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Abstract
Many computer vision and robotics applications call for accurate three-dimensional (3D) models 
of real-world objects.  Current 3D modeling techniques require significant manual assistance or 
make assumptions about the scene characteristics or data collection procedure.  In this thesis 
work, we propose to fully automate the 3D modeling process without resorting to these restrictive 
assumptions.  Given a set of unordered range images and no additional a priori information 
about the scene, our system will generate an accurate 3D reconstruction.  Specifically, it is not 
necessary to know the relative pose between viewpoints or to indicate which views contain over-
lapping scene regions.

Our proposed automatic modeling system selects pairs of views that are likely to match and 
attempts to register them.  The results are verified for consistency, but some incorrect matches 
may be locally undetectable and some correct matches may be missed.  One of several discrete 
optimization techniques is employed to combine these potentially faulty pair-wise matches into a 
network of views called the model graph.  Incorrect pair-wise matches are detected by the incon-
sistencies they produce elsewhere in the model graph, while missed matches are recovered by 
inferring new links in the graph between overlapping views.  The overall model quality is 
improved by simultaneously registering all views before they are integrated together to form the 
final model.  We demonstrate the utility of automatic modeling with an application called hand-
held modeling, in which a 3D model is automatically created from an object held in a person’s 
hand.
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1  Introduction

Computer vision researchers have long studied the problem of constructing three-dimensional 
(3D) computer models of real-world scenes and objects.  With the advent of mass market 3D 
graphics cards, the demand for such models has skyrocketed.  Corresponding advances in 3D sen-
sors have led to relatively low cost range imaging devices that accurately measure the 3D struc-
ture of a scene from a single viewpoint.  Generally, not every surface in a scene can be observed 
from a single range image, so data from multiple viewpoints must be combined in order to form a 
complete model.  Although techniques for modeling from range images have advanced steadily 
over the past decade, current methods still require significant manual assistance or make assump-
tions about the scene characteristics or data collection procedure, limiting their applicability in 
many modeling applications.  In this proposal, we present a general method to fully automate the 
3D modeling process without resorting to these restrictive assumptions.

1.1  The 3D modeling problem 

The 3D modeling process involves two main steps: registration, in which the 3D data sets (views) 
are all aligned in a common coordinate system; and integration, in which the registered views are 
combined into a single entity (figure 1).  In this work, we concentrate on the registration phase 
because this is where the central automation issues lie.  Three interrelated problems must be 
addressed in the registration phase: 1) determining which views overlap significantly (Views must 
contain overlapping scene regions in order to be registered); 2) determining the transform 
between each pair of overlapping views (relative poses); and 3) determining the position of all 
views in a global coordinate system (absolute poses).

Figure 1: The 3D modeling process.  Range images of a scene are obtained from several viewpoints (top left) 
and converted to triangular surface meshes (top center).  Overlapping views are then registered with each 
other (top right), a process which is repeated many times.  All of the registered views are transformed into a 
common global coordinate system (bottom left) and integrated together to form the final model (bottom center 
and right).
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Existing systems solve these problems by mechanical methods, manual interaction, or by making 
simplifying assumptions about the scene.  One mechanical approach is to mount the scanner on a 
robot equipped with an absolute positioning sensor.  For example, Miller uses an autonomous 
helicopter with a differential global positioning system (DGPS) to construct terrain models [25].  
For modeling smaller objects, absolute poses can be obtained by mounting the sensor on a robot 
arm [43] or by keeping the sensor fixed and moving the object on a calibrated platform [42].  Rel-
ative poses can be estimated by mounting the sensor on a robot equipped only with a relative posi-
tioning system such as wheel encoders or inertial sensors.  Examples include Lu and Milios [24], 
El Hakim et al. [13], and Sequeira et al. [33], who modeled building interiors, and Shaffer, who 
mapped coal mines [34].  

A common manual registration method is to specify corresponding feature points in pairs of range 
images, from which relative poses can be derived [27].  In some systems, corresponding feature 
points are automatically detected and then manually verified for correctness [13].  Alternately, the 
3D data can be aligned directly through an interactive method [30].  In more advanced systems, a 
person indicates only which views to register, and system registers the views with no initial pose 
estimate [21][7].  With this approach, the user must manually verify the results.  

Automatic 3D modeling aims to solve these registration issues without using mechanical pose-
estimation methods and without requiring manual assistance.  In our system, it is not necessary to 
know (or measure) the relative pose between viewpoints or to indicate which views contain over-
lapping scene regions.  However, we will show that when this information is available, our system 
is able to take advantage of the additional knowledge.

One question that often arises is whether automatic 3D modeling is a useful goal to pursue.  There 
are three primary reasons why automatic 3D modeling is important.  First, it allows new applica-
tions, such as handheld modeling, that would be impossible otherwise (figure 2). With handheld 
modeling, the user holds an object before a desktop 3D scanner, obtaining range images from var-
ious directions without recording the object’s pose or whether consecutive views overlap.  Once 
the data is collected, the system automatically determines which views overlap, registers them, 
and integrates them into a final 3D model.  Automatic modeling makes data collection almost 
trivially easy, an advantage that applies to all existing 3D modeling applications as well.  A sec-
ond argument for automatic modeling is that manually assisted modeling is tedious and time-con-

Figure 2: The handheld modeling application.  A set of range images is obtained by holding an object before a 
3D scanner (left).  The automatic modeling system converts the images to surface meshes (center), determines 
which views overlap, registers them, and integrates them into the final model (right).
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suming.  Current data sets can contain hundreds of range images, and manually specifying 
correspondences takes many hours of work.  Automatic modeling will allow us to tackle even 
larger data sets, limited only by computing power.  Finally, automatic modeling offers an alterna-
tive to mechanical solutions, which add cost and complexity to a system while limiting its domain 
of applicability.  For example, a system with GPS will not work for indoor modeling, and a cali-
brated turntable system cannot model buildings or terrain.  Automatic modeling can handle all of 
these domains equally well.

1.2  Problem statement

Given an unordered set of range images of a scene, automatically and robustly construct a consis-
tent 3D model under the following assumptions:
1. The relative pose between view pairs may be unknown.
2. It is not known which view pairs contain overlapping scene regions.
3. The data may be noisy and may contain spurious views1.
4. The scene may be unstructured.  There is no guarantee that it will contain man-made objects 

or easily detectable features such as corners or lines.
5. The scene is static, containing only rigid, non-moving objects.
In the event that a single model using all the images cannot be found, determine a set of partial 
models.

1.3  Proposed approach

The difficulties of automatic modeling stem from the three registration-phase issues mentioned 
previously: determining overlapping views, relative poses, and absolute poses.  The goal of the 
registration phase is to find the absolute poses of all views.  Excluding mechanically assisted sys-
tems that measure absolute poses directly, almost all current approaches begin with the assump-
tion that approximate relative poses are given.  From this, the overlapping views can be 
determined by examining the 3D data, and then the absolute poses can be found by simulta-
neously registering all overlapping views (multi-view registration).  Johnson took the opposite 
approach, which is more difficult.  He assumed that the overlapping views were given, and found 
relative poses using pair-wise registration [19][21].  In our case, neither the relative poses nor the 
overlapping views are known, and this makes the problem much harder.

