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Abstract
Despite machine learning (ML)’s many practical breakthroughs, formidable ob-

stacles obstruct its deployment in consequential applications. Modern ML models
have repeatedly been shown to rely on spurious signals, such as surface level textures
in images, and to be sensitive to background scenery, even when the task addresses
the recognition of foreground objects. In NLP, these issues have emerged as central
concerns in the literature on annotation artifacts and bias. Moreover, while modern
ML performs remarkably well on independent and identically distributed (iid) hold-
out data, performance often decays catastrophically under both naturally occurring
and adversarial distribution shift. We desire decisions to be based on qualifications,
not on distant proxies that are spuriously associated with the outcome of interest. Ar-
guably one key distinction of an actual qualification might be that it actually exerts
causal influence on the outcome of interest. In this thesis, we make progress towards
these goals: in the first part, we scrutinize benchmarks and problem formulation for
popular NLP tasks, such as question answering and how models may ignore crucial
parts of the input altogether and yet perform well on a held out test set; in the second
part, we focus on introducing methods and datasets to train models to be less reliant
on spurious correlations by learning from several forms of human feedback (sought
via crowdsourcing); in part three we focus on the human workforce as we discuss
the ethical tensions posed by the diverse roles played by crowdworkers in NLP re-
search, and discuss the implications of selecting a diverse cohort of crowdworkers
on resulting human-in-the-loop feedback.
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Chapter 1

Introduction

What makes a document’s sentiment positive? What makes a loan applicant creditworthy? What
makes a job candidate qualified? When does a photograph truly depict a dolphin? Moreover,
what does it mean for a feature to be relevant to such a determination?

Statistical learning offers one framework for approaching these questions. First, we swap out
the semantic question for a more readily answerable associative question. For example, instead
of asking what conveys a document’s sentiment, we recast the question as which documents are
likely to be labeled as positive (or negative)? Then, in this associative framing, we interpret as
relevant, those features that are most predictive of the label. However, despite the rapid adoption
and undeniable commercial success of associative learning, this framing seems unsatisfying.

While deep learning models demonstrate remarkable predictive performance on a wide vari-
ety of tasks when evaluated on i.i.d. holdout data, researchers have come to recognize that these
models often degrade catastrophically when faced with distribution shift. While papers tackling
this problem seldom make their assumptions explicit, they typically proceed under the assump-
tion that the labeling function is deterministic (there is one right answer), and that the covariate
shift assumption [Shimodaira, 2000] holds (the labeling function f(x) is invariant across do-
mains). Consequently, one might hope to find a single predictor f̂ that performs well across a
wide variety of real-world scenarios. Note that, absent these assumptions, there is, in general, no
reason to believe that any fixed predictor can be expected to perform well across out of distribu-
tion. For example, faced with label shift [Lipton et al., 2018] or concept drift, the likelihood of
each label under different distributions can vary [Quionero-Candela et al., 2009], necessitating
adapting the predictor to each environment.

Even under these strict assumptions, models that perform well on i.i.d. on holdout data might
degrade out of distribution. Most importantly, the support (subset of input space with non-zero
probability mass) for the distribution from which our dataset is sampled may only be a small
subset of the domain of interest. For example, in question answering (QA), we might fear that
whole categories of questions that we might encounter in the wild would seldom or never be
posed by crowdworkers. Thus, one could produce a predictor that often agrees with the label on
the test set but often disagrees on data encountered in the wild. No principle prohibits such an
unfortunate scenario.

Thus, alongside deep learning’s predictive wins, critical questions have piled up concerning
spurious patterns, artifacts, robustness, and discrimination, that the purely associative perspec-
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tive appears ill-equipped to answer. In NLP specifically, an emerging line of work, has cat-
alogued such vulnerabilities. For example, Poliak et al. [2018] demonstrated that classifiers
trained for natural language inference (NLI) may depend on hypotheses alone (disregarding
premises), while achieving good in-domain performance but vulnerable to catastrophic failure
out of domain. In this work, we demonstrate that sentiment classifiers trained on movie reviews
often rely on genre for predicting sentiment (horror bad, romance good). We also show that
state-of-the-art QA models may rely on questions (or passages) alone, without loss of perfor-
mance in domain. Jia and Liang [2017] found that state-of-the-art question answering models
trained on SQuAD [Rajpurkar et al., 2016] are vulnerable to synthetic transformations to input
passages that do not alter the correct answer.

However, papers seldom make clear what, if anything, spuriousness means within the stan-
dard supervised learning framework. ML systems are trained to exploit the mutual information
between features and a label to make accurate predictions. The standard statistical learning
toolkit does not offer a conceptual distinction between spurious and non-spurious associations.
So how then, can we exploit the statistical learning framework in a way that can enable us to train
predictive models that may generalize well under plausible distribution shifts and what additional
challenges we might face?

1.1 Thesis Overview
In part one of this thesis, we scrutinize benchmarks and problem formulation for popular NLP
tasks, such as question answering [Kaushik and Lipton, 2018]. Presumably, for a task such as
passage based question answering, a model must combine information from both questions and
passages to predict corresponding answers. However, we find that models may be able to answer
questions by looking at passages alone. We further highlight that while modern ML systems
perform remarkably well on independent and identically distributed (iid) holdout data, perfor-
mance often decays catastrophically under both naturally occurring and adversarial distribution
shift due to their reliance on spurious correlations that may not transport out of domain.

In the second part, we study and propose several human-in-the-loop approaches to train ML
models that are less reliant on spurious correlations. In one approach, we propose counterfactu-
ally manipulating documents via humans-in-the-loop [Kaushik et al., 2020]. We employ crowd
workers not to label documents, but rather to edit them, manipulating the text to make a targeted
(counterfactual) class applicable. For instance, for sentiment analysis, we direct the worker to
revise this negative movie review to make it positive, without making any gratuitous changes.
We show that by intervening only upon the factor of interest, we disentangle the spurious and
non-spurious associations, yielding classifiers that hold up better when spurious associations do
not transport out of domain. We further introduce a toy analog based on linear Gaussian models,
observing interesting relationships between causal models, measurement noise, out-of-domain
generalization, and reliance on spurious signals [Kaushik et al., 2021b]. Our analysis provides
some insights that help to explain the efficacy of CAD. We further investigate whether similar
gains in out-of-domain performance can also be achieved by training models with other forms of
human feedback, such as feature feedback [Katakkar et al., 2021] or training sets constructed via
an adversarial data collection process (ADC) [Kaushik et al., 2021a].

2



Finally, having demonstrated the effectiveness of several human-in-the-loop approaches, in
the third part of this thesis, we look at two practical challenges associated with human-in-the-
loop ML research. First, we look at the diversity of the workforce that offers this feedback. We
investigate whether diversity among workers who provide this feedback might make a difference
in what feedback is received. Our analysis reveals insights into how crowdworkers’ demograph-
ics play a critical role in the feedback they provide and highlight the need to explicitly consider
diversity of crowdworkers as a critical ingredient in any human-in-the-loop study. Second, we
highlight how with the increase in creative uses of crowdworkers in ML research (in general)
and in NLP research (in particular), the line between laborer and human subject has blurred. We
investigate the appropriate designation of ML crowdsourcing studies, focusing our inquiry on
natural language processing to expose unique challenges for research oversight [Kaushik et al.,
2022]. Crucially, under the U.S. Common Rule, these judgments hinge on determinations of
aboutness, concerning both whom (or what) the collected data is about and whom (or what) the
analysis is about. We highlight two challenges posed by ML: the same set of workers can serve
multiple roles and provide many sorts of information; and ML research tends to embrace a dy-
namic workflow, where research questions are seldom stated ex ante and data sharing opens the
door for future studies to aim questions at different targets. Our analysis exposes a potential loop-
hole in the Common Rule, where researchers can elude research ethics oversight by splitting data
collection and analysis into distinct studies. Finally, we discuss several policy recommendations
to address these concerns.
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Chapter 2

Does Reading Comprehension Require
Reading Or Comprehension?

2.1 Overview

Reading comprehension (RC) has emerged as a popular task in NLP, with researchers proposing
various end-to-end deep learning algorithms to push the needle on a variety of benchmarks. As
characterized by Hermann et al. [2015], Onishi et al. [2016], unlike prior work addressing ques-
tion answering from general structured knowledge, RC requires that a model extract information
from a given, unstructured passage. It’s not hard to imagine how such systems could be useful.
In contrast to generic text summarization, RC systems could answer targeted questions about
specific documents, efficiently extracting facts and insights.

While many RC datasets have been proposed over the years [Hirschman et al., 1999, Breck
et al., 2001, Peñas et al., 2011, Peñas et al., 2012, Sutcliffe et al., 2013, Richardson et al., 2013,
Berant et al., 2014], more recently, larger datasets have been proposed to accommodate the data-
intensiveness of deep learning. These vary both in the source and size of their corpora and in
how they cast the prediction problem—as a classification task [Hill et al., 2016, Hermann et al.,
2015, Onishi et al., 2016, Lai et al., 2017, Weston et al., 2016, Miller et al., 2016], span selection
[Rajpurkar et al., 2016, Trischler et al., 2017], sentence retrieval [Wang et al., 2007, Yang et al.,
2015], or free-form answer generation Nguyen et al. [2016].1 Researchers have steadily advanced
on these benchmarks, proposing myriad neural network architectures aimed at attending to both
questions and passages to produce answers.

In this chapter, we argue that amid this rapid progress on empirical benchmarks, crucial steps
are sometimes skipped. In particular, we demonstrate that the level of difficulty for several of
these tasks is poorly characterized. For example, for many RC datasets, it’s not reported, either
in the papers introducing the datasets, or in those proposing models, how well one can perform
while ignoring either the question or the passage. In other datasets, although the passage might
consist of many lines of text, it’s not clear how many are actually required to answer the question,
e.g., the answer may always lie in the first or the last sentence.

1We note several other QA datasets [Yang et al., 2015, Miller et al., 2016, Nguyen et al., 2016, Paperno et al.,
2016, Clark and Etzioni, 2016, Lai et al., 2017, Trischler et al., 2017, Joshi et al., 2017] not addressed in this chapter.
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We describe several popular RC datasets and models proposed for these tasks, analyzing their
performance when provided with question-only (Q-only) or passage-only (P-only) information.
We show that on many tasks, the results obtained are surprisingly strong, outperforming many
baselines, and sometimes even surpassing the same models, supplied with both questions and
passages. We note that similar problems were shown for datasets in visual question answering
by Goyal et al. [2017] and for natural language inference by Gururangan et al. [2018], Poliak
et al. [2018], Glockner et al. [2018]. Several other papers have discussed the weaknesses of
various RC benchamrks [Chen et al., 2016, Lee et al., 2016]. We discuss these studies in the
paragraphs introducing the corresponding datasets below.

2.2 Datasets

In the following section, we provide context on each dataset that we investigate and then describe
our process for corrupting the data as required by our question- and passage-only experiments.

CBT Hill et al. [2016] prepared a cloze-style (fill in the blank) RC dataset by using passages
from children’s books. In their dataset, each passage consists of 20 consecutive sentences, and
each question is the 21st sentence with one word removed. The missing word then serves as
the answer. The dataset is split into four categories of answers: Named Entities (NE), Common
Nouns (CN), Verbs (V) and Prepositions (P). The training corpus contains over 37, 000 can-
didates and each question is associated with 10 candidates, POS-matched to the correct answer.
The authors established LSTM/embedding-based Q-only baselines but did not present the results
obtained by their best model using Q-only or P-only information.

CNN Hermann et al. [2015] introduced the CNN/Daily Mail datasets containing more than
1 million news articles, each associated with several highlight sentences. Also adopting the
cloze-style dataset preparation, they remove an entity (answer) from a highlight (question). They
anonymize all entities to ensure that models rely on information contained in the passage, vs
memorizing characteristics of given entities across examples, and thus ignoring passages. On
average, passages contain 26 entities, with over 500 total possible answer candidates. Chen et al.
[2016] analyzed the difficulty of the CNN and Daily Mail tasks. They hand-engineered a set of
eight features for each entity e (does e occur in the question, in the passage, etc.), showing that
this simple classifier outperformed many earlier deep learning results.

Who-did-What Onishi et al. [2016] extracted pairs of news articles, each pair referring to
the same events. Adopting the cloze-style, they remove a person’s name (the answer) from
the first sentence of one article (the question). A model must predict the answer based on the
question, together with the other article in the pair (passage). Unlike CNN, Who-did-What does
not anonymize entities. On average, each question is associated with 3.5 candidate answers. The
authors removed several questions from their dataset to thwart simple strategies such as always
predicting the name that occurs most (or first) in the passage.
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bAbI Weston et al. [2016] presented a set of 20 tasks to help researchers identify and rectify
the failings of their reading comprehension systems. Unlike the datasets discussed so far, the
questions in this task are not cloze-style and are synthetically generated using templates. This
restricts the diversity in clauses appearing in the passages. Further, this also restricts the dataset
vocabulary to just 150 words, in contrast, CNN dataset has a vocabulary made of close to 120, 000
words. Memory Networks with adaptive memory, n-grams and non-linear matching were shown
to obtain 100% accuracy on 12 out of 20 bAbI tasks. We note that Lee et al. [2016] previously
identified that bAbI tasks might fall short as a measure of “AI-complete question answering”,
proposing two models based on tensor product representations that achieve 100% accuracy on
many bAbI tasks.

SQuAD Rajpurkar et al. [2016] released the Stanford Question Answering Dataset (SQuAD)
containing over 100, 000 crowd-sourced questions addressing 536 passages. Each question is
associated with a paragraph (passage) extracted from an article. These passages are shorter than
those in CNN and Who-did-What datasets. Models choose answers by selecting (varying-length)
spans from these passages.

Generating Corrupt Data To void any information in either the questions or the passages,
while otherwise leaving each architecture intact, we create corrupted versions of each dataset by
assigning either questions randomly, while preserving the correspondence between passage and
answer, or by randomizing the passage. For tasks where question-answering requires selecting
spans or candidates from the passage, we create passages that contain the candidates in random
locations but otherwise consist of random gibberish.

2.3 Models
In our investigations of the various RC benchmarks, we rely upon the following three QA models:
key-value memory networks, gated attention readers, and QA nets. Although space constraints
preclude a full discussion of each architecture, we provide references to the source papers and
briefly discuss any implementation decisions necessary to reproduce our results.

Key-Value Memory Networks We implement a Key-Value Memory Network (KV-MemNet)
[Miller et al., 2016], applying it to bAbI and CBT. KV-MemNets are based on Memory Networks
[Sukhbaatar et al., 2015], shown to perform well on both datasets. For bAbI tasks, the keys and
values both encode the passage as a bag-of-words (BoW). For CBT, the key is a BoW-encoded
5-word window surrounding a candidate answer and the value is the candidate itself. We fixed
the number of hops to 3 and the embedding size to 128.

Gated Attention Reader Introduced by Dhingra et al. [2017], the Gated Attention Reader
(GAR)2 performs multiple hops over a passage, like MemNets. The word representations are
refined over each hop and are mapped by an attention-sum module Kadlec et al. [2016] to a

2https://github.com/bdhingra/ga-reader
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bAbI Tasks 1-10
Dataset 1 2 3 4 5 6 7 8 9 10
True dataset 100% 100% 39% 100% 99% 100% 94% 97% 99% 98%
Question only 18% 17% 22% 22% 34% 50% 48% 34% 64% 44%

Passage only 53% 86% 60% 59% 31% 48% 85% 79% 63% 47%

∆(min) −47 −14 +21 −41 −65 −52 −9 −18 −35 −51

bAbI Tasks 11-20
11 12 13 14 15 16 17 18 19 20

True dataset 94% 100% 94% 96% 100% 48% 57% 93% 30% 100%
Question only 17% 15% 18% 18% 34% 26% 48% 91% 10% 70%

Passage only 71% 74% 94% 50% 64% 47% 48% 53% 21% 100%
∆(min) −23 −26 0 −46 −36 −1 −9 −2 −9 0

Table 2.1: Accuracy on bAbI tasks using our implementation of the Key-Value Memory Net-
works

probability distribution over the candidate answer set in the last hop. The model nearly matches
best-reported results on many cloze-style RC datasets, and thus we apply it to Who-did-What,
CNN, CBT-NE and CBT-CN.

QA Net Introduced by Yu et al. [2018], the QA-Net3 was recently demonstrated to outperform
all previous models on the SQuAD dataset4. Passages and questions are passed as input to
separate encoders consisting of depth-wise separable convolutions and global self-attention. This
is followed by a passage-question attention layer, followed by stacked encoders. The outputs
from these encoders are used to predict an answer span inside the passage.

2.4 Experimental Results

bAbI tasks Table 2.1 shows the results obtained by a Key-Value Memory Network on bAbI
tasks by nullifying the information present in either questions or passages. On tasks 2, 7, 13 and
20, P-only models obtain over 80% accuracy with questions randomly assigned. Moreover, on
tasks 3, 13, 16, and 20, P-only models match performance of those trained on the full dataset.
On task 18, Q-only models achieve an accuracy of 91%, nearly matching the best performance
of 93% achieved by the full model. These results show that some of bAbI tasks are easier than
one might think.

