Model and Stochastic Search

Carnegie Mellon University

Searching for the optimal model hypothesis

Institute

- Initialize with random model hypothesis
 Maximize Q the
- Maximize Q_G through repeated incremental hypothesis update operations – edge swap or edge flip
- Update choice is weighted using quality of underlying pair-wise registration (Q_L)

Results

Representative statistics

object	views	iters (time)	E _{MC}	E_{MR}
gnome	27	69 (106)	n/a	n/a
squirrel	18	48 (87)	n/a	n/a
angel1	17	45 (34)	n/a	n/a
Buddha	32	61 (194)	0.04%	0.30%
teeth	32	61 (215)	0.037%	0.20%
antornulas	20	n/2	100%	10%

<section-header>

Controlled experiments using simulated range sensor on synthetic objects show Accuracy not limited by the registration Reconstruction error ~ 0.02% of model size (0.04mm) Main error sources – sensor resolution, sensor noise, surface reconstruction voxelization Input objects Reconstructed models Weight of the sensor of the sensor

Model accuracy

Future work

- View selection Selectively register views to enable scaling to large numbers of views. Use a priori information such as view order or an estimate of likelihood of registration success
- Online algorithms Adapt current batch processing to an online algorithm for real-time automatic modeling
- Symmetry incorporate model of symmetry into the process