Our approach to automatic modeling is to identify views which are likely to overlap, register 
them, verify the resulting matches, and construct a consistent model from the verified matches 
using discrete optimization techniques.  Several key problems must be addressed.  First, a method 
is needed to efficiently determine which views are expected to result in successful and stable reg-
istration.  Second, pair-wise registration may find incorrect matches, so reliable verification pro-
cedures must be developed.  Although local verification can eliminate many false matches, scenes 
can contain local symmetries and ambiguities that make it impossible to determine the correctness 
of a match based solely on the views being registered (figure 3).  The third and most challenging 
difficulty is to construct a consistent model from these potentially faulty pair-wise matches.  The 
key here is that the locally undetectable errors can be found through the constraints imposed by 

1. Spurious views are data sets that contain substantial invalid data and should not be included in the final 
model.
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the correct matches and from the inconsistencies that occur in the final model when incorrect 
matches are used.  Finally, there is the problem of spurious views, which are views that contain 
invalid or insufficient data and should not be incorporated into the model.  This problem can 
occur, for example, in handheld modeling when the object to be modeled is inadvertently outside 
the scanner’s field of view.  A modeling system should be robust to isolated spurious views.

Our solution to the automatic modeling problem is implemented in a framework consisting of two 
processes working in tandem – the surface matching process and the model construction process 
(figure 4).  The surface matching process operates locally, selecting views that are likely to match, 
registering them, and performing local verification on the results.  Verified pair-wise matches are 
added to a pool of candidates called the working set.  The model construction process operates 
globally, combining matches selected from the working set into a network of views called the 
model graph.  Matches missed by pair-wise registration can be recovered by inferring new links in 
the graph between overlapping views, a process we call topological inference.  Inconsistent over-
lapping views (consistency conflicts) are evidence that the model hypothesis contains an incorrect 

Figure 3: Example of a local ambiguity that can only be resolved globally.  View from above of a hypothetical 
room (top left) and five scans of the room (bottom left).  Registration of views 4 and 5 gives two equally likely 
matches (top right).  If the incorrect match is used, views 1 and 2 are inconsistent (bottom center), but if the 
correct match is chosen, the entire model is consistent (bottom right).
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match, which must be removed.  The overall error of the final model is reduced through multi-
view registration.

We describe two classes of automatic modeling algorithms using this framework.  First, we con-
centrate on the model construction process, effectively eliminating the view selection portion of 
the surface-matching process by registering all possible view pairs up front. Then, we consider 
the more difficult case in which the surface-matching process selectively registers views as 
needed, but before presenting these algorithms, it is necessary to elaborate on two concepts cen-
tral to this framework: surface registration and the model graph

1.4  Surface registration algorithms

Surface registration algorithms play an important role in the modeling process.  Their purpose is 
to align two or more surfaces represented in different coordinate systems, thereby determining the 
transform(s) between the surfaces.  For rigid bodies, each transform can be represented by six 
parameters (e.g., three rotation angles and three translation distances).  We call a transform 
between a pair of views a relative pose and a transform between a single view and the world coor-
dinate system an absolute pose.  The result of registration between two views (pair-wise registra-
tion) is a relative pose. When extending registration to more than two views, the solution could be 
specified in terms of relative poses between all the views, but such a representation does not 
ensure consistency among all the relative poses, a problem that will be discussed more in section 
4.  Instead, the solution to multi-view registration problems is represented in terms of each view’s 
absolute pose.

Surface registration is generally formulated as an optimization problem involving the search for 
pose parameters that minimize a cost function which quantifies registration quality, such as the 
average squared distance between surfaces.  We use the term registration refinement to refer to 
algorithms that begin with initial estimates of the unknown pose parameters and iteratively 
improve the registration until a minimum of the cost function is reached.  Typically, these algo-
rithms converge to a local minimum, so the initial pose estimates must be close to their true val-
ues.  We use the term uninformed registration for algorithms that do not require initial pose 
estimates.  Algorithms in this class search for the minimum of the objective function over the 
entire parameter space and therefore can succeed even when initial pose estimates are not known.

With these definitions in mind, the registration algorithms used in this research can be classified 
as follows:

• uninformed pair-wise registration – used to register two possibly overlapping views with no 
relative pose estimate (section 2.2)

• pair-wise registration refinement – used for refining the results of uninformed pair-wise regis-
tration (section 2.3) and for topological inference (section 5)

• multi-view registration refinement – used to ensure consistency in the relative poses between 
three or more views (section 4)

Throughout this paper, when it is obvious or irrelevant whether initial pose estimates are avail-
able, we will omit the “uninformed” and “refinement” qualifiers.  In particular, we will refer to 
multi-view registration refinement simply as multi-view registration, since initial pose estimates 
are always required for this algorithm.
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1.5  The model graph

The construction and topology of 3D models can be described in terms of a graph data structure 
called the model graph.  A model graph, G, is a graph containing a node for each view of the 
scene.   An edge in the model graph connects two nodes with overlapping views and is annotated 
with the relative pose of the two views2 (figure 5).  For non-overlapping views, the relative pose 
can be calculated by compounding the transforms along a path between the corresponding nodes 
in G.  A connected model graph (i.e., all nodes are connected by some path) specifies a complete 
model, since every view can be transformed into a common world coordinate system.  If, instead, 
G contains several connected components, each component is a partial model.  A spanning tree of 
G is the minimum specification of a complete model.  Additional edges will create cycles in G, 
which can lead to inconsistencies because compounding transforms along different paths between 
two views may give different results.  The poses in a model graph are consistent if the relative 
pose of two views is independent of the path used for the calculation.  

Using model graph terminology, the goal of automatic modeling is to recover the true model 
graph, GGT, from an initial model graph, G0, which contains no edges.  A priori knowledge about 
the scene is easily encoded in G0.  For example, an initial relative pose estimate is represented by 
an edge in G0 connecting the two views.  If it is only known that the two views contain overlap-
ping scene regions, the edge is added, but the relative pose is left unspecified.  Transforming a 
model graph, G, from G0 to GGT involves adding, removing, and updating edges using the basic 
operations shown in figure 4.  Uninformed pair-wise registration adds one or more edges between 
two nodes in G.  Pair-wise registration refinement updates a single edge in G, while multi-view 
registration updates all the edges.  Topological inference connects two non-adjacent nodes whose 
views overlap, creating a cycle in the graph.  However, if the views contain conflicting surfaces, 
this indicates that an existing edge elsewhere in G should be removed.

1.6  Automatic modeling algorithms

Returning to the framework in figure 4, the performance of automatic modeling algorithms 
depends on the implementation details of the two processes: model construction and surface 
matching.  First, we focus on the model construction process by simplifying the view-selection 

2. In practice, additional information, such as registration quality, can be associated with model graph 
edges.

Figure 5: Model graphs contain a node for each input view and edges between overlapping views.  Edges are 
annotated with relative pose of the two views (e.g., T1,4).  The left graph illustrates a complete model, while the 
model graph on the right shows two partial models.  Multiple edges between nodes indicate alternative 
matches from pair-wise registration.
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component of the matching process.  Then we consider algorithms that incorporate more sophisti-
cated view-selection procedures.