3We use the implementation available at https://github.com/NLPLearn/QANet
4When these experiments were conducted in 2018, an ensemble of QA-Net models was at the top of the leader

board. A single QA-Net was ranked 4th.
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Task Full Q-only P-only ∆(min)

Key-Value Memory Networks

CBT-NE 35.0% 29.1% 24.1% −5.9

CBT-CN 37.6% 32.4% 24.4% −5.2

CBT-V 52.5% 55.7% 36.0% +3.2

CBT-P 55.2% 56.9% 30.1% +1.7

Gated Attention Reader

CBT-NE 74.9% 50.6% 40.8% −17.5

CBT-CN 70.7% 54.0% 36.7% −16.7

CNN 77.8% 25.6% 38.3% −39.5

WdW 67.0% 41.8% 52.2% −14.8

WdW-R 69.1% 50.0% 50.6% −15.6

Table 2.2: Accuracy on various datasets using KV-MemNets (window memory) and GARs

Task Complete passage Last sentence
CBT-NE 22.6% 22.8%
CBT-CN 31.6% 24.8%

CBT-V 48.8% 45.0%

CBT-P 34.1% 37.9%

Table 2.3: Accuracy on CBT tasks using KV-MemNets (sentence memory) varying passage size.

Metric Full Q-only P-only ∆(min)

EM 70.7% 0.6% 10.9% −59.8

F1 79.1% 4.0% 14.8% −64.3

Table 2.4: Performance of QANet on SQuAD

Children’s Books Test On the NE and CN CBT tasks, Q-only KV-MemNets obtain an accu-
racy close to the full accuracy and on the Verbs (V) and Prepositions (P) tasks, Q-only models
outperform the full model (Table 2.2). Q-only Gated attention readers reach accuracy of 50.6%
and 54% on Named Entities (NE) and Common Nouns (CN) tasks, respectively, while P-only
models reach accuracies of 40.8% and 36.7%, respectively. We note that our models can outper-
form 16 of the 19 reported results on the NE task in Hill et al. [2016] using Q-only information.
Table 2.3 shows that if we make use of just last sentence instead of all 20 sentences in the pas-
sage, our sentence memory based KV-MemNet achieve comparable or better performance w.r.t
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the full model on most subtasks.

CNN Table 2.2, shows the performance of Gated Attention Reader on the CNN dataset. Q-only
and P-only models obtained 25.6% and 38.3% accuracies respectively, compared to 77.8% on the
true dataset. This drop in accuracy could be due to the anonymization of entities which prevents
models from building entity-specific information. Notwithstanding the deficiencies noted by
Chen et al. [2016], we found that out CNN, out all the cloze-style RC datasets that we evaluated,
appears to be the most carefully designed.

Who-did-What P-only models achieve greater than 50% accuracy in both the strict and relaxed
setting, reaching within 15% of the accuracy of the full model in the strict setting. Q-only models
also achieve 50% accuracy on the relaxed setting while achieving an accuracy of 41.8% on the
strict setting. Our P-only model also outperforms all the suppressed baselines and 5 additional
baselines reported by Onishi et al. [2016]. We suspect that the models memorize attributes of
specific entities, justifying the entity-anonymization used by Hermann et al. [2015] to construct
the CNN dataset.

SQuAD Our results suggest that SQuAD is an unusually carefully-designed and challenging
RC task. The span selection mode of answering requires that models consider the passage thus
the abysmal performance of the Q-only QANet (Table 2.4). Since SQuAD requires answering by
span selection, we construct Q-only variants here by placing answers from all relevant questions
in random order, filling the gaps with random words. Moreover, Q-only and P-only models
achieve F1 scores of only 4% and 14.8% resp. (Table 2.4), significantly lower than 79.1 on the
proper task.

2.5 Discussion
We briefly discuss our findings, offer some guiding principles for evaluating new benchmarks
and algorithms, and speculate on why some of these problems may have gone under the radar.
Our goal is not to blame the creators of past datasets but instead to support the community by
offering practical guidance for future researchers.

Provide rigorous RC baselines Published RC datasets should contain reasonable baselines
that characterize the difficulty of the task, and specifically, the extent to which questions and
passages are essential. Moreover, follow-up papers reporting improvements ought to report per-
formance both on the full task and variations omitting questions and passages. While many
proposed technical innovations purportedly work by better matching up information in questions
and passages, absent these baselines one cannot tell whether gains come for the claimed reason
or if the models just do a better job of passage classification (disregarding questions).

Test that full context is essential Even on tasks where both questions and passages are re-
quired, problems might appear harder than they really are. On first glance the the length-20
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passages in CBT, might suggest that success requires reasoning over all 20 sentences to identify
the correct answer to each question. However, it turns out that for some models, comparable per-
formance can be achieved by considering only the last sentence. We recommend that researchers
provide reasonable ablations to characterize the amount of context that each model truly requires.

Caution with cloze-style RC datasets We note that cloze-style datasets are often created pro-
gramatically. Thus it’s possible for a dataset to be produced, published, and incorporated into
many downstream studies, all without many person-hours spent manually inspecting the data.
We speculate that, as a result, these datasets tend be subject to less contemplation of what’s
involved in answering these questions and are therefore especially susceptible to the sorts of
overlooked weaknesses described in our study.

A note on publishing incentives We express some concern that the recommended experimen-
tal rigor might cut against current publishing incentives. We speculate that papers introducing
datasets may be more likely to be accepted at conferences by omitting unfavorable ablations
than by including them. Moreover, with reviewers often demanding architectural novelty, meth-
ods papers may find an easier path to acceptance by providing unsubstantiated stories about the
reasons why a given architecture works than by providing rigorous ablation studies stripping
out spurious explanations and unnecessary model components. For more general discussions of
misaligned incentives and empirical rigor in machine learning research, we point the interested
reader to Lipton and Steinhardt [2018] and Sculley et al. [2018].

On the name “reading comprehension” Perhaps a first step towards solidifying the intellec-
tual foundations in this area might be to re-evaluate the name “reading comprehension”, which
strikes us as unjustifiably anthropomorphic. A more neutral name like “passage-based question
answering”, while perhaps less marketable, more accurately characterizes the tasks. After all,
the the systems are concerned with supervised learning, minimizing the error by exploiting cor-
relations in the training data. As demonstrated by Jia and Liang [2017], the resulting systems,
which are susceptible to simple adversarial attacks, rely heavily on the superficial statistics of the
training data.
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Chapter 3

Learning The Difference That Makes A
Difference With Counterfactually
Augmented Data

3.1 Overview

Alongside deep learning’s predictive wins, critical questions have piled up concerning spurious
patterns, artifacts, robustness, and discrimination, that the purely associative perspective appears
ill-equipped to answer. And yet, researchers struggle to articulate precisely why models should
not rely on such patterns. In natural language processing (NLP), these issues have emerged as
central concerns in the literature on annotation artifacts and societal biases. Across myriad tasks,
researchers have demonstrated that models tend to rely on spurious associations [Poliak et al.,
2018, Gururangan et al., 2018, Kaushik and Lipton, 2018, Kiritchenko and Mohammad, 2018].
However, papers seldom make clear what, if anything, spuriousness means within the standard
supervised learning framework. ML systems are trained to exploit the mutual information be-
tween features and a label to make accurate predictions. The standard statistical learning toolkit
does not offer a conceptual distinction between spurious and non-spurious associations.

Causality, however, offers a coherent notion of spuriousness. Spurious associations owe to
confounding rather than to a (direct or indirect) causal path. We might consider a factor of vari-
ation to be spuriously correlated with a label of interest if intervening upon it would not impact
the applicability of the label or vice versa. In this chapter, we introduce a human-in-the-loop
system for counterfactually manipulating documents. Our hope is that by intervening only upon
the factor of interest, we might disentangle the spurious and non-spurious associations, yielding
classifiers that hold up better when spurious associations do not transport out of domain. We
employ crowd workers not to label documents, but rather to edit them, manipulating the text to
make a targeted (counterfactual) class applicable. For sentiment analysis, we direct the worker
to revise this negative movie review to make it positive, without making any gratuitous changes.
We might regard the second part of this directive as a least action principle, ensuring that we
perturb only those spans necessary to alter the applicability of the label. For NLI, a 3-class clas-
sification task (entailment, contradiction, neutral), we ask the workers to modify the premise
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Figure 3.1: Pipeline for collecting and leveraging counterfactually-altered data

while keeping the hypothesis intact, and vice versa, collecting edits corresponding to each of
the (two) counterfactual classes. Using this platform, we collect thousands of counterfactually-
manipulated examples for both sentiment analysis and NLI, extending the IMDb [Maas et al.,
2011] and SNLI [Bowman et al., 2015] datasets, respectively. The result is two new datasets
(each an extension of a standard resource) that enable us to both probe fundamental properties
of language and train classifiers less reliant on spurious signal. We show that classifiers trained
on original IMDb reviews fail on counterfactually-revised data and vice versa. We further show
that spurious correlations in these datasets are even picked up by linear models. However, aug-
menting the revised examples (creating counterfactually augmented data (CAD)) breaks up these
correlations (e.g., genre ceases to be predictive of sentiment).

Following this, we make some initial attempts towards explaining CAD’s efficacy and answer
certain questions: What is the assumed causal structure underlying settings where CAD might
be effective? What are the principles underlying its out-of-domain benefits? Must humans really
intervene, or could automatic feature attribution methods, e.g., attention [DeYoung et al., 2020],
or cheaper feedback mechanisms, e.g., feature feedback [Zaidan et al., 2007], produce similar
results?

3.2 Related Work

Several papers demonstrate cases where NLP systems appear not to learn what humans consider
to be the difference that makes the difference. For example, otherwise state-of-the-art models
have been shown to be vulnerable to synthetic transformations such as distractor phrases [Jia and
Liang, 2017, Wallace et al., 2019a], to misclassify paraphrased task [Iyyer et al., 2018, Pfeiffer
et al., 2019] and to fail on template-based modifications [Ribeiro et al., 2018]. Glockner et al.
[2018] demonstrate that simply replacing words by synonyms or hypernyms, which should not
alter the applicable label, nevertheless breaks ML-based NLI systems. Gururangan et al. [2018]
and Poliak et al. [2018] show that classifiers correctly classified the hypotheses alone in about
69% of SNLI corpus. They further discover that crowd workers adopted specific annotation
strategies and heuristics for data generation. Chen et al. [2016] identify similar issues exist with
automatically-constructed benchmarks for question-answering [Hermann et al., 2015]. Kaushik
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and Lipton [2018] discover that reported numbers in question-answering benchmarks could often
be achieved by the same models when restricted to be blind either to the question or to the pas-
sages. Dixon et al. [2018], Zhao et al. [2018] and Kiritchenko and Mohammad [2018] showed
how imbalances in training data lead to unintended bias in the resulting models, and, conse-
quently, potentially unfair applications. Shen et al. [2018] substitute words to test the behavior
of sentiment analysis algorithms in the presence of stylistic variation, finding that similar word
pairs produce significant differences in sentiment score.

Several papers explore richer feedback mechanisms for classification. Some ask annotators to
highlight rationales, spans of text indicative of the label [Zaidan et al., 2007, Zaidan and Eisner,
2008, Poulis and Dasgupta, 2017]. For each document, Zaidan et al. remove the rationales to
generate contrast documents, learning classifiers to distinguish original documents from their
contrasting counterparts. While this feedback is easier to collect than ours, how to leverage it for
training deep NLP models, where features are not neatly separated, remains less clear.

Lu et al. [2018] programmatically alter text to invert gender bias and combined the original
and manipulated data yielding gender-balanced dataset for learning word embeddings. In the
simplest experiments, they swap each gendered word for its other-gendered counterpart. For
example, the doctor ran because he is late becomes the doctor ran because she is late. However,
they do not substitute names even if they co-refer to a gendered pronoun. Building on their work,
Zmigrod et al. [2019] describe a data augmentation approach for mitigating gender stereotypes
associated with animate nouns for morphologically-rich languages like Spanish and Hebrew.
They use a Markov random field to infer how the sentence must be modified while altering the
grammatical gender of particular nouns to preserve morpho-syntactic agreement. In contrast,
Maudslay et al. [2019] describe a method for probabilistic automatic in-place substitution of
gendered words in a corpus. Unlike Lu et al., they propose an explicit treatment of first names
by pre-defining name-pairs for swapping, thus expanding Lu et al.’s list of gendered word pairs
significantly.

A growing body of work has also looked at reducing reliance on spurious correlations by
exploiting the stability of relationships between the target variable and its (graph) neighbors.
Peters et al. [2016] propose invariant causal prediction to obtain a causal predictor from multiple
datasets. Ghassami et al. [2017] discuss a similar approach but do not assume that the exogenous
noise of the target variable stays fixed among environments. They also demonstrate the benefits
of their approach (compared to Peters et al. [2016]) in identifying all direct ancestors of the target
variable. Arjovsky et al. [2019] propose invariant risk minimization, with the goal of learning a
data representation such that the optimal predictor is shared across environments.

3.3 Data Collection
We use Amazon’s Mechanical Turk crowdsourcing platform to recruit editors to revise each doc-
ument. To ensure high quality of the collected data, we restricted the pool to U.S. residents
that had already completed at least 500 HITs and had an over 97% HIT approval rate. For each
HIT, we conducted pilot tests to identify appropriate compensation per assignment, receive feed-
back from workers and revise our instructions accordingly. A total of 713 workers contributed
throughout the whole process, of which 518 contributed edits reflected in the final datasets.
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Figure 3.2: Annotation platform for collecting counterfactually annotated data for sentiment
analysis

Sentiment Analysis The original IMDb dataset consists of 50k reviews divided equally
across train and test splits. To keep the task of editing from growing unwieldy, we filter out the
longest 20% of reviews, leaving 20k reviews in the train split from which we randomly sample
2.5k reviews, enforcing a 50:50 class balance. Following revision by the crowd workers, we
partition this dataset into train/validation/test splits containing 1707, 245 and 488 examples, re-
spectively. We present each review to two workers, instructing them to revise the review such that
(a) the counterfactual label applies; (b) the document remains coherent; and (c) no unecessary
modifications are made.

Over a four week period, we manually inspected each generated review and rejected the
ones that were outright wrong (sentiment was still the same or the review was a spam). After
review, we rejected roughly 2% of revised reviews. For 60 original reviews, we did not approve
any among the counterfactually-revised counterparts supplied by the workers. To construct the
new dataset, we chose one revised review (at random) corresponding to each original review. In
qualitative analysis, we identified eight common patterns among the edits (Table 3.2).

By comparing original reviews to their counterfactually-revised counterparts we gain insight
into which aspects are causally relevant. To analyze inter-editor agreement, we mark indices
corresponding to replacements and insertions, representing the edits in each original review by a
binary vector. Using these representations, we compute the Jaccard similarity between the two
reviews (Table 3.1), finding it to be negatively correlated with the length of the review.

Natural Language Inference Unlike sentiment analysis, SNLI is 3-way classification
task, with inputs consisting of two sentences, a premise and a hypothesis and the three pos-
sible labels being entailment, contradiction, and neutral. The label is meant to describe the
relationship between the facts stated in each sentence. We randomly sampled 1750, 250, and 500
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Table 3.1: Percentage of inter-editor agreement for counterfactually-revised movie reviews

Number of tokens
Type 0-50 51-100 101-150 151-200 201-250 251-300 301-329 Full

Replacement 35.6 25.7 20.0 17.2 15.0 14.8 11.6 19.3

Insertion 27.7 20.8 14.4 12.2 11.0 11.5 07.6 14.3

Combined 41.6 32.7 26.3 23.4 21.6 20.3 16.2 25.5

pairs from the train, validation, and test sets of SNLI respectively, constraining the new data to
have balanced classes. In one HIT, we asked workers to revise the hypothesis while keeping the
premise intact, seeking edits corresponding to each of the two counterfactual classes. We refer
to this data as Revised Hypothesis (RH). In another HIT, we asked workers to revise the original
premise, while leaving the original hypothesis intact, seeking similar edits, calling it Revised
Premise (RP).

Following data collection, we employed a different set of workers to verify whether the given
label accurately described the relationship between each premise-hypothesis pair. We presented
each pair to three workers and performed a majority vote. When all three reviewers were in
agreement, we approved or rejected the pair based on their decision, else, we verified the data
ourselves. Finally, we only kept premise-hypothesis pairs for which we had valid revised data in
both RP and RH, corresponding to both counterfactual labels. As a result, we discarded ≈ 9%
data. RP and RH, each comprised of 3332 pairs in train, 400 in validation, and 800 in test,
leading to a total of 6664 pairs in train, 800 in validation, and 1600 in test in the revised dataset.
In qualitative analysis, we identified some common patterns among hypothesis and premise edits
(Table 3.3, 3.4).

We collected all data after IRB approval and measured the time taken to complete each HIT
to ensure that all workers were paid more than the federal minimum wage. During our pilot
studies, workers spent roughly 5 minutes per revised review, and 4 minutes per revised sentence
(for NLI). We paid workers $0.65 per revision, and $0.15 per verification, totalling $10778.14
for the study.

3.4 Models

Our experiments rely on the following five models: Support Vector Machines (SVMs), Naı̈ve
Bayes (NB) classifiers, Bidirectional Long Short-Term Memory Networks [Bi-LSTMs; Graves
and Schmidhuber, 2005], ELMo models with LSTM, and fine-tuned BERT models [Devlin et al.,
2019]. For brevity, we discuss only implementation details necessary for reproducibility.

Standard Methods We use scikit-learn [Pedregosa et al., 2011] implementations
of SVMs and Naı̈ve Bayes for sentiment analysis. We train these models on TF-IDF bag of
words feature representations of the reviews. We identify parameters for both classifiers using
grid search conducted over the validation set.

