3D Modeling Using a Statistical Sensor

Daniel Huber and Martial Hebert Introduction

Problem

Automatically construct a digital 3D model of a real-world scene
 Input data from a 3D sensor (e.g., laser scanner) from unknown viewpoints and with unknown ordering (spatial or temporal)

Contributions

- Principled method to evaluate model hypothesis quality
- Stochastic search algorithm to find optimal model hypothesis
- New hypothesis representation allows multi-part output models when necessary

Model graphs and model hypotheses

The Robotics

Evaluating model hypothesis quality

Maximum likelihood local quality model

- Start with a simpler problem: What is the quality of registration between a pair of views?
- Want to avoid using fixed, user-defined thresholds, which are brittle
- Instead, we derive a statistical model using Bayesian decision theory
- M^+ = correct match M^- = incorrect match x = features derived from data **Goal:** estimate P(M^+ |x)

Define local quality (QL) as log odds ratio

 $Q_{L} = \log(\frac{P(M^{+}|x)}{1 - P(M^{+}|x)}) = \log(\frac{P(M^{+}|x)}{P(M^{-}|x)})$

 $\frac{\Pr(M^+|x)}{\Pr(M^-|x)} = \frac{\Pr(x|M^+)}{\Pr(x|M^-)} \frac{\Pr(M^+)}{\Pr(x|M^-)}$

prior probabilities

model of sensor and registration error

Estimate P(x|M⁺) and P(x|M⁺) from labeled training data
 Maximum likelihood parametric density estimation
 Model features using Gamma distribution

- Estimate P(M⁺) and P(M⁻) directly from frequency in training data
- Also, define Classifier (C_L)
- Decide M^+ if $Q_L > \lambda$, M^- otherwise Used to remove worst matches from G_{LD}
- Osed to remove worst matches non O_{LR}
- Several local quality measures have been derived using this framework, including one based on overlap distance and two based on visibility consistency

Benefits

Combine multiple independent features in principled manner
 Features with unrelated units can be employed (e.g., color or texture similarity)

Disadvantages

- Requires labeled training data
- Separate model for each data collection scenario (e.g., buildings, terrain, small objects)

Overlap local quality measure

registration)

- This quality measure consists of two features:
 Overlap fraction (F_{OV}) Fraction of two surfaces that overlap
- Overlap distance (D_{OV}) RMS distance between surfaces in overlapping region
- For two registered surfaces S_i and S_j , $F_{OV} = \max \left(\frac{A(R_i)}{A(S_i)}, \frac{A(R_j)}{A(S_j)} \right)$ A =surface area

 $R_i(R_j)$ = overlapping region of $S_i(S_j)$

- Estimate F_{OV} by sampling K points from S_i and from S_j , and counting the number (N_i and N_j) that overlap $F_{OV} \approx \max\left(\frac{N_i}{K}, \frac{N_j}{K}\right)$
- Similarly, estimate D_{OV} from the distances (d_{ik} and d_{jk}) between closest points in the overlapping region

$$D_{\rm OV} = \sqrt{\frac{\sum_{k=1}^{K} (d_{ik}^2 + d_{jk}^2)}{N_i + N_j}}$$

Assuming independence between F_{OV} and D_{OV}, this leads to the overlap local quality measure definition

 $Q_{\mathsf{L}} = \log\left(\frac{P(D_{\mathsf{OV}}|M^+)P(F_{\mathsf{OV}}|M^+)P(M^+)}{P(D_{\mathsf{OV}}|M^-)P(F_{\mathsf{OV}}|M^-)P(M^-)}\right)$

Extending to an entire model hypothesis Global quali Compute global quality (Q_c) by summing the local quality (Q_c) over all pairs of connected (not necessarily adjacent) views in G:

- $Q_{\mathsf{G}}(G) = \sum_{(i,j) \in V_c} Q_{\mathsf{L}}(V_i, V_j, T_{i,j})$
- $V_{\rm c}$ = set of connected views in G
- Using all connected views improves power of the quality measure by using additional constraints between nonadiacent views
- Model the effect of accumulating relative pose error, which is not encoded in the local quality model, by learning local quality models as a function of path length

 $Q_{G} = 115$

 $Q_{G} = -3183$

 $Q_{G} = 70$