The simplest view-selection algorithm is to try matching all possible view pairs and add all the 
results to the working set before the modeling process even begins.  This brute-force tactic is rea-
sonable for small numbers of views but does not trivially solve the automatic modeling problem 
because uninformed pair-wise registration can fail by finding false matches, missing true matches, 
or both.  The challenge is to separate the false matches from the correct ones and to find the miss-
ing matches by alternate means such as topological inference.  We will consider four algorithms 
based on this exhaustive matching approach:

1. sequential removal – start with all results in the model graph, then remove incorrect matches
2. sequential addition – start with an empty model graph and incrementally add matches
3. hierarchical merging – start by merging pairs of views into partial models, then repeatedly 

merge the partial models until a single model remains.
4. randomized search – start with a connected model graph and non-deterministically incremen-

tally update the model.

For large numbers of views, the combinatorics of view-pairing makes exhaustive matching com-
putationally intractable, and intelligent view-selection algorithms are needed.  One approach is to 
exploit the information inherent in individual views to sort or partition them in a way that 
decreases the number of pairs that must be registered.  For example, if the views can be parti-
tioned into groups with similar surface shape, exhaustive registration within each group would 
create a small number of partial models, which could then be exhaustively matched and combined 
into a final model.  The exhaustive matching modeling algorithms can be adapted to take advan-
tage of these selective matching techniques.

After summarizing the related work, we describe each component of our automatic modeling 
framework: pair-wise registration (section 2), local verification (section 3), multi-view registra-
tion (section 4), and topological inference and global verification (section 5).  Then we give 
details of the automatic modeling algorithms introduced in this section (section 6) and describe 
the experimental procedure that we will follow (section 7).

1.7  Related work

Section 1.1 already described the main approaches to 3D modeling from range images.  Another 
class of successful modeling algorithms use intensity images rather than range images.  These 
methods can be further subdivided into those that use a time sequence of images (structure from 
motion) and those that just use a set of photographs.  

Structure from motion relies on the ability to locate and track stable features (such as corners) 
over a sequence of images.  Given a sufficient number of tracked 2D features, the 3D location of 
the features and the camera poses can be recovered simultaneously.  Tomasi and Kanade devel-
oped a batch method called factorization that assumes an orthographic camera model, while 
Pollefeys et al. and Beardsley et al. employ sequential algorithms that estimate the motion 
between pairs or triplets of images [41][28][1].
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There are many different approaches to modeling from a set of images.  Debevec’s Facade system 
exemplifies a number of methods for modeling buildings [11].  With Facade, an approximate 
model is hand-constructed from primitives such as blocks and cones, and an optimization algo-
rithm finds the parameters of the primitives that minimize the disparity between the projected 
edges in the model and the original images.  At the other end of the size spectrum, shape from sil-
houette methods have been used to create 3D models of small objects by intersecting the viewing 
cones of a few registered photographs.  Sullivan and Ponce fit triangular splines to the resulting 
volume to enforce a smoothness constraint [40].  Kutulakos and Seitz extend the volume intersec-
tion idea to interior points [22].  Their space carving algorithm begins with a solid volume and 
removes voxels that do not have the consistent appearance (i.e., color) in all images in which they 
are observed.
 
2  Pair-wise registration

2.1  Converting to a surface-based representation

Rather than working directly on range images, each view is first converted into a surface mesh 
composed of triangles.  Meshes are a flexible representation of surfaces, and many tools and 
libraries specialize in manipulating and displaying them.  The conversion process is straightfor-
ward.  Pixels in the range image become vertices in the surface mesh, and triangles are formed by 
connecting each pixel with its four cardinal neighbors and two of its diagonal neighbors.  The 
main challenges are the detection and removal of range shadows and the handling of very large 
data sets.  

Range shadows, which are discontinuities that occur at occluding boundaries in the scene, are 
handled either by thresholding mesh edge lengths, or using a range shadow detector [18].  If range 
shadows are not removed, a phantom surface will be introduced into the mesh when pixels on 
both sides of the discontinuity are connected (figure 6). 

The range images from high resolution 3D sensors give rise to large surface meshes that exceed 
the capabilities of our computing hardware.  For example, a 6000 by 1500 pixel range image from 
our Z&F/Quantapoint scanner equates to a mesh with nearly twenty million faces.  This problem 
is addressed by a combination of down-sampling of the range image and simplification of the 
resulting mesh.  We use Garland’s quadric algorithm for mesh simplification for its speed and 
because it inherently simplifies low-complexity regions while maintaining the detail of high-com-
plexity regions with more faces (figure 7) [14][15]

Figure 6: Range (left top) and reflectance (left bottom) images of terrain.  The view shows a valley with a dirt 
road which runs between two hills and turns to the left in the distance.  A wireframe view of part of the result-
ing mesh shows the surface before and after range shadow removal (center and right).
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2.2  Uninformed pair-wise registration.

Uninformed pair-wise registration finds the relative pose that aligns two views with no initial esti-
mate of this transform.  Our algorithm, based on Johnson’s surface-matching engine, can be 
viewed as a black box which takes two surface meshes as input and outputs a ranked list of rela-
tive poses or no solution if the views could not be registered [19][21].  Inside the black box, the 
surface-matching engine searches for similarly shaped regions on two surfaces using point signa-
tures.  The signature associated with a given surface point encodes local surface properties, such 
as nearby shape, texture, or color.  In this implementation, the surface matching engine uses a 
shape-based signature called spin images, but other representations are possible [10][38].  The 
algorithm depends on the fact that the same surface point in two different views will have a simi-
lar signature (i.e., point signatures are viewpoint invariant).  Our implementation extends 
Johnson’s original algorithm, making it independent of the mesh resolution and adding a number 
of speed enhancements [6][20].

Given two surface meshes, the uninformed registration algorithm begins by computing point sig-
natures for a sampling of points on both surfaces.  Each point signature from one surface is com-
pared with those from the other surface, and the most similar pairs become candidate 
correspondences, some of which may be incorrect.  The candidates serve as seeds in a clustering 
algorithm that finds groups of correspondences that could arise from a single rigid-body trans-
form.   The relative pose computed from each group that passes this geometric consistency test is 
a candidate match.  Finally, the candidate matches are refined, verified, and ranked by a version of 
the iterative closest point (ICP) algorithm, and the top matches are provided as output.

No uninformed pair-wise registration algorithm is infallible, and this algorithm is no exception 
(figure 8).  The algorithm outputs the best results under the assumption that the input views con-
tain overlapping scene regions.  If this assumption is violated, the algorithm may still find a rea-
sonable result.  Even if the views overlap, there is no guarantee that the transform that best aligns 

Figure 7: Mesh simplification.  The original mesh shown with a grid texture map (left top) and in wireframe 
(left bottom).  The mesh after simplification (right top and bottom).
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the surfaces is the correct one.  The local verification procedures described in section 3 can detect 
some additional registration errors, but the fundamental limitation is that pair-wise registration is 
a local operation.  We address this limitation by using global consistency constraints to identify 
incorrect matches that cannot be detected locally.