Bi-LSTM When training Bi-LSTMs for sentiment analysis, we restrict the vocabulary to
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Table 3.2: Most prominent categories of edits performed by humans for sentiment analysis (Orig-
inal/Revised, in order). Red spans were replaced by Blue spans.

Types of Revisions Examples

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fan-
tastic
The world of Atlantis, hidden beneath the earth’s core is sup-
posed to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and re-
alistic view
thoroughly mind numbing “thriller-drama”, taking a “deep”
and “realistic” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis’ landscape and setting
The presentation of Atlantis’ predictable landscape and setting

Replacing modifiers “Election” is a highly fascinating and thoroughly captivating
thriller-drama
“Election” is a highly expected and thoroughly mind numbing
“thriller-drama”

Inserting phrases Although there’s hardly any action, the ending is still shocking.
Although there’s hardly any action (or reason to continue
watching past 10 minutes), the ending is still shocking.

Diminishing via qualifiers which, while usually containing some reminder of harshness,
become more and more intriguing.
which, usually containing some reminder of harshness, became
only slightly more intriguing.

Differing perspectives Granted, not all of the story makes full sense, but the film
doesn’t feature any amazing new computer-generated visual ef-
fects.
Granted, some of the story makes sense, but the film doesn’t
feature any amazing new computer-generated visual effects.

Changing ratings one of the worst ever scenes in a sports movie. 3 stars out of
10.
one of the wildest ever scenes in a sports movie. 8 stars out of
10.

the most frequent 20k tokens, replacing out-of-vocabulary tokens by UNK. We fix the maximum
input length at 300 tokens and pad smaller reviews. Each token is represented by a randomly-
initialized 50-dimensional embedding. Our model consists of a bidirectional LSTM (hidden
dimension 50) with recurrent dropout (probability 0.5) and global max-pooling following the
embedding layer. To generate output, we feed this (fixed-length) representation through a fully-
connected hidden layer with ReLU [Nair and Hinton, 2010] activation (hidden dimension 50),
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Table 3.3: Analysis of edits performed by humans for NLI hypotheses. P denotes Premise, OH
denotes Original Hypothesis, and NH denotes New Hypothesis.

Types of Revisions Examples

Modifying/removing actions P: A young dark-haired woman crouches on the banks of a
river while washing dishes.
OH: A woman washes dishes in the river while camping.
(Neutral)
NH: A woman washes dishes in the river. (Entailment)

Substituting entities P: Students are inside of a lecture hall.
OH: Students are indoors. (Entailment)
NH: Students are on the soccer field. (Contradiction)

Adding details to entities P: An older man with glasses raises his eyebrows in surprise.
OH: The man has no glasses. (Contradiction)
NH: The man wears bifocals. (Neutral)

Inserting relationships P: A blond woman speaking to a brunette woman with her
arms crossed.
OH: A woman is talking to another woman. (Entailment)
NH: A woman is talking to a family member. (Neutral)

Numerical modifications P: Several farmers bent over working on the fields while lady
with a baby and four other children accompany them.
OH: The lady has three children. (Contradiction)
NH: The lady has many children. (Entailment)

Using/Removing negation P: An older man with glasses raises his eyebrows in surprise.
OH: The man has no glasses. (Contradiction)
NH: The man wears glasses. (Entailment)

Unrelated hypothesis P: A female athlete in crimson top and dark blue shorts is
running on the street.
OH: A woman is sitting on a white couch. (Contradiction)
NH: A woman owns a white couch. (Neutral)

and then a fully-connected output layer with softmax activation. We train all models for a maxi-
mum of 20 epochs using Adam [Kingma and Ba, 2015], with a learning rate of 1e−3 and a batch
size of 32. We apply early stopping when validation loss does not decrease for 5 epochs. We
also experimented with a larger Bi-LSTM which led to overfitting. We use the architecture due
to Poliak et al. [2018] to evaluate hypothesis-only baselines.1

ELMo-LSTM We compute contextualized word representations (ELMo) using character-
based word representations and bidirectional LSTMs [Peters et al., 2018]. The module outputs
a 1024-dimensional weighted sum of representations from the 3 Bi-LSTM layers used in ELMo.
We represent each word by a 128-dimensional embedding concatenated to the resulting 1024-

1https://github.com/azpoliak/hypothesis-only-NLI
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Table 3.4: Analysis of edits performed by humans for NLI premises. OP denotes Original
Premise, NP denotes New Premise, and H denotes Hypothesis.

Types of Revisions Examples

Introducing direct evidence OP: Man walking with tall buildings with reflections behind
him. (Neutral)
NP: Man walking away from his friend, with tall buildings
with reflections behind him. (Contradiction)
H: The man was walking to meet a friend.

Introducing indirect evidence OP: An Indian man standing on the bank of a river. (Neutral)
NP: An Indian man standing with only a camera on the
bank of a river. (Contradiction)
H: He is fishing.

Substituting entities OP: A young man in front of a grill laughs while pointing at
something to his left. (Entailment)
NP: A young man in front of a chair laughs while pointing
at something to his left. (Neutral)
H: A man is outside

Numerical modifications OP: The exhaustion in the woman’s face while she continues
to ride her bicycle in the competition. (Neutral)
NP: The exhaustion in the woman’s face while she continues
to ride her bicycle in the competition for people above 7 ft.
(Entailment)
H: A tall person on a bike

Reducing evidence OP: The girl in yellow shorts and white jacket has a tennis
ball in her left pocket. (Entailment)
NP: The girl in yellow shorts and white jacket has a tennis
ball. (Neutral)
H: A girl with a tennis ball in her pocket.

Using abstractions OP: An elderly woman in a crowd pushing a wheelchair.
(Entailment)
NP: An elderly person in a crowd pushing a wheelchair.
(Neutral)
H: There is an elderly woman in a crowd.

Substituting evidence OP: A woman is cutting something with scissors. (Entail-
ment)
NP: A woman is reading something about scissors. (Con-
tradiction)
H: A woman uses a tool
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dimensional ELMo representation, leading to a 1152-dimensional hidden representation. Fol-
lowing Batch Normalization, this is passed through an LSTM (hidden size 128) with recurrent
dropout (probability 0.2). The output from this LSTM is then passed to a fully-connected output
layer with softmax activation. We train this model for up to 20 epochs with same early stopping
criteria as for Bi-LSTM, using the Adam optimizer with a learning rate of 1e−3 and a batch size
of 32.

BERT We use an off-the-shelf uncased BERT Base model, fine-tuning for each task.2 To
account for BERT’s sub-word tokenization, we set the maximum token length is set at 350 for
sentiment analysis and 50 for NLI. We fine-tune BERT up to 20 epochs with same early stopping
criteria as for Bi-LSTM, using the BERT Adam optimizer with a batch size of 16 (to fit on a Tesla
V-100 GPU). We found learning rates of 5e−5 and 1e−5 to work best for sentiment analysis and
NLI respectively.

3.5 Experiments with CAD
Sentiment Analysis We find that for sentiment analysis, linear models trained on the original
1.7k reviews achieve 80% accuracy when evaluated on original reviews but only 51% (level
of random guessing) on revised reviews (Table 3.5). Linear models trained on revised reviews
achieve 91% accuracy on revised reviews but only 58.3% on the original test set. We see similar
pattern for Bi-LSTMs where accuracy drops substantially in both directions. Interestingly, while
BERT models suffer drops too, they are less pronounced, perhaps a benefit of the exposure to a
larger dataset where the spurious patterns may not have held. Classifiers trained on combined
datasets perform well on both, often within ≈ 3 pts of models trained on the same amount of
data taken only from the original distribution. Thus, there may be a price to pay for breaking the
reliance on spurious associations, but it may not be substantial.

We also conduct experiments to evaluate our sentiment models vis-a-vis their generalization
out-of-domain to new domains. We evaluate models on Amazon reviews [Ni et al., 2019a] on
data aggregated over six genres: beauty, fashion, appliances, giftcards, magazines, and software,
the Twitter sentiment dataset [Nakov et al., 2013],3 and Yelp reviews released as part of the
Yelp dataset challenge. We show that in almost all cases, models trained on the counterfactually-
augmented IMDb dataset perform better than models trained on comparable quantities of original
data.

To gain intuition about what is learnable absent the edited spans, we tried training several
models on passages where the edited spans have been removed from training set sentences (but
not test set). SVM, Naı̈ve Bayes, and Bi-LSTM achieve 57.8%, 59.1%, 60.2% accuracy, re-
spectively, on this task. Notably, these passages are predictive of the (true) label despite being
semantially compatible with the counterfactual label. However, BERT performs worse than ran-
dom guessing.

In one simple demonstration of the benefits of our approach, we note that seemingly irrele-
vant words such as: romantic, will, my, has, especially, life, works, both, it, its, lives and gives
(correlated with positive sentiment), and horror, own, jesus, cannot, even, instead, minutes, your,

2https://github.com/huggingface/pytorch-transformers
3We use the development set as test data is not public.
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(a) Trained on the original dataset (b) Trained on the revised dataset (c) Trained on combined dataset

Figure 3.3: Most important features learned by an SVM classifier trained on TF-IDF bag of
words.

Table 3.5: Accuracy of various models for sentiment analysis trained with various datasets. Orig.
denotes original, Rev. denotes revised, and Orig. - Edited denotes the original dataset where the
edited spans have been removed.

Training data SVM NB ELMo Bi-LSTM BERT

O R O R O R O R O R

Orig. (1.7k) 80.0 51.0 74.9 47.3 81.9 66.7 79.3 55.7 87.4 82.2

Rev. (1.7k) 58.3 91.2 50.9 88.7 63.8 82.0 62.5 89.1 80.4 90.8
Orig. − Edited 57.8 − 59.1 − 50.3 − 60.2 − 49.2 −

Orig. & Rev. (3.4k) 83.7 87.3 86.1 91.2 85.0 92.0 81.5 92.0 88.5 95.1
Orig. (3.4k) 85.1 54.3 82.4 48.2 82.4 61.1 80.4 59.6 90.2 86.1

Orig. (19k) 87.8 60.9 84.3 42.8 86.5 64.3 86.3 68.0 93.2 88.3

Orig. (19k) & Rev. 87.8 76.2 85.2 48.4 88.3 84.6 88.7 79.5 93.2 93.9

effort, script, seems and something (correlated with negative sentiment) are picked up as high-
weight features by linear models trained on either original or revised reviews as top predictors.
However, because humans never edit these during revision owing to their lack of semantic rel-
evance, combining the original and revised datasets breaks these associations and these terms
cease to be predictive of sentiment (Fig 3.3). Models trained on original data but at the same
scale as combined data are able to perform slightly better on the original test set but still fail on
the revised reviews. All models trained on 19k original reviews receive a slight boost in accu-
racy on revised data (except Naı̈ve Bayes), yet their performance significantly worse compared
to specialized models. Retraining models on a combination of the original 19k reviews with
revised 1.7k reviews leads to significant increases in accuracy for all models on classifying re-
vised reviews, while slightly improving the accuracy on classifying the original reviews. This
underscores the importance of including counterfactually-revised examples in training data.

Natural Language Inference Fine-tuned on 1.67k original sentence pairs, BERT achieves
72.2% accuracy on SNLI dataset but it is only able to accurately classify 39.7% sentence pairs
from the RP set (Table 3.7). Fine-tuning BERT on the full SNLI training set (500k sentence
pairs) results in similar behavior. Fine-tuning it on RP sentence pairs improves its accuracy to
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Table 3.6: Accuracy of various sentiment analysis models on out-of-domain data

Training data SVM NB ELMo Bi-LSTM BERT

Accuracy on Amazon Reviews

Orig. & Rev. (3.4k) 77.1 82.6 78.4 82.7 85.1
Orig. (3.4k) 74.7 66.9 79.1 65.9 80.0

Accuracy on Semeval 2017 (Twitter)

Orig. & Rev. (3.4k) 66.5 73.9 70.0 68.7 82.9
Orig. (3.4k) 61.2 64.6 69.5 55.3 79.3

Accuracy on Yelp Reviews

Orig. & Rev. (3.4k) 87.6 89.6 87.2 86.2 89.4
Orig. (3.4k) 81.8 77.5 82.0 78.0 85.3

Table 3.7: Accuracy of BERT on NLI with various train and eval sets.

Train/Eval Original RP RH RP & RH

Original (1.67k) 72.2 39.7 59.5 49.6

Revised Premise (RP; 3.3k) 50.6 66.3 50.1 58.2

Revised Hypothesis (RH; 3.3k) 71.9 47.4 67.0 57.2

RP & RH (6.6k) 64.7 64.6 67.8 66.2

Original w/ RP & RH (8.3k) 73.5 64.6 69.6 67.1
Original (8.3k) 77.8 44.6 66.1 55.4

Original (500k) 90.4 54.3 74.3 64.3

66.3% on RP but causes a drop of roughly 20 pts on SNLI. On RH sentence pairs, this results in
an accuracy of 67% on RH and 71.9% on SNLI test set but 47.4% on the RP set. To put these
numbers in context, each individual hypothesis sentence in RP is associated with two labels,
each in the presence of a different premise. A model that relies on hypotheses only would at best
perform slightly better than choosing the majority class when evaluated on this dataset. However,
fine-tuning BERT on a combination of RP and RH leads to consistent performance on all datasets
as the dataset design forces models to look at both premise and hypothesis. Combining original
sentences with RP and RH improves these numbers even further. We compare this with the
performance obtained by fine-tuning it on 8.3k sentence pairs sampled from SNLI training set,
and show that while the two perform roughly within 4 pts of each other when evaluated on SNLI,
the former outperforms latter on both RP and RH.
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Table 3.8: Accuracy of Bi-LSTM classifier trained on hypotheses only

Train/Test Original RP RH RP & RH

Majority class 34.7 34.6 34.6 34.6

RP & RH (6.6k) 32.4 35.1 33.4 34.2
Original w/ RP & RH (8.3k) 44.0 25.8 43.2 34.5
Original (8.3k) 60.2 20.5 46.6 33.6
Original (500k) 69.0 15.4 53.2 34.3

Table 3.9: Accuracy of models trained to differentiate between original and revised data

Model IMDb SNLI/RP SNLI/RH

Majority class 50.0 66.7 66.7

SVM 67.4 46.6 51.0

NB 69.2 66.7 66.6

BERT 77.3 64.8 69.7

To further isolate this effect, Bi-LSTM trained on SNLI hypotheses only achieves 69% accu-
racy on SNLI test set, which drops to 44% if it is retrained on combination of original, RP and
RH data (Table 3.8). Note that this combined dataset consists of five variants of each original
premise-hypothesis pair. Of these five pairs, three consist of the same hypothesis sentence, each
associated with different truth value given the respective premise. Using these hypotheses only
would provide conflicting feedback to a classifier during training, thus causing the drop in perfor-
mance. Further, we notice that the gain of the latter over majority class baseline comes primarily
from the original data, as the same model retrained only on RP and RH data experiences a further
drop of 11.6% in accuracy, performing worse than just choosing the majority class at all times.

One reasonable concern might be that our models would simply distinguish whether an ex-
ample were from the original or revised dataset and thereafter treat them differently. The fear
might be that our models would exhibit a hypersensitivity (rather than insensitivity) to domain.
To test the potential for this behavior, we train several models to distinguish between original
and revised data (Table 3.9). BERT identifies original reviews from revised reviews with 77.3%
accuracy. In case of NLI, BERT and Naı̈ve Bayes perform roughly within 3 pts of the majority
class baseline (66.7%) whereas SVM performs substantially worse.

3.6 Explaining the Efficacy of CAD: A Toy Formulation
We briefly review the OLS estimator for the model Y = Xβ+ϵ, where Y ∈ Rn is the target, X ∈
Rn×p the design matrix, β ∈ Rp the coefficient vector we want to estimate, and ϵ ∼ N (0, σ2

ϵ In)
an iid noise term. The OLS estimate βols is given by Cov(X,X)βols = Cov(X, Y ). Representing
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Figure 3.4: Toy causal models with one hidden confounder. In 3.4a and 3.4c, the observed
covariates are x1, x2. In 3.4b and 3.4d, the observed covariates are x̃1, x2. In all cases, y denotes
the label.

Var[Xi] as σ2
xi

and Cov(Xi, Xj) as σxi,xj
, if we observe only two covariates (p = 2), then:

βols
1 =

σ2
x2
σx1,y − σx1,x2σx2,y

σ2
x1
σ2
x2

− σ2
x1,x2

βols
2 =

σ2
x1
σx2,y − σx1,x2σx1,y

σ2
x1
σ2
x2

− σ2
x1,x2

(3.1)

Our analysis adopts the structural causal model (SCM) framework [Pearl, 2009], formalizing
causal relationships via Directed Acyclic Graphs (DAGs). Each edge of the form A → B ∈ E
in a DAG G = (V , E) indicates that the variable A is (potentially) a direct cause of variable B.
All measured variables X ∈ V in the model are deterministic functions of their corresponding
parents Pa(X) ⊆ V and a set of jointly independent noise terms. For simplicity, we work with
linear Gaussian SCMs in the presence of a single confounder where each variable is a linear
function of its parents and the noise terms are assumed to be additive and Gaussian. We look at
both causal and anticausal learning settings. In the former, we assume that a document causes
the applicability of the label (as in annotation, where the document truly causes the label). In
the latter interpretation, we assume that the label is one latent variable (among many) that causes
features of the document (as when a reviewer’s “actual sentiment” influences what they write).
For simplicity, we assume that the latent variables are correlated due to confounding but that
each latent causes a distinct set of observed features. Without loss of generality, we assume that
all variables have zero mean. Both DAGs contain the four random variables z, x1, x2, y and the
anticausal DAG also contains some additional latent variables q (Figure 3.4).

