapest, Hungary, 1999.

[Zue2000] Zue, V., et al., “JUPITER: A Telephone-Based Conversational Interface for Weather Information,” IEEE Transactions on Speech and Audio Processing, Vol. 8, No. 1, January 2000.

		<discourse_operation id="1" type="acknowledge">

			FOLLOWER 18: okay.

		</discourse_operation >

		<task_operation id="3" type="movement">

GIVER 19: and <destination><location><location_mod>a couple in from </location_mod><map_ref>the bottom of the page</map_ref></location></destination>right?

		</task_operation>

		<discourse_operation id="2" type="acknowledge">

			FOLLOWER 20: okay right ... right.

		</discourse_operation >

	</episode>

	…

</dialog>

Origin: (a centimetre below the extinct volcano)

Movements:

go along the bottom of the page�go to the left

	go (to) a couple of centimetres in from the left-hand side of the page�go (to) a couple in from the bottom of the page

Destination: a couple of centimetres in from the left-hand side of the page, a couple in from the bottom of the page

DEMPC -> all

AVO, I've just sent the route. PLO, go ahead and start naming the targets.

PLO -> DEMPC

Targets are SSTE, Farea, Harea, MSTE, RSTE.

DEMPC -> AVO

AVO, go ahead and proceed to waypoint LVN.

AVO -> DEMPC

We were about 2 miles within there already. I changed course to Harea.

DEMPC -> all

AVO, radius of Harea is five miles. PLO, five miles.

AVO -> DEMPC

Roger.

PLO -> AVO

Yes. AVO, I need an altitude of greater than 3000.

DEMPC -> AVO

AVO, this is DEMPC. You have to maintain a speed above 50 knots, and stay below 200 knots.

AVO -> all

Roger. Speed changing to 181 altitude climbing to 3300. Currently 71/4 miles out from Harea.

Plane Status

Distance from destination:

7 1/4 miles

Altitude: 3300

Speed: 181

Restriction

Distance from target:

five miles

Altitude: greater than 3000

Speed: above 50 knots below 200 knots

Route:

LVN

Harea

Targets:

Harea

SSTE

Farea

MSTE

RSTE

SEN1

<dialog id="q8nc7">

	…

	<episode id="2">

		<task_operation id="1" type="check_landmark">

			GIVER 13: and then, do you have <target_landmark><landmark>a tribal settlement</landmark></target_landmark>?

			FOLLOWER 14: no <resolution>false</resolution>.

		</task_operation >

		<task_operation id="2" type="movement">

			GIVER 15: well

			<sub_movement id="1">

go <orientation><direction>along the bottom of the page</direction></orientation> ... and.

			</sub_movement>

			<clarification>

					FOLLOWER 16: to the left?

					GIVER 17: uh-huh sorry

				<sub_movement id="2">

<orientation><direction><comfirmed> to the left, </comfirmed></direction> </orientation>

				</sub_movement>

			</clarification>

		<sub_movement id="3">

until you're <destination><location><location_mod>a couple of centimetres in from</location_mod><map_ref> the left-hand side of the page</map_ref></location></destination>.

			</sub_movement>

		</task_operation >