Several other methods for uninformed pair-wise registration have been proposed, primarily for 
the purpose of object recognition.  Stein and Medioni define the splash, which is an encoding of 
surface normals along a circular slice through the object at a fixed radius from the basis point 
[38].  The encoded splashes are used for object recognition in a surface matching algorithm simi-
lar to Johnson’s surface matching engine.  Chua and Jarvis also use the idea of a circular slice at a 
fixed radius, but instead of recording surface normals for points on the intersecting curve, they 
measure the distance to the tangent plane passing through the basis point [10].  Surfaces are 
matched by searching for three pairs of matching signatures.  Chen et al. dispense with point sig-
natures entirely and use a random sampling approach to search for three or more pairs of points on 
the two surfaces that are geometrically consistent under rigid transformation [7].  Higuchi et al. 
use a representation called the Spherical Attribute Image (SAI), which an encodes an object’s sur-
face curvature on the surface of a sphere [17].  Surfaces are matched by rotating the SAI’s to max-
imize their similarity. 

2.3  Pair-wise registration refinement

The results of uninformed pair-wise registration can be improved by following up with registra-
tion refinement, which aligns two surfaces under the condition that a good estimate of the relative 
pose is already known.  We have implemented two algorithms for registration refinement.  One 
minimizes the distance between pairs of points on the two surfaces, while the other minimizes the 
distance between points and tangent planes.  The first algorithm, a version of the ICP algorithm 
extended to handle partially overlapping surfaces [4][44], capitalizes on the fact that, for relative 
poses near the solution, corresponding points on two surfaces can be approximated by closest 
points on the two surfaces.   The objective function minimized by the algorithm is the sum of 
squared distances between closest points on two surfaces, Si and Sj:

(1)

(2)

Figure 8: Uninformed pair-wise registration examples.  A correct match between views 1 and 2 (left) and an 
incorrect match between views 1 and 9 (right).  The surface matching engine reports the incorrect match 
because the overlapping region (the head) matches quite well. 
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where R and t are the rotation and translation components of the relative pose, pk are the sampled 
points on Si, and qk are the corresponding closest points on Sj.  Each iteration establishes corre-
spondences between closest points on the two surfaces, computes the transformation that mini-
mizes the objective function for these fixed correspondences, and compounds the relative pose 
estimate with this incremental transformation.

The main drawback to the ICP algorithm is slow convergence for certain surfaces.  Often, surface 
registration passes through two phases.  In the first phase, the residual is reduced quickly as the 
two surfaces snap together.  Then, in the second phase, the reduction slows because the surfaces 
must slide relative to one another (figure 9).  The point-to-point correspondences act to hold the 
surfaces in place, slowing or sometimes stopping the sliding motion altogether.

The second algorithm alleviates the slow convergence problem of ICP by effectively allowing 
correspondences to slide along the surface.  In this algorithm, instead of minimizing point-to-
point distances, we minimize point-to-surface distances, approximating the surface by its tangent 
plane.  The implementation iterates over the same steps as the ICP algorithm except that the 
objective function (1) is replaced by: 

(3)

where  is the unit normal at pk. Unlike ICP, where the transform that minimizes the objective 
function for fixed correspondences can be found in closed form, this algorithm requires non-linear 
optimization to find the transform at each iteration.  Consequently, even though fewer iterations 
are necessary, each iteration requires more computation than with the ICP algorithm.  Our algo-
rithm is similar to that of Chen and Medioni [8].

3  Local verification

Local verification is the process of deciding whether two surfaces are correctly registered in terms 
of the quality and stability of the match between the surfaces.  For a high-quality match, the sur-
faces should overlap significantly and be close together wherever they overlap, and for a stable 
match, the uncertainty of the relative pose should be small in all dimensions.  Local verification 
checks can be applied directly to registration results or indirectly through compounded transforms 

Figure 9: Minimizing closest point distances leads to slow convergence rates because the surfaces cannot slide 
(left), but minimizing point to plane distances does not have this limitation (center and right).
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as part of the topological inference algorithm.  Additionally, unthresholded versions of the quality 
and stability measures can be used during model construction for ranking matches.  In this sec-
tion, we describe two approaches for measuring registration quality (overlap distance measures 
and visibility consistency checks) and one for measuring registration stability (differential con-
straints).

3.1  Overlap distance

One way to judge the quality of registration between two surfaces is to directly measure the dis-
tance between the surfaces in overlapping regions (figure 10).  For this measure to be meaningful, 
the surfaces should overlap substantially, so the amount of overlap is considered as well. We use 
the following definition of overlap:

A point, p, on surface S1 overlaps surface S2 if 1) the point, q, on S2 closest to p is an 
interior (non-boundary) point of S2; 2) the angle between the surface normals at p 
and q is less than a threshold, T; and 3) the Euclidean distance, d, between p and q is 
less than a threshold, D.

This definition is relatively insensitive to the choice of thresholds since most non-overlapping 
points fail the first criterion.  One way to choose the thresholds is based on statistics of the distri-
bution of point distances and normal differences for hand-labeled overlapping points on correctly 
registered training sets.

To compute the amount of overlap for surface meshes, we iterate over the vertices of the first 
mesh, computing whether each point overlaps the second mesh according to the definition above.  
Then we sum the surface area of all the faces which contain overlapping vertices.  Faces that 
straddle the boundary of the overlapping area will have only one or two overlapping vertices and 
therefore contribute 1/3 or 2/3 of their area respectively.  Alternately, the exact intersection of the 
face and the boundary can be computed, but such an approach gives similar results and requires 
much more computation.

The computation of overlap distance follows essentially the same algorithm except, in this case, 
we compute the overlap distance by averaging the distance at the vertices of each face and 

Figure 10: Overlap measurement examples for one correct match (left) and two incorrect matches (center and 
right).  The overlapping region is highlighted in red, and the captions indicate the overlap amount and dis-
tance.  Notice the overlap distance for views 1 and 9 is relatively small.

Views 1 and 2: 37%, 1.9mm Views 1 and 12: 39%, 4.7mmViews 1 and 9: 12%, 2.8mm
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weighting by the face area.   As with overlap estimation, border faces contain one or two overlap-
ping vertices and are weighted by 1/3 or 2/3 of the face area respectively.  Summing the area-
weighted overlap distance for all faces and dividing by the total overlap area gives the average 
overlap distance.

By considering these two measures – amount of overlap and average overlap distance – as fea-
tures, a classifier can be created to decide whether the two surfaces are correctly registered.  The 
current implementation uses a linear decision boundary with manually specified parameters, but 
more complex classifiers could be implemented if needed and the parameters could be learned 
from hand-labeled training data.  Figure 11 shows the classification of the results of pair-wise reg-
istration between the fifteen views shown in figure 2.

3.2  Visibility consistency 

If the surfaces are derived from images, we can derive a more principled verification measure by 
looking at the consistency of the two surfaces from the perspective of one of the sensors.  For 
example, consider the surfaces in figure 12 viewed from the sensor position C1.  For a correct reg-
istration, the two surfaces are consistent wherever they overlap.  For an incorrect registration, two 
types of inconsistencies can arise.  A free space violation occurs when a region of S2 blocks the 
visibility of S1 from C1, while an occupied space violation occurs when a region of S2 is not 
imaged by C1, even though it should be.  These inconsistencies serve as the basis for a verification 
procedure that can detect mis-registration in cases where the overlap distance tests will fail.  Fur-
thermore, the same procedure can be used to check for inconsistencies from the perspective of C2.