3.6.1 The Causal Setting
We now focus on the causal setting (Figure 3.4a, 3.4b) Let the Gaussian SCM be defined as
follows where the noise term for variable x is defined as ux:

z = uz,

x1 = bz + ux1 ,

x2 = cz + ux2 ,

y = ax1 + uy,

uz ∼ N (0, σ2
uz
)

ux1 ∼ N (0, σ2
ux1

)

ux2 ∼ N (0, σ2
ux2

)

uy ∼ N (0, σ2
uy
).

(3.2)
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Applying OLS, we obtain βols
1 = a and βols

2 = 0. However, consider what happens if we only
observe x1 via a noisy proxy x̃1 ∼ N (x1, σ

2
ux1

+σ2
ϵx1

) (Figure 3.4b). Assuming, ϵx1 ⊥⊥ (x1, x2, y),

from Eq. 3.1 we get the estimates β̂ols
1 and β̂ols

2 (Eq. 3.3) in the presence of observation noise on
x1.

β̂ols
1 =

a(σ2
uz
(b2σ2

ux2
+ c2σ2

ux1
) + σ2

ux1
σ2
ux2

)

σ2
uz
(b2σ2

ux2
+ c2σ2

ux1
) + σ2

ux1
σ2
ux2

+ σ2
ϵx1

(c2σ2
uz

+ σ2
ux2

)

β̂ols
2 =

acbσ2
ϵx1

σ2
uz

σ2
uz
(b2σ2

ux2
+ c2σ2

ux1
) + σ2

ux1
σ2
ux2

+ σ2
ϵx1

(c2σ2
uz

+ σ2
ux2

)

(3.3)

As we can see, β̂ols
1 ∝ 1

σ2
ϵx1

. This shows us that as σ2
ϵx1

increases, |β̂ols
1 | (the magnitude of the

coefficient for x1) decreases and |β̂ols
2 | (the magnitude of the coefficient for x2) increases. The

asymptotic OLS estimates in the presence of infinite observational noise is limσ2
ϵx1

→∞ β̂ols
1 = 0,

whereas β̂ols
2 converges to a finite non-zero value. On the other hand, observing a noisy version

of x2 will not affect our OLS estimates if there is no measurement error on x1.
These simple graphs provide qualitative insights into when we should expect a model to

rely on spurious patterns. In the causal setting, under perfect measurement, the causal variable
d-separates the non-causal variable from the label (Figure 3.4a). However, under observation
noise, a predictor will rely on the non-causal variable (Eq. 3.3). Moreover, when the causal
feature is noisily observed, additional observation noise on non-causal features yields models
that are more reliant on causal features. We argue that while review text is not noisily observed
per se, learning with imperfect feature representations acquired by training deep networks on
finite samples has an effect that is analogous to learning with observation noise.

Connection to Counterfactually Augmented Data In the causal setting, intervening on the
causal feature, d-separates the label y from the non-causal feature x2, and thus models trained on
samples from the interventional distribution will rely solely on the causal feature, even when it is
noisily observed. We argue that in a qualitative sense, the process of generating CAD resembles
such an intervention, however instead of intervening randomly, we ensure that for each example,
we produce two sets of values of x1, one such that the label is applicable and one such that it is
not applicable. One is given in the dataset, and the other is produced via the revision.

3.6.2 An Anticausal Interpretation
Alternatively, rather than thinking of features causing the applicable label, we might think of the
“causal feature” as a direct effect of the label (not a cause). In this case, so long as the relationship
is truly not deterministic, even absent noisy observation, conditioning on the causal feature does
not d-separate the label from the non-causal feature and thus models should be expected to assign
weight to both causal and non-causal variables.

As in the causal setting, as we increase observation noise on the causal variable, the weight
assigned to the non-causal variable should increase. Conversely, as in the causal setting with
observation noise on x1, as observation noise on the non-causal feature x2 increases, we expect
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the learned predictor to rely more on the causal feature. The OLS coefficients for Fig. 3.4c are
as follows:

βols
1 =

d(a2c2σ2
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uy
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+ σ2
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)(b2σ2
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+ σ2
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))
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(3.4)

If we observe a noisy version of x1, given by x̃1:

x̃1 = x1 + ϵx1 , ϵx1 ∼ N (0, σ2
ϵx1

) (3.5)

Since ϵx1 ⊥⊥ x2, y, in order to obtain expressions for the OLS estimates β̂ols
1 , β̂ols

2 in the presence
of observation noise, in Eq. 3.4 we only need to replace σ2
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, which is given by:
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where λx1
ac > 0 and λx1

ac ∝ σ2
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. Thus, as σ2
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increases, |β̂ols
1 | decreases. The asymptotic OLS
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Similarly, if we observe a noisy version of X2, given by X̃2:

x̃2 = x2 + ϵx2 , ϵx2 ∼ N (0, σ2
ϵx2

) (3.11)
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Since ϵx2 ⊥⊥ x1, y, in order to obtain expressions for the OLS estimates β̂ols
1 , β̂ols

2 in the presence
of observation noise on non-causal features, in Eq. 3.4 we only need to replace σ2
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where λx2
ac > 0 and λx2

ac ∝ σ2
ϵx2
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Connection to Counterfactually Augmented Data In this interpretation, we think of CAD
as a process by which we (the designers of the experiment) intervene on the label itself and
the human editors, play the role of a simulator that we imagine to be capable of generating
a counterfactual example, holding all other latent variables constant. In the sentiment case,
we could think of the editors as providing us with the review that would have existed had the
sentiment been flipped, holding all other aspects of the review constant. Note that by intervening
on the label, we d-separate it from the spurious correlate x2 (Figure 3.4c).

3.6.3 Insights and Testable Hypotheses
In both the causal and anticausal models, the mechanism underlying the causal relationship that
binds x1 to y (regardless of direction) is that binding language to a semantic concept (such as sen-
timent), which we expect to be more stable across settings than the more capricious relationships
among the background variables, e.g., those linking genre and production quality.

In that spirit, if spans edited to generate counterfactually revised data (CRD) are analogous
to the causal (or anticausal) variables, in the causal (or anticausal) graphs, then we might expect
that noising those spans (e.g. by random word replacement) should lead to models that rely
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more on non-causal features and perform worse on out of domain data. On the other hand,
we expect that noising unedited spans should have the opposite behavior, leading to degraded
in-domain performance, but comparatively better out-of-domain performance. In the remainder
of the paper, we investigate these hypotheses, finding evidence that qualitatively confirms the
predictions of our theory.

We freely acknowledge the speculative nature of this analysis and concede that the map-
ping between the messy unstructured data we wish to model and the neatly disentangled portrait
captured by our linear Gaussian models leaves a gap to be closed through further iterations of
theoretical refinement and scientific experiment. Ultimately, our argument is not that this simple
analysis fully accounts for counterfactually augmented data but instead that it is a useful ab-
straction for formalizing two (very different) perspectives on how to conceive of CAD, and for
suggesting interesting hypotheses amenable to empirical verification.

3.7 Experiments and Discussion
If spans marked as rationales by humans via editing or highlighting are analogous to causal
features, then noising those spans should lead to models that rely more on non-causal features
and thus perform worse on out-of-domain data, and noising the unmarked spans (analagous to
non-causal features) should have the opposite behavior. In this section, we test these hypothe-
ses empirically on real-world datasets. Additionally, we investigate whether the feedback from
human workers is yielding anything qualitatively different from what might be seen with spans
marked by automated feature attribution methods such as attention and saliency. Along similar,
lines we ask whether CAD in the first place offers qualitative advantages over what might be
achieved via automatic sentiment-flipping methods through experiments with text style transfer
algorithms.

We conduct experiments on sentiment analysis [Zaidan et al., 2007, Kaushik et al., 2020] and
NLI [DeYoung et al., 2020]. All datasets are accompanied with human feedback (tokens deemed
relevant to the label’s applicability) which we refer to as rationales. For the first set of exper-
iments, we rely on four models: Support Vector Machines (SVMs), Bidirectional Long Short-
Term Memory Networks (BiLSTMs) with Self-Attention [Graves and Schmidhuber, 2005], BERT
[Devlin et al., 2019], and Longformer [Beltagy et al., 2020]. For the second set of experiments,
we rely on four state-of-the-art style transfer models representative of different methodologies,
each representative of a different approach to automatically generate new examples with flipped
labels [Hu et al., 2017, Li et al., 2018, Sudhakar et al., 2019, Madaan et al., 2020]. To evaluate
classifier performance on the resulting augmented data, we consider SVMs, Naive Bayes (NB),
BiLSTMs with Self Attention, and BERT.

For sentiment analysis, we use SVM, BiLSTM with Self Attention, BERT, and Longformer
models. In each document, we replace a fraction of rationale (or non-rationale) tokens with ran-
dom tokens sampled from the vocabulary, and train our models, repeating the process 5 times.
We perform similar experiments for NLI using BERT. As an individual premise-hypothesis pair
is often not as long as a movie review, many pairs only have one or two words marked as ratio-
nales. To observe the effects from gradually injecting noise on rationales or non-rationales, we
select only those premise-hypothesis pairs that have a minimum 10 tokens marked as rationales.
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Table 3.10: Accuracy of sentiment analysis classifiers trained on 1.7k original reviews from
Kaushik et al. [2020] as noise is injected on rationales/non-rationales identified via humans.

Dataset Percent noise in rationales
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.8 88.2 85.7 86.9 86.9 84.5 83.3 81.6 80 79.2 76.7
CRD 51.8 47.3 45.7 42.9 39.2 33.5 28.2 25.7 24.1 19.6 17.1
Amazon 73.2 72.2 71.3 69.4 67.3 63.7 63.7 58.2 57 50.1 46.5
Semeval 62.5 62.2 61.9 61.1 60.9 58.3 57.1 55.4 54.5 51.3 50.1
Yelp 79.9 79 77.7 76.7 74.1 71.4 69 65.5 62.4 55.8 51.5

BiLSTM with Self Attention
In-sample test 81.5 78.8 77.6 76.7 75.3 75.2 74.5 72.8 67.3 64.2 63.8
CRD 49.4 49.3 46.3 45.1 39.5 38.1 38.9 38.7 32.6 32.6 29.7
Amazon 65.4 69.1 68.5 66.6 63.2 63.9 58.8 50.6 50.6 47.1 44.2
Semeval 59.3 59.8 57.6 56.4 58.6 56.6 55.3 54.3 54.3 52.3 50
Yelp 71.2 70.8 67.4 65.9 65.3 64.1 63.4 60.1 62.4 49.8 46.4

BERT
In-sample test 87.4 87.4 86.5 85.7 85.3 84.3 83.6 81 76.6 71 69
CRD 82.2 78.1 78.4 75.4 67.6 67.5 65.5 53.9 42.7 36.2 31.8
Amazon 76.2 75.5 75.1 74.2 73.5 73 72.5 70.7 63.4 57.8 56.1
Semeval 76.4 69.7 66.9 69.8 67.8 67.4 66.8 65.5 62.2 54.9 52.6
Yelp 83.7 82.5 82 81.5 80.9 80.2 79.9 75.6 64.3 54.6 52.3

Dataset Percent noise in non-rationales
SVM

In-sample test 87.8 88.6 89 86.9 85.3 82.4 86.5 83.7 82 81.6 78
CRD 51.8 55.9 53.5 57.1 58.8 63.7 63.3 65.7 70.2 73.9 74.3
Amazon 73.2 74.9 75.3 77.3 75.8 76.6 76.5 77.4 75.5 75.4 76.9
Semeval 62.5 63.3 62.7 64.3 64.3 65.6 66 65.8 65 66.4 66.4
Yelp 79.9 80.9 80.1 82.2 83.6 84.1 83.5 83.4 82.7 82.1 81.4

BiLSTM with Self Attention
In-sample test 81.5 77.5 77 75.9 75.4 75.2 75.1 73.8 73 72.4 71.7
CRD 49.4 53.1 56.25 56.6 57.5 58.4 58.6 60.3 61.5 65.5 66.1
Amazon 65.4 66.5 66.6 66.6 67.6 67.7 68.3 68.6 68.8 68.5 68.4
Semeval 59.3 58.6 58.9 59.3 58.1 57.5 59.2 59.5 59.8 59.5 58
Yelp 71.2 74.7 72.5 73.3 73.9 73.6 72.2 74.3 73.7 75.6 75.4

BERT
In-sample test 87.4 88.2 87 86.9 87 85.8 83.6 78.9 72.5 72.1 71.3
CRD 82.2 92.8 92.8 92.3 93.1 92.8 89.8 88.6 84.5 81.3 81
Amazon 76.2 78.6 78.9 79.2 75.1 71.7 67.6 65.3 65.2 63.7 61.8
Semeval 76.4 74.6 76.3 75.8 70.9 62.1 64.8 63.3 60.8 58.7 58.7
Yelp 83.7 85.4 85.3 85.1 82.1 78.3 77.2 76.2 74.3 71.6 70.1

Since no neutral pairs exist with 10 or more rationale tokens, we consider only a binary classi-
fication setting (entailment-contradiction), and downsample the majority class to ensure a 50:50
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Table 3.11: Accuracy of sentiment analysis classifiers trained on 1.7k original reviews from
Kaushik et al. [2020] as noise is injected on rationales/non-rationales identified via Attention
masks.

Dataset Percent noise in rationales
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.8 85 85.9 86.3 86.3 85.2 84.6 86.3 83.6 84.2 83.6
CRD 51.8 50.6 51.8 52 51.8 50 50.6 48.6 48.6 47.5 46.1
Amazon 73.2 74.3 73.4 72.8 72.8 72.9 72 72.3 71.1 72 70.3
Semeval 62.5 62.8 62.9 61.8 62.5 61.9 61.4 60.7 61.1 60.6 60.1
Yelp 79.9 80.1 79.3 78.7 78.9 78.5 77.8 77.5 77.8 76.2 75.9

BiLSTM with Self Attention
In-sample test 81.5 78.8 78.6 78.3 78.2 76.2 77.3 76.8 71.8 73.2 74.2
CRD 49.4 53.3 50 53.4 52.4 49.7 49.2 47.4 47.7 47 44.1
Amazon 65.4 66.8 71 64.7 60.7 61.7 65.2 64.6 51.6 57.1 66.4
Semeval 59.3 59.5 60.1 57.4 55.9 57.2 52.2 57.6 51.5 51.8 56.1
Yelp 71.2 72.3 74.2 69.6 70.5 67.3 70.7 72.8 62.8 65 66.2

BERT
In-sample test 87.4 93 90.8 90.3 90.6 91.2 90.3 90.4 90.7 90.6 90.3
CRD 82.2 91.2 92 90.8 90.8 90.9 90.3 90.9 90.2 89.8 90.4
Amazon 76.2 77.3 79.1 78.7 79.8 79.1 79.8 79.5 79.2 78.9 79.3
Semeval 76.4 71.4 73.5 73.2 74.4 76.1 77.6 79.8 78.4 79.2 77.8
Yelp 83.7 83.5 85.4 84.9 86 85.7 85.9 85.6 85.5 85.4 68.9

Dataset Percent noise in non-rationales
SVM

In-sample test 87.8 85 85.7 84.8 85 84 83.6 84.6 80.7 81.1 77.3
CRD 51.8 50.4 52.2 53.9 50.2 50.8 52.9 54.1 54.1 56.8 56.4
Amazon 73.2 73.5 75.3 74.3 76.2 73.9 73.4 73.6 71 70 67.8
Semeval 62.5 62.6 63.7 63.7 63.1 62.6 63.5 61.5 62.1 62 59.9
Yelp 79.9 79.8 80.9 81.7 80.9 80.5 80 80.1 78.5 77.5 74.4

BiLSTM with Self Attention
In-sample test 81.5 77.6 76 77.1 77.3 75.4 73.7 67.9 68.6 54.2 52.3
CRD 49.4 53.1 52.1 52.1 65 54.1 51.9 53.4 55 52.3 51.6
Amazon 65.4 63.7 65.7 64 58.8 65.5 60.3 58.7 61 58.1 56.2
Semeval 59.3 54.8 58.4 57.3 60.7 56.8 55.2 54 51.2 50 49.9
Yelp 71.2 72 73.6 70.2 61.3 71.5 68.4 64.9 66.3 58.2 55.8

BERT
In-sample test 87.4 86.9 86.7 85.3 84 81.9 80.6 74 74 73 67.2
CRD 82.2 92.3 92.4 92.1 90 86.8 83 73.2 77.7 72.5 68.5
Amazon 76.2 79.5 78.5 77.9 69.2 67.4 58.1 55.9 53.5 55.8 52.6
Semeval 76.4 76.5 75.7 77.1 65.7 61.8 54.6 58.8 51.8 54 50.8
Yelp 83.7 85.8 85 85.5 79.3 78.7 67.8 66.5 59.5 63.2 57.5
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Table 3.12: Accuracy of sentiment analysis classifiers trained on 1.7k original reviews from
Kaushik et al. [2020] as noise is injected on rationales/non-rationales identified via Allen NLP
Saliency Interpreter.