Visibility tests have been used previously in other 3D vision contexts, including hypothesis verifi-
cation, surface registration, and multi-view integration.  Bolles and Horaud use the difference 

Figure 11: Using overlap measures to verify matches.  The graph shows overlap amount and distance for the 
matches from all pairs of views the angel data set.  Successful matches are labeled ‘+’ and incorrect matches 
are labeled ‘x’.
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between predicted and measured range to verify hypothesized model poses in 3DPO, an object 
recognition system [5].  The system classifies range data into one of three categories: positive evi-
dence - the measured and predicted ranges are approximately equal; negative evidence - the pre-
dicted range is significantly shorter than the measured range; and neutral evidence - the predicted 
range is significantly longer (since other objects in the scene may be occluding the target).  Eggert 
et. al. use visibility tests to speed up convergence of their pair-wise registration refinement algo-
rithm [12].  Not only do they explicitly detect and eliminate occluded points from being matched 
during the mapping of corresponding points, but points on the occluding side of step discontinui-
ties are marked as “occluders” and mapped to the nearest occluded point on the other surface.  
Soucy and Laurendeau define the Spatial Neighborhood Test for integrating registered range 
images [37].  Points from one range image are projected into the other, and tested for closeness 
based on the assumption of a constant error bound.  Robert and Minaud use a similar test on depth 
differences between views to eliminate outliers when integrating range-images from stereo cam-
eras [31].

3.2.1  Measuring free space violations

Free space violations can be detected by projecting a ray from the origin of C1 through a point, p1, 
on S1.  If the ray passes through S2 at a point, p2, which is significantly closer to C1 than p1, then 
p2 is an inconsistent point.  We must test whether the point is significantly closer because even for 
correctly registered surfaces, the two points will not have exactly the same range.  These points 
can be excluded with a suitably chosen threshold.  However a better test of significance is to use 
an error model for the data.  Range data errors can be approximated by a Gaussian distribution in 
range and a two-dimensional (2D) Gaussian distribution perpendicular to the range.  With this 
model, we can use a statistical test to estimate the probability that the two points are samples of 
the same surface.  Additional improvements may be possible by incorporating the difference in 
surface normal estimates for the two points.  

Figure 12: Visibility consistency verification.  For correct registration, the two surfaces are consistent when 
viewed from the perspective of sensor C1 (left), but for an incorrect registration, free space violations occur 
wherever surface S2 is significantly closer than S1, and occupied space violations occur wherever S2 is not seen 
by C1 even though it should be detected (right).
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The free space violation detection algorithm is straightforward and can be implemented effi-
ciently using z-buffers:

1. Transform S2 into the coordinate system of C1
2. Project the faces of S1 and S2 into separate z-buffers.
3. For each pixel that is occupied in both z-buffers,  

3a. Compute the distances, d1 and d2, from the origin of C1 to S1 and S2 respectively
3b. If d2 is significantly less than d1 (according to the significance test described above), mark 

the pixel as a free space violation.

3.2.2  Measuring occupied space violations

Occupied space violations are more complicated to detect than free space violations.  Recall that 
an occupied space violation occurs when the sensor fails to see a surface that should be seen 
according to the data from another view.  A number of reasons can account for this sensing fail-
ure.  The surface may face away from the sensor, may be occluded by another surface, or may be 
out of sensing range.  Depending on the sensor, certain surface materials and geometries produce 
low-quality measurements that may be removed during the conversion to a surface mesh.  We can 
account for many of these effects with an appropriate imaging model, which estimates the proba-
bility of observing a surface under different conditions such as distance to the surface and viewing 
angle (the difference between the surface normal and sensor viewing direction).

The occupied space violation detection algorithm can be implemented using the same z-buffers 
computed in the free space violation detection algorithm:

1. Transform S2 into the coordinate system of C1.
2. Project the faces of S1 and S2 into separate z-buffers.
3. For each pixel, k, that is occupied in the z-buffer for S2 only, use the imaging model with 

parameters a(p2k) from S2, compute Pd(a(p2k)), the probability of detecting the point, p2k, 
from the perspective of C1.

One way to combine the individual probabilities is to assume each measurement is conditionally 
independent given the underlying scene.  Then the probability of failing to detect all the missing 
data is:

(4)

3.3  Differential constraints

The shape of the surfaces to be registered affects the uncertainty of the resulting registration.  For 
example, after successfully registering two planes, all translations along the plane and rotations 
about the surface normal have no effect on the distance between the surfaces.  We analyze the 
constraints imposed by surface geometry by considering the effect of small changes in relative 
pose on the distance between overlapping surfaces.  The differential transform that induces the 
smallest change in the overlap distance corresponds to the most unconstrained motion.  This idea 
is based on the work of Simon, who used constraint analysis to select points on a surface to maxi-
mize expected registration accuracy [35]. 

P
d

1 Pd a p2k( )( )–( )
k

∏=



18

Although a full derivation of the geometric constraint measure would be too lengthy, some intu-
ition can be gained by considering registration as a least squares optimization of the closest point 
distance error metric.  Near the minimum, the cost function can be approximated by a six-dimen-
sional paraboloid with curvature defined by the Hessian of the distance function [29].  Principal 
component analysis on the Hessian gives a set of eigenvectors and eigenvalues.  The eigenvector 
corresponding to the smallest eigenvalue represents the least constraining differential transforma-
tion.  Simon lists several measures that summarize the degree of constraint based on the relative 
magnitudes of the eigenvalues.  These measures can be used to estimate the reliability of a regis-
tration result.  Differential constraint analysis may prove to be useful for view selection as well.  
For example, the constraints imposed by registering a surface with itself can be used to predict the 
reliability of future registration with other surfaces.

4  Multi-view registration

Multi-view registration extends pair-wise registration refinement to work with more than two 
views, aligning them all simultaneously.  The benefits of multi-view registration can be seen dur-
ing in the modeling process when we construct model hypotheses from pair-wise matches.  Small 
errors in relative poses accumulate whenever the transforms are concatenated, but when the 
model graph contains cycles, the alternate paths between views provide constraints that can 
reduce the accumulated error.  For partial models, this reduction increases the chance of success-
ful topological inference, since the views involved will be better aligned.  In the final model, the 
effect of accumulated error is an obvious gap or seam in the model surface.  Multi-view registra-
tion enforces consistency among the relative poses, ensuring that the relative pose between any 
two views is independent of the path over which the calculation is performed and distributing the 
accumulated error over the entire model.

The two registration algorithms described in this section are the multi-view analogs of the two 
pair-wise registration refinement algorithms in section 2.3, and both reduce to the pair-wise ver-
sions when registering only two views.  As with the pair-wise refinement algorithms, a good ini-
tial estimate of the pose parameters is required.  The consistency of relative poses is ensured by 
working with absolute poses of each view.  One view is selected as the base view, and its absolute 
pose is set to the identity transform and held constant throughout the process.  The initial absolute 
poses of the remaining views are computed by concatenating relative poses with respect to this 
base view.  Before presenting details of the two multi-view algorithms, we describe hierarchical 
registration, an alternative approach used by Johnson [19].