Dataset Percent noise in rationales
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.8 85.1 85.4 85.1 85.1 83.9 82.5 82.8 81.8 80 77.5
CRD 51.8 51.2 52.5 51.1 51 50.1 49.5 46.6 43.7 42.1 40.5
Amazon 73.2 73.4 73.65 73.2 72.7 72.9 71.8 72.1 70.5 69.6 68.9
Semeval 62.5 62.8 62.5 62.4 61.9 61.2 60.7 60.5 59.6 58.4 57.9
Yelp 79.9 79.8 79.7 79.1 78.7 78.2 78.1 76.6 75.1 74.1 72.2

BiLSTM with Self Attention
In-sample test 81.5 82.3 83.5 80.4 78.2 81.9 80.6 77.8 79.2 76 77
CRD 49.4 48.2 48.6 51.2 48.6 47.3 47.1 46.9 44.3 42.6 37.9
Amazon 65.4 46.6 72.8 66.9 49.7 55.4 53.7 68.5 54.7 49.8 51.8
Semeval 59.3 42.1 49.5 56.2 54.7 52.7 53.7 50.1 51.2 50.2 50
Yelp 71.2 69 73.3 73.2 67.8 69.2 69.5 68.8 67 54.4 56.9

BERT
In-sample test 87.4 91.1 90.6 90 88 89.1 87.4 86.3 83.6 84.5 81.6
CRD 82.2 93.4 92.3 91.9 90.3 90.2 87.7 83.8 78 79.3 70
Amazon 76.2 82.4 81.3 79.8 77.2 77.6 77.8 75.6 69.7 69.4 73.6
Semeval 76.4 82.6 82.8 81.3 79.2 78.1 76.7 74.7 67.4 65.8 67.4
Yelp 83.7 88.3 88.8 88.5 87.8 88.1 87 86.2 84.4 83.3 82.7

Dataset Percent noise in non-rationales
SVM

In-sample test 87.8 85.9 85.7 86.9 83.6 86.9 85.9 83.2 85 81.8 79.1
CRD 51.8 52.3 53.7 53.9 56.8 55.3 53.5 54.3 58 60 61.5
Amazon 73.2 73.9 74.1 71.8 73.6 72.5 73.8 72.6 70.6 70.6 70.8
Semeval 62.5 62.7 62.8 61.3 62.7 62 61.9 63.2 62.3 62.4 63.6
Yelp 79.9 79.8 79.8 81.4 81 80.7 81 80.5 80.3 79.8 78.6

BiLSTM with Self Attention
In-sample test 81.5 81 81.7 80.8 79.8 78 75.6 73 70.4 51 50
CRD 49.4 49 49.8 48 47.9 51.6 46.7 53.3 50.2 51.6 48.4
Amazon 65.4 65.3 64.9 62.7 63.3 65.3 67.1 65.3 64 58.3 41.8
Semeval 59.3 55 61.3 50.1 54.6 58.5 55.2 55.7 49.4 49.6 44
Yelp 71.2 73.8 75.1 71.4 74.1 73.4 74.5 72.5 66.9 55.9 53.6

BERT
In-sample test 87.4 90.5 89.1 88.6 80.6 75.1 70.1 63.7 53.8 54.1 53.1
CRD 82.2 92.1 92.2 91.3 79.9 73.3 67.1 59.2 50.1 49.8 49.6
Amazon 76.2 77.5 79.2 77.3 69 65.9 61.1 61.7 52.9 52.7 51.4
Semeval 76.4 82 83.6 83.1 78.1 77.9 71.1 69.7 55.9 56.5 51.8
Yelp 83.7 88 87.4 87.8 76.8 73 66.9 66.3 55.3 54.4 53.1
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Table 3.13: Accuracy of sentiment analysis classifiers trained on reviews from Zaidan et al.
[2007] as noise is injected on rationales/non-rationales identified via humans.

Dataset Percent noise in rationales
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.5 86.2 85.5 85 84.5 83.3 82.5 81.1 78.9 77.5 76.5
CRD 46.1 45.6 44.4 43.7 44.1 41.2 38.8 36 34.4 33.1 30.9
Amazon 68.6 67.1 65.1 64.2 62.2 60.4 57.9 50.5 54.9 53.5 51.8
Semeval 56.7 56.1 55.4 54.8 54.1 53.5 52.7 52 51.6 50.8 50.4
Yelp 76.2 75 73.5 72 70.2 68.8 66.6 65.1 63.3 61.1 59.3

BiLSTM with Self Attention
In-sample test 80.3 82.1 83.2 81.3 78.4 71.1 78.8 77.4 76.9 77.4 75.5
CRD 49.2 50.6 51 48.8 48 49.6 49.4 48.8 48.8 47.5 48.4
Amazon 50 50.5 49.4 49.7 49.8 49.7 49.7 49.7 49.6 49.5 49.4
Semeval 50 50 50 50 50 50 50 50 50 50 50
Yelp 50.5 50 53.1 52.1 50.5 50.2 50.1 50 50 50.2 50.1

Longformer
In-sample test 97.5 96.7 94 90.5 88.3 78.9 81.4 72.6 79.4 78.7 83.5
CRD 93.4 93.6 87.5 85.4 84.2 64.1 61.5 54.2 52.7 50.3 48
Amazon 81.8 77.9 65.3 65.7 64.7 63.6 61.9 62.1 61.3 60.6 57.9
Semeval 80.3 74.9 64 66.9 71.6 61.3 58.4 56.7 58.9 62.1 58.6
Yelp 88.6 85.8 77.7 74.6 72.5 68.4 66.5 64.8 64.3 64.9 62.2

Dataset Percent noise in non-rationales
SVM

In-sample test 87.5 85.5 86 83 82 83 81 80.5 75.5 60 50
CRD 46.1 46.1 49 49.4 57.1 55.5 58.4 58.4 56.5 56.3 54
Amazon 68.6 67.7 68 67.2 69.4 69 69.7 68.9 69.2 64.9 62.3
Semeval 56.7 56.9 57.5 57.4 58.3 57.6 58.8 59.4 59.3 57.4 56.3
Yelp 76.2 76.1 76.9 75.9 77 77.4 75.2 74.1 73.3 68.5 61.6

BiLSTM with Self Attention
In-sample test 80.3 80.8 79.8 75.2 75 62.5 62 57.7 56.7 58.7 57.7
CRD 49.2 50 51.1 50.8 52.9 53.9 58.6 58.6 60 60.4 60.8
Amazon 50 50 50.7 50.7 50.9 52.2 52.3 53.2 55 55.1 56.7
Semeval 50 50 50 50 50 51 51.8 52.7 53.5 53.8 53.9
Yelp 50.5 50.4 52.7 52.9 52.9 55.2 58 58.9 64.6 64.6 70

Longformer
In-sample test 97.5 97.9 98.1 97.4 94.8 93.4 86.4 82.3 76.3 77.4 80.2
CRD 93.4 94.7 94.1 91.8 91.4 91.8 88 83.4 83.7 83.6 83.4
Amazon 81.8 79 80 81.5 83.2 84.2 84.1 76.3 78.5 79.4 76.9
Semeval 80.3 79.4 77.2 80.6 80.6 84.6 85.3 71.8 79.9 83.7 76.6
Yelp 88.6 85.3 86.4 89 89.5 89.9 89.9 86.2 86.5 86.4 84.7

label split.
Figures 3.5 and 3.6 show the difference in mean accuracy over 5 runs. For all classifiers, as
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Table 3.14: Accuracy of sentiment analysis classifiers trained on reviews from Zaidan et al.
[2007] as noise is injected on rationales/non-rationales identified via Attention masks.

Dataset Percent noise in rationales
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.5 85 84.5 84 82.5 83 81 80 77.5 75.5 75.5
CRD 46.1 51 50.6 52 51.8 52.3 52.3 51.8 50.2 49.8 49.8
Amazon 68.6 68.1 67.1 66.8 66.9 66.5 66.2 65.4 66.1 66.6 65.7
Semeval 56.7 56.6 56.3 56.4 56.2 56.4 56.4 56.2 56.8 56.4 56.4
Yelp 76.2 76.1 76 76.2 76.4 76.5 76.9 76.9 76.7 76.9 76.5

BiLSTM with Self Attention
In-sample test 80.3 78.8 77.9 77.9 78.8 67.3 65.9 63.9 62 65.4 58.7
CRD 49.2 49.4 50.2 50.2 52.1 51 52.1 52.3 56.3 51.8 54.7
Amazon 50 49.7 49.9 49.9 50.4 50.2 51 51.7 51.1 50.7 50.7
Semeval 50 50 50 50 50 50 50 50.2 50.1 50 50.1
Yelp 50.5 50.1 50.5 50.5 52.1 52.4 56.1 54.9 54.9 52.2 54.9

Longformer
In-sample test 97.5 97.3 97 96.5 88.3 94 93.8 91.2 91.5 87.2 84
CRD 93.4 93.5 93.1 92.8 91.7 91.8 90.7 88 87.5 83.7 80.8
Amazon 81.8 76.3 69.5 75.4 70.4 64.5 66.3 60.8 64.7 57.3 55.3
Semeval 80.3 73 67.2 75.1 69.6 61.5 67 58.8 67.6 56.4 55.3
Yelp 88.6 85.1 79.3 83.9 79.8 75.4 76.8 69.1 75.4 65.7 61

Dataset Percent noise in non-rationales
SVM

In-sample test 87.5 87 86.5 87.5 81 82.5 73 52 50 50 50
CRD 46.1 50.4 49.6 48.6 50 46.9 50.6 49.6 50.4 50.2 50.2
Amazon 68.6 66.7 66.8 64.1 65.9 63.2 62.2 60 57.8 56.2 56.3
Semeval 56.7 56.3 56.8 55.9 56.7 55 54.2 53.8 51.8 51.1 51
Yelp 76.2 74.8 74.2 71.1 71 64.9 59.7 55.2 52.3 51 50

BiLSTM with Self Attention
In-sample test 80.3 79.8 81.3 78.4 63.5 67.3 49.5 49 48.1 48.4 48.1
CRD 49.2 51.4 51.4 54.5 49.8 49.4 49.6 49.4 49.4 49.4 49.4
Amazon 50 49.9 50.6 50.4 50.1 49.7 49.6 49.5 49.5 49.5 49.5
Semeval 50 50 50 50.2 50 50 50 50 50 50 50
Yelp 50.5 52.3 52.7 56.9 51 50.4 50 50 50 50 50

Longformer
In-sample test 97.5 98.2 97.8 95 90.2 83.3 67.3 62.8 69.3 64.2 52.8
CRD 93.4 93.6 93.5 88.8 83.1 76.5 67.8 69.7 77.6 54.5 51.4
Amazon 81.8 81.6 97.8 95 90.2 83.3 67.3 62.8 79.3 64.2 52.8
Semeval 80.3 74.8 70.3 79.1 79 78.9 69.5 67.9 64 63.3 58.6
Yelp 88.6 83.9 83.1 89.5 90.2 89.7 87.6 83 78.8 62.4 59.4

the noise in rationales increases, in-sample accuracy stays relatively stable compared to out-of-
domain accuracy. An SVM classifier trained on the original 1.7k IMDb reviews from Kaushik
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Table 3.15: Accuracy of sentiment analysis classifiers trained on reviews from Zaidan et al.
[2007] as noise is injected on rationales/non-rationales identified via Allen NLP Saliency inter-
preter.

Dataset Percent rationales tokens replaced by noise
SVM

0 10 20 30 40 50 60 70 80 90 100
In-sample test 87.5 85 84.5 84 82.5 83 81 80 77.5 75.5 75.5
CRD 46.1 51 50.6 52 51.8 52.3 52.3 51.8 50.2 49.8 49.8
Amazon 68.6 68.1 67.1 66.8 66.9 66.5 66.2 65.4 66.1 66.6 65.7
Semeval 56.7 56.6 56.3 56.4 56.2 56.4 56.4 56.2 56.8 56.4 56.4
Yelp 76.2 76.1 76 76.2 76.4 76.5 76.9 76.9 76.7 76.9 76.5

BiLSTM with Self Attention
In-sample test 80.3 83.2 78.1 76.9 73.6 80.3 81.7 76.4 76.4 74 74.5
CRD 49.2 49.8 50.6 50.8 50.8 49.2 49.2 49.2 52 49.4 49.8
Amazon 50 49.8 50.5 49.8 50 49.7 49.7 50.1 50 50.3 49.8
Semeval 50 50 50 50 50 50 50 50 50 50 50
Yelp 50.5 50.4 50 50.5 50.8 50.3 50.1 50.9 50.7 50.8 50.5

Longformer
In-sample test 97.5 98 98 97.5 97.5 97 97 97 96.5 94.3 92.8
CRD 93.4 93.4 93.9 94 92.4 91 92.2 91.7 90.2 86.6 74.5
Amazon 81.8 81 74.2 66.3 74.7 78.3 80.6 76.2 63.2 77.3 55.8
Semeval 80.3 79.9 69.4 64 73.4 77 78 74.6 60.6 78.3 56.4
Yelp 88.6 87.3 84.5 76.6 83.1 86.4 87.6 85.6 72.8 84.1 61.7

Dataset Percent noise in non-rationales
SVM

In-sample test 87.5 79.7 79.9 79.5 81.1 79.9 80.3 78.9 78.7 79.3 73.4
CRD 46.1 52.7 52 53.1 50 54.3 50.6 54.3 52 57.2 57.2
Amazon 68.6 68.1 66.2 67 65.8 68.8 65.3 64.4 65.3 63.1 61.9
Semeval 56.7 57.4 56.2 56.9 55.9 57.3 55.6 58.1 57 57.9 58
Yelp 76.2 76.4 75.4 76 75.6 75.8 74.2 74.3 73.6 73.7 71.5

BiLSTM with Self Attention
In-sample test 80.3 76.9 80.8 79.3 78.8 77.9 76 76 63.5 73.6 66.8
CRD 49.2 50 50.2 50.4 50.2 50.8 51.4 47.9 48.8 47.5 48.4
Amazon 50 50 49.7 50.1 50.2 50.8 50.2 50 50.3 49.8 47.9
Semeval 50 50 50 50 50 50.1 50 50 50 50 50
Yelp 50.5 50.5 50.3 51.3 54.5 54.9 52.2 51.4 52.7 50.5 54.9

Longformer
In-sample test 97.5 97.8 98 97.8 97.5 98.3 95 92.8 84.5 83.5 74.5
CRD 93.4 94.4 94.1 93.6 93.1 93.3 92.8 91 86.9 70.9 67.6
Amazon 81.8 80.9 75.9 75.8 79.7 68.9 81.4 72.4 71.2 63.5 55.2
Semeval 80.3 78.6 72.7 74.4 79.1 68.9 81.6 73.5 76.2 59.2 55.7
Yelp 88.6 88.1 84.1 84.8 87.5 81.3 89.3 82.2 82.2 70.3 61.5
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Table 3.16: Out-of-domain accuracy of models trained on original only, CAD, and original and
sentiment-flipped reviews

Training data SVM NB BiLSTM (SA) BERT
Accuracy on Amazon Reviews

CAD (3.4k) 79.3 78.6 71.4 83.3
Orig. & Hu et al. [2017] 66.4 71.8 62.6 78.4
Orig. & Li et al. [2018] 62.9 65.4 57.6 61.8
Orig. & Sudhakar et al. [2019] 64.0 69.3 54.7 77.2
Orig. & Madaan et al. [2020] 74.3 73.0 63.8 71.3
Orig. (3.4k) 74.5 74.3 68.9 80.0

Accuracy on Semeval 2017 (Twitter)
CAD (3.4k) 66.8 72.4 58.2 82.8
Orig. & Hu et al. [2017] 60.9 63.4 56.6 79.2
Orig. & Li et al. [2018] 57.6 60.8 54.7 62.7
Orig. & Sudhakar et al. [2019] 59.4 62.6 54.9 72.5
Orig. & Madaan et al. [2020] 62.8 63.6 54.6 79.3
Orig. (3.4k) 63.1 63.7 50.7 72.6

Accuracy on Yelp Reviews
CAD (3.4k) 85.6 86.3 73.7 86.6
Orig. & Hu et al. [2017] 77.4 80.4 68.8 84.7
Orig. & Li et al. [2018] 67.8 73.6 63.1 77.1
Orig. & Sudhakar et al. [2019] 69.4 75.1 66.2 84.5
Orig. & Madaan et al. [2020] 81.3 82.1 68.6 78.8
Orig. (3.4k) 81.9 82.3 72.0 84.3

Table 3.17: Accuracy of BERT trained on SNLI [DeYoung et al., 2020] as noise is injected
on human identified rationales/non-rationales. RP and RH are Revised Premise and Revised
Hypothesis test sets in Kaushik et al. [2020]. MNLI-M and MNLI-MM are MNLI [Williams
et al., 2018a] dev sets.

Percent noise added to train data rationales
Dataset 0 10 20 30 40 50 60 70 80 90 100

In-sample test 91.6 90.7 90.0 88.9 87.3 86.2 84.4 80.2 78.0 72.2 71.9
RP 72.7 70.7 69.1 67.1 65.7 62.4 61.8 57.7 55.6 53.8 51.4
RH 84.7 80.8 80.4 79.5 77.2 75.7 73.3 67.7 64.0 57.9 53.2
MNLI-M 75.6 74.7 73.9 72.0 70.6 69.1 64.7 59.1 55.8 54.4 53.3
MNLI-MM 77.9 76.7 75.6 73.9 72.3 70.8 65.6 58.4 55.1 53.6 52.5

Percent noise added to train data non-rationales
Dataset 0 10 20 30 40 50 60 70 80 90 100

In-sample test 91.6 91.4 91.3 90.9 90.8 89.9 89.0 88.7 87.8 86.7 85.4
RP 72.7 73.5 73.2 72.1 71.5 70.7 70.6 70.6 70.6 70.6 70.4
RH 84.7 83.6 82.6 81.9 81.3 81.1 80.5 79.8 79.4 79.4 79.2
MNLI-M 75.6 74.9 74.4 72.6 72.4 71.8 71.3 71.3 70.9 70.9 70.8
MNLI-MM 77.9 76.2 75.8 75.0 74.6 74.3 73.9 73.7 73.3 73.0 72.8
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Figure 3.5: Change in classifier accuracy as noise is injected on rationales/non-rationales for
IMDb reviews from Kaushik et al. [2020].

et al. [2020] obtains 87.8% accuracy on the IMDb test set and 79.9% on Yelp reviews.4 As a
greater fraction of rationales are replaced with random words from the vocabulary, the classifier
experiences a drop of ≈ 11% by the time all rationale tokens are replaced with noise. However,
it experiences an 28.7% drop in accuracy on Yelp reviews. Similarly, on the same datasets, a
fine-tuned BERT classifier sees its in-sample accuracy drop by 18.4%, and by 31.4% on Yelp
as rationale tokens replaced by noise go from 0 to 100%. However, as more non-rationales are
replaced with noise, in-sample accuracy for SVM goes down by ≈ 10% but increases by 1.5%
on Yelp. For BERT, in-sample accuracy decreases by only 16.1% and only 13.6% on Yelp (Table
3.10).

We obtain similar results using rationales identified via feature feedback. An SVM classifier
trained on reviews from Zaidan et al. [2007] sees in-sample accuracy drop by 11%, and accuracy
on Yelp drop by 16.9% as noise is inserted on rationales but goes down by 17.3% and 14.6%,
respectively when noise is inserted in non-rationales. For Longformer, in-sample accuracy drops
by 14% and accuracy on Yelp goes down by 26.4% compared to a drop of 17.3% and gain of
3.9%, respectively, when noise is inserted in non-rationales. Similar patterns are observed across

4The out-of-domain evaluation sets in Kaushik et al. [2020] do not have 50:50 label split. We enforce
this split to observe when a classifier approaches random baseline performance. All datasets can be found at
https://github.com/acmi-lab/counterfactually-augmented-data
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Figure 3.6: Change in classifier accuracy as noise is injected on rationales/non-rationales for
IMDb reviews from Zaidan et al. [2007]. In both Figures 3.5 and 3.6, the vertical dashed line
indicates the fraction of median length of non-rationales equal to the median length of rationales.

datasets and models (see Figure 3.6a and Table 3.13).5

For NLI, the in-sample accuracy of BERT fine-tuned on an SNLI subsample drops by ≈ 20%
when rationales are replaced with noise, and out-of-domain accuracy goes down by 21.3–31.5%
on various datasets (Table 3.17). Whereas, if non-rationales are replaced with noise, in-sample
accuracy goes down by 6.2% but out-of-domain accuracy drops by only 2.3–5.5%. These results
support our hypothesis that spans marked by humans as causing a label are analogous to causal
variables.

Interestingly, in our NLI experiments, for various models the drops in both in-sample and
out-of-domain accuracy are greater in magnitude when noise is injected in rationales versus
when it is injected in non-rationales. This is opposite to what we observe in sentiment analysis.
We conjecture that these results are due to the fact that in our experiment design for NLI, we
only keep those premise-hypothesis pairs that contain at least 10 tokens marked as rationales
so we can observe the difference in accuracy as the amount of noise increases. A consequence
of this selection is that many pairs selected have many more tokens marked as rationales than
non-rationales, whereas, in sentiment analysis this is the opposite. Hence, in NLI when some

5While similar trends are observed for both feature feedback and CAD, it is less clear how to incorporate fea-
ture feedback for training effectively with deep neural networks and pre-trained transformer architectures, whereas
training (or fine-tuning) models on CAD is straightforward.
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percentage of rationales are replaced by noise, this corresponds to many more edited tokens than
when a corresponding percentage of non-rationales are noised.

To compare human feedback to automatic feature attribution methods such as attention [Bah-
danau et al., 2015] and gradient based saliency methods [Li et al., 2016], we conduct the same set
of experiments assuming tokens attended to (or not) by an attention based classifier (BiLSTM
with Self-Attention) or identified as highly influential by a gradient based feature attribution
method (salience scores) as new rationales (or non-rationales). In this case, unlike our findings
with human feedback, we observe markedly different behavior than predicted by our analysis of
the toy causal model (See Figures 3.5b, 3.5c, 3.6b, and 3.6c; and Tables 3.11, 3.12, 3.14, and
3.15).

While we might not expect spurious signals to be as reliable out of domain, that does not
mean that they will always fail. For example, while the associations between genre and sentiment
learned from a dataset of book reviews might not hold in a dataset of kitchen appliances, but
nevertheless hold in a dataset of audiobook reviews. In such settings, even though noising non-
causal features would lead to models relying more on causal features, this may not result in better
out-of-domain performance.

We also look at whether we really need to go through the process of collecting CAD (or
human-annotated rationales) at all or if automated methods for generating “counterfactuals”
might obtain similar gains in out-of-domain performance, as the former could be an expensive
process. We experiment with state-of-the-art style transfer methods to convert Positive reviews
into Negative and vice versa. Ideally, we would expect these methods to preserve a document’s
“content” while modifying the attributes that relate to sentiment (if they obtain perfect disentan-
glement in the feature space). Sentiment classifiers trained on original and sentiment-flipped re-
views generated using style transfer methods often give better out-of-domain performance com-
pared to training only on original data of same size (Table 3.16). However, models trained on
CAD perform even better across all datasets, hinting at the value of human feedback.
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Chapter 4

Learning From Feature Feedback

4.1 Overview

Addressing various classification tasks in natural language processing (NLP), including senti-
ment analysis [Zaidan et al., 2007], natural language inference (NLI) [DeYoung et al., 2020],
and propaganda detection [Pruthi et al., 2020], researchers have introduced resources containing
additional side information by tasking humans with marking spans in the input text (called ra-
tionales or feature feedback) that provide supporting evidence for the label. For example, spans
like “underwhelming”, “horrible”, or “worst film since Johnny English” might indicate negative
sentiment in a movie review. Conversely, spans like “exciting”, “amazing”, or “I never thought
Vin Diesel would make me cry” might indicate positive sentiment.

These works have proposed a variety of strategies for incorporating feature feedback as addi-
tional supervision [Lei et al., 2016, Zhang et al., 2016, Lehman et al., 2019, Chen et al., 2019b,
Jain et al., 2020, DeYoung et al., 2020, Pruthi et al., 2020]. Other researchers have studied the
learning-theoretic properties of feature feedback [Poulis and Dasgupta, 2017, Dasgupta et al.,
2018, Dasgupta and Sabato, 2020]. We focus our study on the resources and practical methods
developed for NLP.

Some have used this feedback to perturb instances for data augmentation [Zaidan et al., 2007],
while others have explored multitask objectives for simultaneously classifying documents and
extracting rationales [Pruthi et al., 2020]. A number of papers exploit feature feedback as in-
termediate supervision for building extract-then-classify pipelines [Chen et al., 2019b, Lehman
et al., 2019, Jain et al., 2020]. One common assumption is that resulting models would learn to
identify and rely more on spans relevant to the target labels, which would in turn lead to more
accurate predictions.

However, despite their intuitive appeal, feature feedback methods have thus far yielded under-
whelming results on independent drawn and identically distributed (iid) test sets in applications
involving deep nets. While Zaidan et al. [2007] found significant gains when incorporating ra-
tionales into their SVM learning scheme, benefits have been negligible in the BERT era. For
example, although Pruthi et al. [2020] and Jain et al. [2020] address a different aim—to im-
prove extraction accuracy—their experiments show no improvement in classification accuracy
by incorporating rationales.

41



On the other hand, Kaushik et al. [2020], introduced counterfactually augmented data (CAD)
with the primary aim of showing how supplementary annotations can be incorporated to make
models less sensitive to spurious patterns, and additionally demonstrated that models trained
on CAD degraded less in a collection of out-of-domain tests than their vanilla counterparts. In
followup work, they showed that for both CAD and feature feedback, although corruptions to
evidence spans via random word flips result in performance degradation both in- and out-of-
domain, when non-evidence spans are corrupted, out-of-domain performance often improves
[Kaushik et al., 2021b]. These findings echo earlier results in computer vision [Ross et al., 2017,
Ross and Doshi-Velez, 2018] where regularizing input gradients (so-called local explanations)
to accord with expert attributions led to improved out-of-domain performance.

In this chapter, we conduct an empirical study of the out-of-domain benefits of incorporating
feature feedback in NLP. We seek to address two primary research questions: (i) do models
that rely on feature feedback generalize better out of domain compared to classify-only models
(i.e., models trained without feature feedback)? and (ii) do we need to solicit feature feedback
for an entire dataset or can significant benefits be realized with a modest fraction of examples
annotated? Our experiments on sentiment analysis [Zaidan et al., 2007] and NLI [DeYoung et al.,
2020] use both linear, BERT [Devlin et al., 2019], and ELECTRA [Clark et al., 2020b] models,
using two feature feedback techniques [Pruthi et al., 2020, Jain et al., 2020].

4.2 Methodology

We focus on two techniques (classify-and-extract [Pruthi et al., 2020] and extract-then-classify [Jain
et al., 2020]), two pretrained models, and one (in-domain) dataset each for sentiment analysis
and NLI that contain feature feedback. For both techniques, feature feedback annotations pro-
vide supervision to the extractive component. The classify-and-extract model jointly predicts the
(categorical) label and performs sequence tagging predict rationales. The classification head and
a linear chain CRF [Lafferty et al., 2001] share an encoder, initialized with pretrained weights.

The extract-then-classify method [Jain et al., 2020] first trains a classifier (support) on com-
plete examples to predict the label, using its outputs to extract continuous feature importance
scores. These scores are then binarized using a second classifier (extractor) which is trained on
the feature importance scores from support and makes token-level binary predictions to identify
rationale tokens in the input. A binary cross-entropy term in the objective of the extractor is used
to maximise agreement of the extracted tokens with human rationales. Finally, a third classifier
(predictor) is trained to predict the target (sentiment or entailment) label based only on these
extracted tokens.

For both approaches, we experiment with two pretrained models (BERT and ELECTRA).
We limit the maximum sequence length to 512 tokens and train all models for 10 epochs using
AdamW optimizer [Loshchilov and Hutter, 2019] with a learning rate of 2e− 5 and a batch size
of 8 and early stopping based on mean of classification and extraction F1 scores on the validation
set. We replicate all experiments on 5 seeds and report mean performance along with standard
deviation.

To see whether results are consistent across architectures, we also use a linear SVM [Zaidan
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et al., 2007] with a modified objective function on top of the ordinary soft-margin SVM, i.e.,

1

2
||w||2 + C(

∑
i

δi) + Ccontrast(
∑
i,j

ξij)

subject to the constraints w⃗ · x⃗ij · yi ≥ 1− ξij ∀i, j where x⃗ij :=
x⃗i−v⃗ij

µ
are psuedoexamples, cre-

ated by subtracting contrast-examples (v⃗ij), input sentence void of randomly chosen rationales,
from the original input (x⃗i). We use term-frequency embeddings with unigrams appearing in at
least 10 reviews and set C = Ccontrast = µ = 1. For each training example, we generate 5
psuedoexamples.

Datasets For sentiment analysis, we use an IMDb movie reviews dataset [Zaidan et al., 2007].
Reviews in this dataset are labeled as having either positive or negative sentiment. Zaidan et al.
[2007] also tasked annotators to mark spans in each review that were indicative of the overall
sentiment. We use these spans as feature feedback. Overall, the dataset has 1800 reviews in the
training set (with feature feedback) and 200 in test (without feature feedback). Since the test
set does not include ground truth labels for evidence extraction, we construct a test set out of the
1800 examples in the original training set. This leaves 1200 reviews for a new training set, 300 for
validation, and 300 for test. For NLI, we use a subsample of the E-SNLI dataset [DeYoung et al.,
2020] used in Kaushik et al. [2021b]. In this dataset, there are 6318 premise-hypothesis pairs,
equally divided across entailment and contradiction categories. Examples of feature feedback
are shown in Table 4.1.

4.3 Results
We first fine-tune BERT and ELECTRA on a sentiment analysis dataset [Zaidan et al., 2007]
following both classify-and-extract and extract-then-classify approaches. We evaluate resulting
models on both iid test set as well as various naturally occurring out-of-domain datasets for
sentiment analysis and compare resulting performance with classify-only models (Table 4.4).
We find that both approaches lead to significant gains in out-of-domain performance compared
to the classify-only method. For instance, ELECTRA fine-tuned using the extract-then-classify
framework leads to ≈ 15.7% gain in accuracy when evaluated on Yelp.

As Pruthi et al. [2020] demonstrate better performance on evidence extraction for sentiment
analysis compared to Jain et al. [2020], we use their method for additional analysis. For both sen-
timent analysis and NLI, we fine-tune models with varying proportion of samples with rationales
and report iid and out-of-domain performance (Tables 4.5 and 4.7). Training with no feature
feedback recovers the classify-only baseline. We evaluate on CRD [Kaushik et al., 2020], SST-2
[Socher et al., 2013], Amazon reviews [Ni et al., 2019b], Tweets [Rosenthal et al., 2017] and Yelp
reviews [Kaushik et al., 2021b] for sentiment analysis, and Revised Premise (RP), Revised Hy-
pothesis (RH) [Kaushik et al., 2020], MNLI matched (MNLI-M) and mismatched (MNLI-MM)
[Williams et al., 2018b] for NLI.

On sentiment analysis, we find feature feedback to improve BERT’s iid performance but
find ELECTRA’s performance comparable with and without feature feedback. Feature feedback
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Task Examples

Sentiment Analysis (Positive) . . . characters are portrayed with such saddening realism that you
can’t help but love them , as pathetic as they really are . although
levy stands out , guest , willard , o’hara , and posey are all wonder-
ful and definitely should be commended for their performances ! if
there was an oscar for an ensemble performance , this is the group
that should sweep it . . .

Sentiment Analysis (Negative) . . . then , as it’s been threatening all along , the film explodes into
violence . and just when you think it’s finally over , schumacher tags
on a ridiculous self-righteous finale that drags the whole unpleasant
experience down even further . trust me . there are better ways to
waste two hours of your life . . .

NLI (Entailment) P: a white dog drinks water on a mountainside.
H: there is a dog drinking water right now.

NLI (Contradiction) P: a dog leaping off a boat
H: dogs drinking water from pond

Table 4.1: Examples of documents (and true label) with feature feedback (highlighted in yellow).

Test set Classify-only Pruthi et al. Jain et al.

BERT

In-domain 85.90.7 89.92.3 90.40.3
CRD 89.30.7 91.60.7 87.50.8
SST2 77.64.1 79.33.6 75.61.2
Amazon 78.14.9 83.53.1 92.31.2
Semeval 70.65.7 73.22.6 68.62.2
Yelp 86.81.7 85.71.6 91.60.1

ELECTRA

In-domain 93.20.3 91.81.4 93.10.3
CRD 91.60.4 93.70.9 91.50.7
SST2 73.21.3 74.01.2 77.21.4
Amazon 72.82.0 75.52.1 84.21.6
Semeval 67.54.5 72.51.8 66.73.0
Yelp 79.03.6 84.61.8 94.70.2

Table 4.2: Mean and standard deviation (in subscript) of accuracy scores of classify-only models,
and models proposed by Pruthi et al. [2020] and Jain et al. [2020], fined-tuned for sentiment
analysis. Results highlighted in bold are significant with p < 0.05.
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Test set Classify-only Zaidan et al.

In-domain 75.23.5 79.13.4
CRD 48.32.0 58.22.4

SST-2 49.70.3 65.61.5

Amazon 50.90.3 68.73.1

Semeval 49.80.1 58.01.5

Yelp 55.72.8 74.82.7

Table 4.3: Mean and standard deviation (in subscript) of accuracy scores of classify-only SVM
model versus SVM trained with feature feedback for sentiment analysis using Zaidan et al.
[2007]’s method. Results highlighted in bold are significant with p < 0.05.

Test set Classify-only Pruthi et al. Jain et al.