With hierarchical registration, surfaces are registered in a pyramid fashion, alternating between 
registration and integration.  At each level of the pyramid, two or more pairs of surfaces are pair-
wise registered and integrated to form a single surface at the next higher level, and the process is 
repeated until all surfaces are combined.  As a final step, all the original views are integrated 
using improved relative poses derived from the registration pyramid.  The disadvantage of this 
method is that the integration at each level is a forced commitment to the relative pose parameters 
between those surfaces.  If, later in the process, another surface shows that the original registra-
tion was incorrect, it is too late to change.  As a result, even though hierarchical registration tends 
to smooth the visual effects of accumulated error, it does not take advantage of all the available 
overlapping surface constraints.  The multi-view registration algorithms do not suffer from this 
early commitment problem because the views are all registered simultaneously.
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The first multi-view registration algorithm extends the ICP algorithm.  At each iteration, the 
squared distance of closest points on all overlapping surfaces is minimized:

(5)

(6)

where Ri and ti (Rj and tj) are the rotation and translation components of the absolute pose of view 
i (view j), pijk are the sampled points on the region of Si that overlaps Sj, and qijk are the corre-
sponding closest points on Sj.

Like ICP, each iteration of the algorithm involves calculating closest points followed by minimi-
zation of the objective function using those fixed correspondences.  However, in this case, the 
minimization cannot be solved in closed form, so an inner loop is necessary.  Our implementation, 
based on that of Benjemaa and Schmitt, operates efficiently by summarizing the closest point cor-
respondences in a matrix that is only computed once per outer iteration, reducing the computation 
of the inner minimization loop [2].  Unfortunately, the algorithm as a whole suffers from the same 
slow convergence problems as ICP, only more so, because the correspondences established 
between many different overlapping surfaces form a tight web that often entirely prevents the sur-
faces from sliding.  As with pair-wise registration, the multi-view solution to this problem is to 
minimize point to tangent plane distances instead, replacing (5) with:

(7)

where  is the unit normal at pijk.

Unlike the multi-view ICP algorithm, this objective function cannot be manipulated to avoid iter-
ating over all correspondences, so a slower inner loop minimization is required.  The current 
implementation uses the Levenburg-Marquardt algorithm for this non-linear optimization.  Multi-
view registration using point-plane correspondences was originally proposed by Neugebauer [27].

Figure 13 shows a cross-section through several versions of a merged model.  The position of the 
cross-section is synchronized so that the same slice is shown for all algorithms.  Both multi-view 
algorithms perform better than the hierarchical method, but the point-plane algorithm is visually 
better.

A number of other multi-view registration algorithms have been developed.  Bergevin et al. 
repeatedly perform pair-wise registration on pairs of overlapping views using a modified version 
of Chen and Medioni’s algorithm [3].  Pulli uses a similar approach based on the ICP algorithm 
[30].  Lu and Milios derive uncertainty measures (covariance matrices) for the relative poses and 
solve for a consistent set of relative poses that minimize the total Mahalanobis distance between 
the two pose vectors for all overlapping view pairs [24].  Stoddart and Hilton use the analogy of a 
mechanical system in which corresponding points are attached by springs to derive a set of force-
based incremental motion equations that are equivalent to gradient descent [39].  Eggert et al. also 
use a mechanical system analogy, but they include an inertia term and also update the correspon-
dences over time [12].  Goldberger uses a model-based approach based on the EM algorithm [16].  
At each iteration, every view is registered to the current model and then a new maximum likeli-
hood model is created from the updated views.    
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5  Global verification

In a correctly constructed model, all of the views should be consistent with one another.  Just as 
local verification checks the consistency of pair-wise matches, global verification checks the con-
sistency of an entire model.  In this section, we discuss two closely related topics: topological 
inference and conflict detection.

5.1  Topological inference

When constructing a model, some model graph edges simply cannot be found using uninformed 
pair-wise registration, either because the surfaces do not overlap sufficiently or because the sur-
face shape is not unique enough to register.  Topological inference addresses this problem by 
actively detecting overlapping surfaces based on the model topology and adding the inferred links 
to the model graph.  Furthermore, uninformed registration is a more computationally intensive 
operation, making topological inference the logical choice in situations where both operations 
could be applied.  The term topological inference was inspired by Sawhney et al., who used simi-
lar ideas in two dimensions to infer relations in a sequence of images for improved mosaicing 
[32].

Topological inference can be attempted between any two views that are connected in the model 
graph, but only when the surfaces overlap is there a chance of success.  A simple, coarse test for 
possible overlap is to form a 3D bounding box around each surface and check for their intersec-
tion in a common coordinate system.  The local verification procedures in section 3 provide a 
more precise secondary check.  If the verification is successful, the corresponding edge can be 

Figure 13: Comparison of multi-view registration algorithms.  a) a cross section through the model (all slices 
are synchronized); b) pair-wise registration only; c) hierarchical registration; d) point-point multi-view regis-
tration; and e) point-plane multi-view registration.

(a)

(c) (d) (e)

(b)
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added to the model graph, and inferred edges with sufficient overlap can be improved with pair-
wise registration refinement if necessary.

Topological inference will not work if the uncertainty in the relative pose is too large.  For exam-
ple, if two views are connected only by a long sequential path, the cumulative uncertainty along 
that path may be so large that the bounding boxes no longer intersect even though the views con-
tain overlapping scene regions.  In this case, we could use an estimate of the uncertainty between 
views to compute the likelihood that the views should overlap.  These uncertainty estimates could 
be generated by propagating pair-wise registration uncertainty through the network [36], by con-
sidering all pair-wise uncertainty estimates simultaneously [24], or possibly using statistical 
parameter estimation techniques such as bootstrap [9].  Since such large uncertainties have not 
been observed in practice, this line of research will only be pursued if the need arises.

5.2  Conflict detection

What happens if the visibility consistency check in topological inference fails?  In that case, the 
two views are in conflict, which indicates that an incorrect edge lies somewhere in the model 
graph.  The conflict does not tell us which edge is incorrect; the only constraint is that it must lie 
in one of the paths connecting the two views in the graph.

Conflicts can occur between views even if the bounding boxes of their surfaces do not intersect.  
A coarse test for the possibility of conflicts must also take into account the free space between the 
surface and the sensor.  This can be accomplished by including the sensor’s viewing frustum in 
the bounding box intersection test. A correct model should be free of conflicts, but the method for 
removing detected conflicts depends on the automatic modeling algorithm and will be deferred to 
the next section.

6  Automatic modeling algorithms

Now that we have described the component tools – pair-wise registration, local verification, 
multi-view registration, and global verification – we turn our attention to the full problem of auto-
matic modeling.  As discussed in the introduction, our framework consists of two processes: the 
surface matching process, which selects pairs of views, registers them, and locally verifies the 
resulting matches; and the model construction process, which combines the pair-wise matches 
into a consistent model.  Many of the pair-wise matches will be incorrect, and it is possible that 
even the best match between two views is not the correct one.  A model will be corrupted if even 
a single incorrect match is included in its model graph.