BERT

In-domain 88.72.0 89.80.8 77.70.1
RP 62.93.9 66.60.6 57.90.1
RH 76.93.5 80.51.9 70.70.2
MNLI-M 69.72.6 68.11.9 69.80.1
MNLI-MM 71.52.7 69.22.3 66.20.1

ELECTRA

In-domain 96.00.2 95.00.3 85.40.04
RP 80.81.0 78.00.6 72.20.1
RH 88.91.0 88.70.9 79.70.1
MNLI-M 86.50.9 81.92.1 77.10.1
MNLI-MM 86.60.8 82.12.0 75.70.1

Table 4.4: Mean and standard deviation (in subscript) of F1 scores of models fine-tuned for
NLI with increasing number of examples with feature feedback. Results highlighted in bold are
significantly better than classify-only performance (p < 0.05).

leads to an increase in performance out-of-domain on both BERT and ELECTRA. For instance,
with feature feedback, ELECTRA’s classification accuracy increases from 91.6% to 93.7% on
CRD and 79% to 84.6% on Yelp. Similar trends are also observed when we fine-tune BERT with
feature feedback. Interestingly, when evaluated on the SemEval dataset (Tweets), we observe
that BERT fine-tuned with feature feedback on all training examples achieves comparable per-
formance to fine-tuning without feature feedback. However, fine-tuning with feature feedback on
just 25% of training examples leads to a significant improvement in classification accuracy. We
speculate that this might be a result of implicit hyperparameter tuning when combining prediction
and extraction losses, and a more extensive hyperparameter search could provide comparable (if
not better) gains with 100% data. Similarly, SVM trained with feature feedback [Zaidan et al.,
2007] consistently outperformed SVM trained without feature feedback, when evaluated out-of-
domain despite obtaining similar accuracy in-domain (Tables 4.3 and 4.6). For instance, SVM
trained on just label information achieved 75.2% ± 3.5% accuracy on the in-domain test set,
which was comparable to the accuracy of 79.1% ± 3.4% achieved by SVM trained with feature
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Fraction of Training Data with Rationales
Evaluation set No rationales 25% 50% 75% 100%

BERT

In-domain 85.90.7 87.71.1 88.12.4 90.21.5 89.92.3

CRD 89.30.7 91.70.6 92.30.9 92.30.3 91.60.7

SST2 77.64.1 81.20.6 81.30.7 81.80.6 79.33.6
Amazon 78.14.9 85.31.2 84.61.7 84.00.5 83.53.1
Semeval 70.65.7 77.81.0 75.50.8 74.90.8 73.22.6
Yelp 86.81.7 86.91.1 85.81.5 85.40.7 85.71.6

ELECTRA

In-domain 93.20.3 92.40.9 92.81.2 93.71.9 91.81.4
CRD 91.60.4 92.10.8 93.00.6 93.10.3 93.70.9

SST2 73.21.3 73.11.8 72.31.6 72.31.1 74.01.2
Amazon 72.82.0 79.01.8 75.71.2 76.61.8 75.52.1
Semeval 67.54.5 70.51.5 66.21.5 67.12.2 72.51.8
Yelp 79.03.6 84.51.1 84.21.7 84.31.2 84.61.8

Table 4.5: Mean and standard deviation (in subscript) of accuracy scores of models fine-tuned for
sentiment analysis using the method proposed by Pruthi et al. [2020] with different base models
(BERT and ELECTRA) and increasing proportion of examples with feature feedback. Results
highlighted in bold are significant difference with p < 0.05.

Dataset size
Evaluation Set 300 600 900 1200

In-domain 77.03.9/77.62.2 78.53.2/82.32.0 80.51.7/84.91.6 75.23.5/79.13.4
CRD 48.02.9/56.41.3 48.32.5/58.02.7 48.42.3/58.71.8 48.32.0/58.22.4

SST-2 52.21.6/62.91.0 50.93.0/64.00.9 51.33.1/64.90.9 49.70.3/65.61.5

Amazon 51.81.5/65.91.9 52.42.0/66.51.2 52.02.9/69.90.4 50.90.3/68.73.1

Semeval 50.31.4/56.71.1 50.31.2/56.40.8 50.10.5/58.81.3 49.80.1/58.01.5

Yelp 60.24.0/72.02.4 57.37.1/74.51.5 61.24.6/74.82.5 55.72.8/74.82.7

Table 4.6: Mean and standard deviation (in subscript) of accuracy scores of classify-only SVM
models (left) presented alongside accuracy scores of models trained with feature feedback (right),
with increasing number of training-samples for sentiment analysis using the method proposed
by Zaidan et al. [2007]. Results highlighted in bold show statistically significant difference with
p < 0.05.

feedback. But the classifier trained with feature feedback led to ≈ 19% and ≈ 18% improvement
in classification accuracy on Yelp reviews and Amazon reviews, respectively, compared to the
classifier trained without feature feedback.

For NLI, it appears that feature feedback provides no added benefit compared to a classify-
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Fraction of Training Data with Rationales
Evaluation set No rationales 25% 50% 75% 100%

BERT

In-domain 88.72.0 89.60.4 89.90.4 89.70.4 89.80.8
RP 62.93.9 67.62.0 67.41.2 68.60.6 66.60.6
RH 76.93.5 80.41.1 81.71.6 81.40.7 80.51.9
MNLI-M 69.72.6 67.63.4 68.14.6 68.82.0 68.11.9
MNLI-MM 71.52.7 68.84.5 69.25.9 69.82.7 69.22.3

ELECTRA

In-domain 96.00.2 95.10.3 95.00.3 95.00.3 95.00.3
RP 80.81.0 78.21.3 79.21.1 77.21.3 78.00.6
RH 88.91.0 88.01.2 88.40.3 87.90.4 88.70.9
MNLI-M 86.50.9 82.02.8 82.41.6 82.30.9 81.92.1
MNLI-MM 86.60.8 82.62.8 83.51.4 82.60.8 82.12.0

Table 4.7: Mean and standard deviation (in subscript) of F-1 scores of models fine-tuned for
NLI using the method proposed by Pruthi et al. [2020] with different base models (BERT and
ELECTRA) and increasing proportion of examples with feature feedback. Results highlighted
in bold are significant difference with p < 0.05.

only BERT model, whereas, ELECTRA’s iid performance decreases with feature feedback. Fur-
thermore, models fine-tuned with feature feedback generally perform no better than classify-only
models when trained with varying proportions of rationales (Table 4.7) while classify-only mod-
els perform significantly better than the models trained with rationales when trained with varying
dataset size. (Table 4.8). These results are in line with observations in prior work on counterfac-
tually augmented data [Huang et al., 2020]. Table 4.9 shows examples of correct and incorrect
predictions made on out of domain examples by models trained with feature feedback.

4.4 Analysis and Discussion
We find that 21.37% of tokens in the vocabulary of Zaidan et al. [2007] are marked as rationales
in at least one movie review. Interestingly, this fraction is 79.54% for NLI (Table 4.10). While
for movie reviews, certain words or phrases might generally denote positive or negative senti-
ment (e.g., “amazing movie”), for NLI tasks, it is not clear that any individual phrase should
suggest entailment or contradiction generally. A word or a phrase might be marked as indicating
entailment in one NLI example but as contradiction in another.

We further construct vocabulary of unigrams and bigrams from phrases marked as feature
feedback in examples from the sentiment analysis training set (V rationale). We compute the fraction
of unigrams (and bigrams) that occur in this vocabulary and also occur in each out-of-domain
dataset. We find that a large fraction of unigrams from V rationale also exist in CRD (≈ 60%), SST2
(≈ 64%), and Yelp (≈ 78%) data. However, this overlap is much smaller for SemEval (≈ 30%)
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Dataset size
Evaluation Set 1500 3000 4500 6318

BERT

In-domain 85.96.0/84.52.0 87.90.4/87.71.0 89.10.4/89.20.2 88.72.0/89.80.8
RP 61.80.9/62.81.8 63.31.6/64.21.8 63.71.8/66.81.4 62.93.9/66.41.7
RH 74.51.6/71.83.4 77.01.4/77.32.1 78.31.1/80.41.8 76.93.5/80.51.9
MNLI-M 63.73.1/60.83.2 69.21.8/66.32.2 70.20.9/67.53.1 69.72.6/68.11.9
MNLI-MM 64.84.3/61.84.3 71.32.3/67.52.8 72.11.2/68.94.2 73.11.9/71.41.1

ELECTRA

In-domain 94.60.2/92.70.5 95.10.4/94.20.3 95.70.2/94.40.2 96.00.2/95.10.3
RP 78.41.2/75.22.5 78.51.8/77.20.9 81.20.6/76.21.2 80.81.0/78.00.6
RH 87.70.7/85.21.4 88.11.3/87.30.6 89.40.6/87.11.0 88.91.0/88.70.9
MNLI-M 82.82.2/77.01.8 85.41.8/78.91.7 86.01.6/80.42.1 86.50.9/81.92.1
MNLI-MM 83.62.5/77.92.1 86.22.1/79.91.9 86.11.8/80.82.2 86.60.8/82.12.0

Table 4.8: Mean and standard deviation (in subscript) of F-1 scores of classify-only mod-
els/models trained with feature feedback, with increasing number of training-samples for NLI
using the method proposed by Pruthi et al. [2020]. Results highlighted in bold are statistically
significant difference with p < 0.05.

and Amazon (≈ 45%). For these overlapping unigrams, we observe a relatively large percentage
(50–65%) preserve their associated majority training set label in the out-of-domain datasets.
Similar trends hold for bigrams, though fewer V rationale bigrams are present out-of-domain (Table
4.12).

For each pair in the NLI training set, we compute Jaccard similarity between the premise and
hypothesis sentence (Table 4.11). We compute the mean of these example-level values over the
entire dataset, finding that it is common for examples in our training set to have overlap between
premise and hypothesis sentences, regardless of the label. However, when we compute mean
Jaccard similarity between premise and hypothesis rationales, we find higher overlap for entail-
ment examples versus contradiction. Thus, models trained with feature feedback might learn to
identify word overlap as predictive of entailment even when the true label is contradiction. While
this may not improve an NLI model’s performance, it could be useful in tasks like Question An-
swering, where answers often lie in sentences that have high word overlap with the question
[Lamm et al., 2020, Majumder et al., 2021]. Interestingly, our results on NLI are in conflict
with recent findings where models trained with rationales showed significant improvement over
classify-only models in both iid and out-of-domain (MNLI-M and MNLI-MM) settings [Stacey
et al., 2021]. This could be due to the different modeling strategy employed in their work, as
they use rationales to guide the training of the classifier’s attention module. Investigating this
difference is left for future work.
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Task Examples

Sentiment Analysis (Positive, Correct) everyone should adapt a tom robbins book for screen .
while the movie is fine and the performances are good , the
dialogue , which works well reading it , is beautiful when
spoken .

Sentiment Analysis (Positive, Wrong) ... very uncaptivating yet one gets the feeling that their is
some serious exploitation going on here ...

Sentiment Analysis (Negative, Correct) ... using quicken is a frustrating experience each time i fire
it up ...

Sentiment Analysis (Negative, Wrong) ... with many cringe-worthy ‘surprises’, which happen
around 10 minutes after you see exactly what’s going to
happen ...

NLI (Entailment, Correct) P: a woman cook in an apron is smiling at the camera with
two other cooks in the background .
H: a woman looking at the camera .

NLI (Entailment, Wrong) P: a woman in a brown dress looking at papers in front of a
class .
H: a woman looking at papers in front of a class is not wear-
ing a blue dress .

NLI (Contradiction, Correct) P: the woman in the white dress looks very uncomfortable
in the busy surroundings
H: the dress is black .

NLI (Contradiction, Wrong) P: a man , wearing a cap , is pushing a cart , on which large
display boards are kept , on a road .
H: the person is pulling large display boards on a cart .

Table 4.9: Examples (from out-of-domain evaluation sets; with true label and model prediction)
of explanations highlighted by feature feedback models (highlighted in yellow).

Task Unigram Bigram

Sentiment Analysis 21.37 11.20
NLI 79.54 35.49

Table 4.10: Percentage of unigram and bigram vocabularies that are marked as feature feedback
at least once.
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Entailment Contradiction

Dall 0.25 0.16
Drationale 0.30 0.09

Table 4.11: Mean Jaccard index of premise-hypothesis word overlap (Dall) and rationale overlap
(Drationale) in the training set.

Dataset % Overlap Label Agreement

Unigram

CRD 60.3 51.3
SST2 64.6 66.5
Amazon 45.6 47.6
Semeval 30.9 60.3
Yelp 78.3 65.1

Bigram

CRD 28.2 51.9
SST2 28.5 64.5
Amazon 19.6 49.9
Semeval 10.2 58.5
Yelp 46.8 65.3

Table 4.12: Rationale vocabulary overlap and label agreement between in-sample and OOD
datasets.
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Chapter 5

Adversarial Data Collection

5.1 Overview

Across such diverse natural language processing (NLP) tasks as natural language inference [NLI;
Poliak et al., 2018, Gururangan et al., 2018], question answering [QA; Kaushik and Lipton,
2018], and sentiment analysis [Kaushik et al., 2020], researchers have discovered that models can
succeed on popular benchmarks by exploiting spurious associations that characterize a particular
dataset but do not hold more widely. Despite performing well on independent and identically
distributed (i.i.d.) data, these models are liable under plausible domain shifts. With the goal
of providing more challenging benchmarks that require this stronger form of generalization, an
emerging line of research has investigated adversarial data collection (ADC), a scheme in which
a worker interacts with a model (in real time), attempting to produce examples that elicit incorrect
predictions [e.g., Dua et al., 2019, Nie et al., 2020]. The hope is that by identifying parts of the
input domain where the model fails one might make the model more robust. Researchers have
shown that models trained on ADC perform better on such adversarially collected data and that
with successive rounds of ADC, crowdworkers are less able to fool the models [Dinan et al.,
2019].

While adversarial data may indeed provide more challenging benchmarks, the process and its
actual benefits vis-a-vis tasks of interest remain poorly understood, raising several key questions:
(i) do the resulting models typically generalize better out of distribution compared to standard
data collection (SDC)?; (ii) how much can differences between ADC and SDC be attributed to the
way workers behave when attempting to fool models, regardless of whether they are successful?
and (iii) what is the impact of training models on adversarial data only, versus using it as a data
augmentation strategy?

In this chapter, we describe a large-scale randomized controlled study to address these ques-
tions. Focusing our study on span-based question answering and a variant of the Natural Ques-
tions dataset [NQ; Lee et al., 2019, Karpukhin et al., 2020], we work with two popular pre-
trained transformer architectures—BERTlarge [Devlin et al., 2019] and ELECTRAlarge [Clark
et al., 2020a]—each fine-tuned on 23.1k examples. To eliminate confounding factors when
assessing the impact of ADC, we randomly assign the crowdworkers tasked with generating
questions to one of three groups: (i) with an incentive to fool the BERT model; (ii) with an in-
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Figure 5.1: Platform shown to workers generating questions in the ADC setting.

centive to fool the ELECTRA model; and (iii) a standard, non-adversarial setting (no model in
the loop). The pool of contexts is the same for each group and each worker is asked to gener-
ate five questions for each context that they see. Workers are shown similar instructions (with
minimal changes), and paid the same base amount.

We fine-tune three models (BERT, RoBERTa, and ELECTRA) on resulting datasets and eval-
uate them on held-out test sets, adversarial test sets from prior work [Bartolo et al., 2020], and 12
MRQA [Fisch et al., 2019] datasets. For all models, we find that while fine-tuning on adversarial
data usually leads to better performance on (previously collected) adversarial data, it typically
leads to worse performance on a large, diverse collection of out-of-domain datasets (compared
to fine-tuning on standard data). We observe a similar pattern when augmenting the existing
dataset with the adversarial data. Results on an extensive collection of out-of-domain evalua-
tion sets suggest that ADC training data does not offer clear benefits vis-à-vis robustness under
distribution shift.

To study the differences between adversarial and standard data, we perform a qualitative
analysis, categorizing questions based on a taxonomy [Hovy et al., 2000]. We notice that more
questions in the ADC dataset require numerical reasoning compared to the SDC sample. These
qualitative insights may offer additional guidance to future researchers.

5.2 Related Work

In an early example of model-in-the-loop data collection, Zweig and Burges [2012] use n-gram
language models to suggest candidate incorrect answers for a fill-in-the-blank task. Richardson
et al. [2013] suggested ADC for QA as proposed future work, speculating that it might challenge
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state-of-the-art models. In the Build It Break It, The Language Edition shared task [Ettinger et al.,
2017], teams worked as builders (training models) and breakers (creating challenging examples
for subsequent training) for sentiment analysis and QA-SRL.

Research on ADC has picked up recently, with Chen et al. [2019a] tasking crowdworkers to
construct multiple-choice questions to fool a BERT model and Wallace et al. [2019b] employ-
ing Quizbowl community members to write Jeopardy-style questions to compete against QA
models. Zhang et al. [2018] automatically generated questions from news articles, keeping only
those questions that were incorrectly answered by a QA model. Dua et al. [2019] and Dasigi
et al. [2019] required crowdworkers to submit only questions that QA models answered incor-
rectly. To construct FEVER 2.0 [Thorne et al., 2019], crowdworkers were required to fool a
fact-verification system trained on the FEVER [Thorne et al., 2018] dataset. Some works ex-
plore ADC over multiple rounds, with adversarial data from one round used to train models in
the subsequent round. Yang et al. [2018b] ask workers to generate challenging datasets working
first as adversaries and later as collaborators. Dinan et al. [2019] build on their work, employing
ADC to address offensive language identification. They find that over successive rounds of train-
ing, models trained on ADC data are harder for humans to fool than those trained on standard
data. Nie et al. [2020] applied ADC for an NLI task over three rounds, finding that training for
more rounds improves model performance on adversarial data, and observing improvements on
the original evaluations set when training on a mixture of original and adversarial training data.
Williams et al. [2020] conducted an error analysis of model predictions on the datasets collected
by Nie et al. [2020]. Bartolo et al. [2020] studied the empirical efficacy of ADC for SQuAD
[Rajpurkar et al., 2016], observing improved performance on adversarial test sets but noting that
trends vary depending on the models used to collect data and to train. Previously, Lowell et al.
[2019] observed similar issues in active learning, when the models used to acquire data and for
subsequent training differ. Yang et al. [2018a], Zellers et al. [2018, 2019] first collect datasets
and then filter examples based on predictions from a model. Paperno et al. [2016] apply a similar
procedure to generate a language modeling dataset (LAMBADA). Kaushik et al. [2020, 2021b]
collect counterfactually augmented data (CAD) by asking crowdworkers to edit existing docu-
ments to make counterfactual labels applicable, showing that models trained on CAD generalize
better out-of-domain.