In the most general sense, automatic modeling is an optimization problem.  We search for the 
most likely model given the data.  However, this problem is unique in that it lies in both the con-
tinuous and the discrete domains.  In the continuous sense, the optimization is a search for the 
absolute pose of each view, which is a search over the continuous space of pose parameters of all 
views.  On the other hand, using the model graph approach, the optimization is discrete, based on 
the set of distinct relative poses given by pair-wise registration.  The automatic modeling problem 
cannot be solved solely within the continuous or discrete domains.  Instead, we must work with 
both.  While the low-level operations (e.g., pair-wise registration refinement) optimize in the con-
tinuous domain, we approach model construction primarily from the perspective of discrete opti-
mization.  Unlike most discrete optimization problems, the possible choices are not all known in 
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advance.  View selection implies that many pair-wise registrations will not be attempted, and even 
if we exhaustively match all pairs, some correct matches may be missed.  Additionally, topologi-
cal inference introduces new choices and constraints that depend on specific model graph config-
urations.

Much of the work to be done in this thesis research centers on the model construction algorithms.  
We can, however, present an outline of some of the algorithms we are considering.  We begin by 
studying exhaustive registration algorithms and then extend the ideas to incorporate view selec-
tion.  The performance of these algorithms will be compared using objective criteria including 
topological accuracy of the model graph, global model error, computational complexity, and 
robustness.  Additional details of the experimental process will be presented in section 7.

6.1  Exhaustive registration algorithms

With exhaustive registration algorithms, we first perform uninformed pair-wise registration of all 
possible view pairings.  Since pair-wise registration can generate false matches and miss correct 
matches, the modeling problem is primarily a matter of separating the false matches from the cor-
rect ones and determining the missing matches by topological inference and conflict detection.  
Initially, we will consider four algorithms based on exhaustive registration: 

• sequential removal
• sequential addition
• hierarchical merging
• randomized search

6.1.1  Sequential removal

This algorithm begins with a model graph containing all the matches from exhaustive registration 
and removes edges until all conflicts have been eliminated.  Local verification can be used to sort 
the matches based on registration quality, and the worst edges can be removed until global verifi-
cation determines that the remaining edges are consistent.  Since the penalty for failing to detect 
an incorrect match is significant, it is better to remove some correct matches as long as incorrect 
ones are removed too.  This is allowable, since topological inference can re-establish the edges 

Figure 14: Progression of the model graph for the angel model (sequential removal algorithm).  a) The initial 
model graph with correct matches shown with arrows and incorrect matches shown without arrows (for clar-
ity, only incorrect matches involving views 1 and 2 are shown).  b) After removal of the bad matches using the 
overlap measurements, the model graph has two components.  c) By applying topological inference with a 
threshold of 30% overlap, several new links are discovered.  d) Repeating multi-view registration and topolog-
ical inference with successively lower overlap thresholds gives the final model graph. 
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later.  However, if removing an edge separates the model into two partial models, the partial mod-
els cannot be recombined.  A similar problem occurs if the initial model graph is not connected, 
which happens when one or more views does not match any other view. 

A simple version of this approach was implemented as a demonstration of handheld modeling.  
Fifteen views of an angel statue were obtained by holding the object before a 3D scanner (figure 
2).  Exhaustive registration led to the initial model graph of figure 14a.  The overlap measure clas-
sifier was used to select edges to be removed (figure 11).  The remaining model graph contains 
two partial models (figure 14b).  Views 4 and 7 registered only with each other, so they could not 
be connected with the main model.  Next, we performed multi-view registration on the main 
model followed by topological inference (figure 14c).  Repeating multi-view registration and 
topological inference with successively lower overlap thresholds (figure 14d) produced the final 
model in figure 15.

6.1.2  Sequential addition 

Instead of pruning bad matches from the model graph, the opposite approach is to begin with a 
seed view and incrementally add additional views, building the entire model from this single base.  
This could be accomplished with a simple informed search algorithm such as best first search.  To 
increase the chance of success, several models could be constructed starting from different seed 
views.  The main danger with the sequential addition algorithm is that if an incorrect match is 
added to the model hypothesis at any time, the final model will be corrupted.  This error may not 
be detected until several more views are added, limiting the effectiveness of backtracking, since 
we do not know how far to backtrack.  The likelihood of adding incorrect matches could be 
reduced by preferentially selecting matches that create cycles in the model graph.  These cycles, 
provide multiple paths of supporting evidence for a correct match, or looking at it another way, 
provide multiple chances for detecting an incorrect match.  Given the consistency constraints 
imposed by a model graph with cycles, it is possible that sequential addition can be posed as a 
constraint satisfaction problem.

6.1.3  Hierarchical merging

One disadvantage of the previous two algorithms is that some views may not match well with any 
other views, which leads to multiple partial models even when a single model should be obtained.  

Figure 15: Three views of the final angel model: top view of merged data sets (left); a horizontal slice through 
the merged model (center); and a rendering of the completed model after integration (right).
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For example, in figure 14b, the two partial models could not be joined by the sequential removal 
algorithm.  However, if we were to attempt to register the two partial models, the complete model 
would be found.  This suggests an algorithm in which we merge partial models.  We call this 
approach hierarchical merging. 

With hierarchical merging, all of the consistent pair-wise matches are placed in a pool of partial 
models.  The best partial models are joined together to form larger partial models, which are 
added to the partial model pool.  This process is repeated until no more partial models can be gen-
erated.  The partial models can be joined using the existing pair-wise match information or by 
treating the partial models as “mega-views” and performing pair-wise registration between mega-
views.  The pool of partial models is, in effect, storing multiple model hypotheses.

6.1.4  Randomized search

Non-deterministic methods can avoid local minima and often give reasonable results with much 
less computation than deterministic searching.  One approach is to use robust methods such as the 
random sample consensus (RANSAC) algorithm.  RANSAC involves generating a possible solu-
tion using a randomly selected minimal subset of the data and evaluating the solution using the 
remaining data.  In our case, the minimum specification of a complete model is a spanning tree of 
the model graph.  The global verification procedures can then be applied to determine the quality 
of the hypothesized model.  This process is repeated many times, and the best model is chosen as 
the output.

Simulated annealing is another non-deterministic approach we are considering.  For this, we must 
derive an evaluation function with which we can compare the quality of different solutions.  Such 
a function should minimize the number of partial models while maximizing the global consis-
tency of each partial model.  The algorithm would proceed as follows:  The model graph is initial-
ized with matches from exhaustive registration with the constraint that only one edge is allowed 
between each pair of views.  At each iteration, a new edge can be added or an existing one 
removed.  If the evaluation function is improved by the change, it is kept, otherwise, with proba-
bility P, the change is rejected.  The probability of rejecting a change for the worse is increased 
over time according to the annealing schedule.  In theory, simulated annealing is guaranteed to 
find a global maximum of the evaluation function.

6.2  Selective registration algorithms

To scale automatic modeling to large numbers of views, we must be selective about which views 
to attempt to register.  One way to reduce the number of pairs that must be registered is to use the 
information inherent in each view to sort the views based on likelihood of a successful match or 
partition them into groups that are likely to match.

We will briefly outline a number of ideas for sorting and partitioning views.  Then, we will sug-
gest how the exhaustive registration algorithms could be adapted to incorporate these methods.

• Method 1 – Partition the views into groups, either blindly or based on a shape similarity met-
ric, then perform exhaustive registration within each group.  Partitioning based on the view 
ordering may give good results because the sequential views are more likely to overlap in 
most data collection scenarios.  
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• Method 2 – Given one view, perform  pair-wise registration with the other views only until a 
sufficiently good result is found.  Each view typically matches with several other views, it is 
not necessary to find all matches up front.  By stopping after the first match is found, the num-
ber of registrations for each view is reduced by a constant factor.

• Method 3 – Sort the views based on the degree of geometric constraint then apply method 2.  
It is a good idea to register the most constraining views first because the least constraining 
views are the ones for which registration is most likely to fail.

• Method 4 – For each view, sort the remaining views based on pair-wise likelihood of registra-
tion.  This can be accomplished efficiently using spin-image point signatures.  These signa-
tures can be viewed as points in a high dimensional space, in which the distance between two 
points is a metric of shape similarity.  Point signatures from all views can be represented in 
this space.  Then, for each view, an ordering of the remaining views can be determined based 
on the number of points close to the points for the given view.

Of the four types of exhaustive registration algorithms, all but the sequential removal algorithm 
could be adapted to handle the partial information supplied by selective registration.  With the 
sequential addition algorithm, views could be selected based on their likelihood of matching with 
the main model.  With hierarchical merging, the views could be partitioned into groups (method 1 
above) and the resulting partial models merged.  If we execute the surface matching and model 
construction processes in parallel, the non-deterministic algorithms could be adapted to operate 
on whatever matches are available at a given time.  As the surface matching process produces new 
matches, the model construction process incorporates the results into its future model hypotheses.

7  Automatic modeling experiments 

The automatic modeling algorithms will be demonstrated with several range sensors in a variety 
of environments to emphasize the generality of the approach (table 1).  Results will be shown for 
three application scenarios: desktop/handheld modeling, building modeling, and terrain modeling.  
These scenarios cover a range of scales, from centimeters to hundreds of meters, and a range of 
scene types, from highly structured buildings to unstructured terrain.

Table 1: Scenarios for which automatic modeling will be demonstrated.

Application Sensor Platform Scene

desktop and hand-
held modeling

Minolta laser scanner, 
Kodak 3D camera

desktop system small objects

building modeling Z&F/Quantapoint laser 
scanner

cart building interiors and exteriors

terrain modeling Z&F/K2T laser scanner automobile and cart terrain

line-scan laser scanner autonomous helicopter terrain

3D sonar submarine ocean floor
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7.1  Handheld modeling

This application was described in section 1.1.  The Minolta laser scanner will be used to obtain 
range images of a variety of objects.  Correspondences for some objects will be measured using 
fiducial markers (e.g., by marking the surface with dots) that can be identified in the color texture 
maps produced by the sensor.  Ground truth relative poses can be derived from these correspon-
dences, which will provide an objective measure of the quality of the automatic modeling results.

A second set of experiments will investigate the performance of the algorithms on data sets of 
varying surface complexity and size (i.e., number of input views).  These experiments will look at 
specific cases where symmetries in overlapping views can only be disambiguated by considering  
global consistency constraints (figure 3).  Additionally, the exhaustive registration algorithms will 
be compared to the selective ones in order to understand the trade-off between success-rate and 
scaleability.  For these tests, we will attempt to obtain the large data sets from Stanford’s Digital 
Michaelangelo Project [23].

A third set of experiments will examine the modeling algorithms’ performance with degraded 
data.  Two types of degradation will be studied: random noise and spurious data.  For the noise 
experiments, successively larger magnitudes of random noise will be introduced into the range 
images.  For the spurious data experiments, additional views not belonging to the object being 
modeled will be intermingled with the valid input views.  Another variation will be to corrupt 
valid views with regions of spurious data, a situation that occurs in practice when objects that are 
not part of the target scene are accidentally scanned.

Finally, a fourth set of experiments will consider scenarios where some information (such as rela-
tive pose estimates or overlapping view labelling) is known a priori.  These experiments will 
demonstrate that this information can be incorporated into the automatic modeling framework in a 
simple yet principled manner.

7.2  Terrain modeling

The terrain modeling experiments will be based on data from three sensing modalities: air, land, 
and sea.  The air-based data was obtained from Carnegie Mellon’s Autonomous Helicopter 
project and includes several data sets of rocky cliffs with ground truth [26].  The land-based data 
was collected using a cart-based system and a system mounted on an off-road vehicle and covers 
large portions of a slag heap in the Pittsburgh area.  One large data set of 34 scans includes ground 
truth obtained using fiducial markers which were surveyed with differential GPS.  The sea-based 
data, courtesy of the Applied Research Labs (ARL) at the University of Texas, includes scans of a 
lake-bottom and the ocean floor with ground truth collected using ARL’s 3D sonar sensor.

The terrain data presents a challenging registration problem for several reasons.  The data typi-
cally is relatively featureless, and contains large regions of constant or near-zero curvature.  The 
data sets are extremely large, leading to input surface meshes with several million faces.  The low-
elevation, forward-looking placement of the ground-based sensor gives rise to data with widely 
varying resolution; scene regions sensed at high resolution may appear differently when the same 
region is sensed at a low resolution in another view.  These issues were addressed initially in [18] 
and incorporating those results into the automatic modeling algorithms should enable the model-
ing system to handle terrain data.
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7.3  Building modeling

The final demonstration of the automatic modeling system will test the algorithms on scenes of 
building interiors and exteriors.  In addition to using existing interior data of collected by mem-
bers of our lab [6], other interior and exterior scenes will be modeled using a laser scanner from 
Z&F/Quantapoint.

8  Conclusion

Automatic modeling is a challenging and useful problem that has not received significant atten-
tion from the 3D computer vision community.  The ability to automatically create 3D models is a 
fundamental advancement in the field of 3D modeling, enabling the application of 3D modeling 
to new problems and simplifying existing applications.  Unlike previous 3D modeling 
approaches, automatic modeling works in a variety of domains without relying on mechanical 
positioning systems or tedious manual operation.

We have proposed two classes of automatic modeling algorithms (exhaustive registration and 
selective registration) and placed them in a common framework based on the model graph.  To 
support these algorithms, we have presented a number of component tools, including registration 
algorithms (uninformed pair-wise registration, pair-wise registration refinement, and multi-view 
registration), local verification procedures (overlap measures, visibility consistency checks, and 
differential constraint analysis), and global verification methods (topological inference and con-
flict detection).

8.1  Expected contributions

The fundamental contribution of the thesis will be the introduction of the concept of automatic 3D 
modeling and a proposed solution to the problem.  In this work, we will:

• develop a framework for automatic modeling based on the idea of the model graph,
• implement modeling algorithms within this framework, and
• demonstrate new applications that would not be possible without automatic modeling

Additionally, we expect a number of smaller contributions to arise from this work, including visi-
bility consistency checking, multi-view registration refinement algorithms, and techniques for 3D 
topological inference.
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8.2  Schedule

Table 2 provides a high-level timeline of the automatic modeling research agenda.

Table 2: Automatic modeling research schedule.

Summer 2000 • thesis proposal
• visibility consistency checking
• finish multi-view registration port to C++

Fall 2000 • implement exhaustive registration algorithms
• topological inference

Spring 2001 • experiments using exhaustive registration algorithms
• implement selective registration algorithms

Fall 2001 • experiments using selective registration algorithms
• write thesis

Spring 2002 • defend thesis
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