Absent further assumptions, learning classifiers robust to distribution shift is impossible
[Ben-David et al., 2010]. While few NLP papers on the matter make their assumptions explicit,
they typically proceed under the implicit assumptions that the labeling function is determinis-
tic (there is one right answer), and that covariate shift [Shimodaira, 2000] applies (the labeling
function p(y|x) is invariant across domains). Note that neither condition is generally true of pre-
diction problems. For example, faced with label shift [Schölkopf et al., 2012, Lipton et al., 2018]
p(y|x) can change across distributions, requiring one to adapt the predictor to each environment.

5.3 Study Design
In our study of ADC for QA, each crowdworker is shown a short passage and asked to create 5
questions and highlight answers (spans in the passage, see Fig. 5.1). We provide all workers with
the same base pay and for those assigned to ADC, pay out an additional bonus for each question
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that fools the QA model. Finally, we field a different set of workers to validate the generated
examples.

Context passages For context passages, we use the first 100 words of Wikipedia articles. Trun-
cating the articles keeps the task of generating questions from growing unwieldy. These segments
typically contain an overview, providing ample material for factoid questions. We restrict the
pool of candidate contexts by leveraging a variant of the Natural Questions dataset Kwiatkowski
et al. [2019], Lee et al. [2019]. We first keep only a subset of 23.1k question/answer pairs for
which the context passages are the first 100 words of Wikipedia articles1. From these passages,
we sample 10k at random for our study.

Models in the loop We use BERTlarge [Devlin et al., 2019] and ELECTRAlarge [Clark et al.,
2020a] models as our adversarial models in the loop, using the implementations provided by
Wolf et al. [2020]. We fine-tune these models for span-based question-answering, using the
23.1k training examples (subsampled previously) for 20 epochs, with early-stopping based on
word-overlap F12 over the validation set. Our BERT model achieves an EM score of 73.1 and
an F1 score of 80.5 on an i.i.d. validation set. The ELECTRA model performs slightly better,
obtaining an 74.2 EM and 81.2 F1 on the same set.

Crowdsourcing protocol We build our crowdsourcing platform on the Dynabench interface [Kiela
et al., 2021] and use Amazon’s Mechanical Turk to recruit workers to write questions. To ensure
high quality, we restricted the pool to U.S. residents who had already completed at least 1000
HITs and had over 98% HIT approval rate. For each task, we conducted several pilot studies to
gather feedback from crowdworkers on the task and interface. We identified median time taken
by workers to complete the task in our pilot studies and used that to design the incentive structure
for the main task. We also conducted multiple studies with different variants of instructions to
observe trends in the quality of questions and refined our instructions based on feedback from
crowdworkers. Feedback from the pilots also guided improvements to our crowdsourcing in-
terface. In total, 984 workers took part in the study, with 741 creating questions. In our final
study, we randomly assigned workers to generate questions in the following ways: (i) to fool the
BERT baseline; (ii) to fool the ELECTRA baseline; or (iii) without a model in the loop. Before
beginning the task, each worker completes an onboarding process to familiarize them with the
platform. We present the same set of passages to workers regardless of which group they are
assigned to, tasking them with generating 5 questions for each passage.

Incentive structure During our pilot studies, we found that workers spend ≈ 2–3 minutes to
generate 5 questions. We provide workers with the same base pay—$0.75 per HIT—(to ensure
compensation at a $15/hour rate). For tasks involving a model in the loop, we define a model
prediction to be incorrect if its F1 score is less than 40%, following the threshold set by Bartolo

1We used the data prepared by Karpukhin et al. [2020], available at
https://www.github.com/facebookresearch/DPR.

2Word-overlap F1 and Exact Match (EM) metrics introduced in Rajpurkar et al. [2016] are commonly used to
evaluate performance of passage-based QA systems, where the correct answer is a span in the given passage.
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Resource Num. Passages Num. QA Pairs
Train Val Test Train Val Test

BERT 3,412 992 1,056 11,330 1,130 1,130
ELECTRA 3,925 1,352 1,352 14,556 1,456 1,456

Table 5.1: Number of unique passages and question-answer pairs for each data resource.

et al. [2020]. Workers tasked with fooling the model receive bonus pay of $0.15 for every ques-
tion that leads to an incorrect model prediction. This way, a worker can double their pay if all 5
of their generated questions induce incorrect model predictions.

Quality control Upon completion of each batch of our data collection process, we presented ≈ 20%
of the collected questions to a fourth group of crowdworkers who were tasked with validating
whether the questions were answerable and the answers were correctly labeled. In addition, we
manually verified a small fraction of the collected question-answer pairs. If validations of at
least 20% of the examples generated by a particular worker were incorrect, their work was dis-
carded in its entirety. The entire process, including the pilot studies cost ≈ $50k and spanned
a period of seven months. Through this process, we collected over 150k question-answer pairs
corresponding to the 10k contexts (50k from each group) but the final datasets are much smaller,
as we explain below.

5.4 Experiments

Our study allows us to answer three questions: (i) how well do models fine-tuned on ADC data
generalize to unseen distributions compared to fine-tuning on SDC? (ii) Among the differences
between ADC and SDC, how many are due to workers trying to fool the model regardless of
whether they are successful? and (iii) what is the impact of training on adversarial data only
versus using it as a data augmentation strategy?

Datasets For both BERT and ELECTRA, we first identify contexts for which at least one
question elicited an incorrect model prediction. Note that this set of contexts is different for
BERT and ELECTRA. For each such context c, we identify the number of questions kc (out of 5)
that successfully fooled the model. We then create 3 datasets per model by, for each context, (i)
choosing precisely those kc questions that fooled the model (BERTfooled and ELECTRAfooled); (ii)
randomly choosing kc questions (out of 5) from ADC data without replacement (BERTrandom and
ELECTRArandom)—regardless of whether they fooled the model; and (iii) randomly choosing kc
questions (out of 5) from the SDC data without replacement. Thus, we create 6 datasets, where
all 3 BERT datasets have the same number of questions per context (and 11.3k total training
examples), while all 3 ELECTRA datasets likewise share the same number of questions per
context (and 14.7k total training examples). See Table 5.1 for details on the number of passages
and question-answer pairs used in the different splits.
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Evaluation set → BERTfooled BERTrandom SDC Original Dev.
Training set ↓ EM F1 EM F1 EM F1 EM F1

Finetuned model: BERTlarge

Original (O; 23.1k) 0.0 17.1 29.6 45.2 32.5 49.1 73.3 80.5
Original (11.3k) 8.40.9 18.70.6 28.80.5 42.70.9 33.10.7 48.61.1 66.10.3 74.20.4

BERTfooled (F; 11.3k) 34.45.1 57.05.7 44.08.8 61.78.2 47.510.0 66.88.6 34.52.6 47.93.3
BERTrandom (R; 11.3k) 37.72.7 58.92.5 57.04.5 73.93.5 62.44.5 79.73.1 46.43.1 60.63.8
SDC (11.3k) 33.60.3 54.40.4 57.60.6 74.50.4 68.60.5 84.20.3 48.61.6 62.31.9

O + F (34.4k) 39.90.8 61.70.5 50.60.9 68.50.9 52.61.4 71.81.1 72.20.4 79.80.6
O + R (34.4k) 38.10.5 58.80.6 57.91.0 74.80.5 62.60.5 80.20.3 72.50.5 80.20.3
O + SDC (34.4k) 33.40.4 54.50.6 60.64.4 77.23.6 69.00.3 84.30.3 72.10.2 79.80.2

Finetuned model: RoBERTalarge

Original (O; 23.1k) 7.3 16.7 28.6 44.5 32.7 50.1 73.5 80.5
Original (11.3k) 4.50.4 10.81.1 17.50.9 26.72.0 19.52.1 30.03.2 70.60.3 78.50.4

BERTfooled (F; 11.3k) 49.20.5 71.20.7 64.91.3 81.31.1 67.91.5 84.81.0 41.41.0 55.11.1
BERTrandom (R; 11.3k) 48.00.4 69.80.4 70.30.7 85.30.4 72.50.4 87.80.1 50.60.8 64.91.0
SDC (11.3k) 42.90.9 65.30.8 67.00.6 83.60.5 74.40.5 88.90.3 51.00.5 62.80.6

O + F (34.4k) 49.50.5 71.10.6 61.60.8 79.50.6 58.32.0 78.51.2 72.60.4 80.00.4
O + R (34.4k) 47.60.7 69.50.5 69.20.5 84.60.5 71.10.7 86.80.3 72.80.6 80.30.5
O + SDC (34.4k) 41.50.4 64.20.4 67.30.6 84.30.4 75.00.6 88.90.2 73.00.2 80.40.1

Finetuned model: ELECTRAlarge

Original (O; 23.1k) 7.5 17.1 29.6 45.2 32.5 49.1 74.2 81.2
Original (11.3k) 8.40.9 18.70.6 28.80.5 42.70.9 33.10.7 48.61.1 71.80.1 79.60.1

BERTfooled (F; 11.3k) 40.24.6 63.43.2 50.74.7 68.54.8 56.14.4 75.63.0 41.04.8 56.64.2
BERTrandom (R; 11.3k) 42.12.7 63.52.1 58.82.2 76.01.5 65.81.9 81.71.3 52.61.9 67.51.4
SDC (11.3k) 39.20.3 40.30.4 59.60.7 76.10.6 69.30.7 84.20.5 55.70.7 69.50.5

O + F (34.4k) 40.93.4 63.72.3 52.62.5 70.82.1 55.44.5 74.44.1 72.71.2 80.51.0
O + R (34.4k) 41.55.6 61.95.7 58.64.6 75.04.4 64.44.1 80.43.3 72.62.0 80.32.1
O + SDC (34.4k) 38.00.6 58.70.6 59.40.6 76.10.4 70.90.4 85.10.3 73.60.7 81.20.4

Table 5.2: EM and F1 scores of various models evaluated on adversarial and non-adversarial
datasets. Adversarial results in bold are statistically significant compared to SDC setting and
vice versa with p < 0.05.

Models For our empirical analysis, we fine-tune BERT [Devlin et al., 2019], RoBERTa [Liu
et al., 2019], and ELECTRA [Clark et al., 2020a] models on all six datasets generated as part
of our study (four datasets via ADC: BERTfooled, BERTrandom, ELECTRAfooled, ELECTRArandom,
and the two datasets via SDC). We also fine-tune these models after augmenting the original data
to collected datasets. We report the means and standard deviations (in subscript) of EM and F1
scores following 10 runs of each experiment. Models fine-tuned on all ADC datasets typically
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Evaluation set → ELECTRAfooled ELECTRArandom SDC Original Dev.
Training set ↓ EM F1 EM F1 EM F1 EM F1

Finetuned model: BERTlarge

Original (O; 23.1k) 23.3 31.9 56.7 72.6 63.8 78.5 73.3 80.5
Original (14.6k) 36.70.4 50.70.3 48.20.4 64.40.2 55.70.1 70.50.3 67.10.2 75.20.1

ELECTRAfooled (F; 14.6k) 25.11.0 42.41.0 35.41.5 54.31.1 39.12.4 59.31.7 31.97.9 45.09.2
ELECTRArandom (R; 14.6k) 25.41.1 42.01.0 38.40.9 56.80.8 42.01.4 61.71.3 46.43.1 60.63.8
SDC (14.6k) 23.11.0 40.81.3 36.31.3 56.31.3 45.21.8 65.41.5 48.61.6 62.31.9

O + F (37.7k) 26.71.7 43.10.9 40.11.3 58.71.5 44.60.9 64.21.2 72.10.5 79.70.7
O + R (37.7k) 26.00.8 42.90.6 41.70.5 60.30.6 47.11.4 66.51.3 73.00.5 80.50.2
O + SDC (37.7k) 24.50.7 41.70.7 41.40.9 60.70.4 50.91.0 69.70.3 72.00.1 79.70.1

Finetuned model: RoBERTalarge

Original (O; 23.1k) 49.2 64.4 59.1 75.8 64.5 79.8 73.5 80.5
Original (14.6k) 48.30.9 63.31.4 58.70.9 74.91.0 62.70.4 79.00.7 71.50.5 79.30.6

ELECTRAfooled (F; 14.6k) 65.30.5 79.90.5 69.40.6 84.60.5 75.80.6 89.00.3 55.91.2 67.51.0
ELECTRArandom (R; 14.6k) 64.60.5 79.40.4 70.40.5 85.40.3 76.50.5 89.40.3 59.81.2 70.60.9
SDC (14.6k) 61.00.2 77.10.3 67.90.4 84.10.4 77.30.5 89.90.3 55.71.0 68.80.8

O + F (37.7k) 65.00.3 79.90.3 70.10.5 85.20.4 76.20.3 89.70.2 73.30.3 80.70.2
O + R (37.7k) 64.30.3 78.80.3 70.70.2 85.80.2 76.50.6 89.70.3 73.40.5 80.80.3
O + SDC (37.7k) 61.50.5 77.20.3 69.00.4 84.70.4 77.60.4 90.50.2 73.60.5 80.90.4

Finetuned model: ELECTRAlarge

Original (O; 23.1k) 0 10.8 40.2 57.8 44.8 60.9 74.2 81.2
Original (14.6k) 25.90.2 40.90.4 37.30.6 63.90.7 53.61.3 74.71.1 71.90.3 79.50.3

ELECTRAfooled (F; 14.6k) 26.41.5 44.01.6 41.21.5 60.81.3 42.74.0 63.53.2 57.50.9 68.80.7
ELECTRArandom (R; 14.6k) 23.44.9 40.55.6 42.36.9 62.37.0 42.18.0 62.97.5 57.60.8 69.31.0
SDC (14.6k) 24.52.4 43.73.5 40.63.5 61.53.8 46.95.4 68.24.7 54.91.8 68.31.2

O + F (37.7k) 25.31.9 43.72.0 40.21.9 60.61.9 41.73.9 63.43.6 73.60.5 81.10.4
O + R (37.7k) 21.71.1 40.11.1 42.22.3 64.81.9 38.03.6 60.82.9 74.40.3 81.70.1
O + SDC (37.7k) 24.51.8 43.41.6 42.81.5 63.51.0 49.61.9 70.31.5 74.20.2 81.50.1

Table 5.3: EM and F1 scores of various models evaluated on adversarial datasets collected with
an ELECTRAlarge model and non-adversarial datasets. Adversarial results in bold are statistically
significant compared to SDC setting and vice versa with p < 0.05.

perform better on their held-out test sets than those trained on SDC data and vice-versa (Tables
5.2 and 5.3). RoBERTa fine-tuned on the BERTfooled training set obtains EM and F1 scores of
49.2 and 71.2, respectively, on the BERTfooled test set, outperforming RoBERTa models fine-
tuned on BERTrandom (EM: 48.0, F1: 69.8) and SDC (EM: 42.0, F1: 65.3). Performance on the
original dev set [Karpukhin et al., 2020] is generally comparable across all models.
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Evaluation set → DRoBERTa DBERT DBiDAF
Training set ↓ EM F1 EM F1 EM F1

Finetuned model: BERTlarge

Original (23.1k) 6.0 13.5 8.1 14.2 12.6 21.4
Original (14.6k) 5.30.2 11.40.2 6.80.8 13.90.5 12.10.4 20.60.2

ELECTRAfooled14.6k) 3.80.5 13.30.7 6.20.7 16.40.5 12.61.2 26.21.0
ELECTRArandom14.6k) 4.30.5 13.70.7 6.40.4 16.40.8 13.60.8 27.11.2
SDC (14.6k) 3.90.4 13.20.4 5.40.4 15.10.5 10.80.7 23.80.8

Orig + ELECTRAfooled (37.7k) 6.40.5 16.10.3 7.80.8 18.00.6 17.00.2 31.00.6
Orig + ELECTRArandom (37.7k) 6.60.6 16.10.3 8.50.6 18.40.5 16.90.3 30.80.4
Orig + SDC (37.7k) 5.80.2 15.60.4 8.70.5 18.70.6 17.40.7 30.00.8

Finetuned model: RoBERTalarge

Original (23.1k) 15.7 25.0 26.5 37.0 37.9 50.4
Original (14.6k) 14.30.2 23.70.3 25.10.3 35.40.7 37.40.7 50.20.5

ELECTRAfooled14.6k) 16.40.9 27.71.2 27.41.3 40.81.5 46.81.1 62.41.1
ELECTRArandom14.6k) 15.81.4 27.21.4 28.11.6 41.51.8 48.00.9 63.00.6
SDC (14.6k) 12.11.0 23.91.3 22.71.1 35.41.5 40.51.3 56.81.3

Orig + ELECTRAfooled (37.7k) 18.90.8 30.40.9 33.20.8 46.40.6 49.20.9 65.10.8
Orig + ELECTRArandom (37.7k) 18.00.4 29.60.3 32.30.6 45.11.2 48.20.8 63.50.6
Orig + SDC (37.7k) 18.21.0 29.70.9 28.20.3 41.40.5 45.00.9 60.90.6

Finetuned model: ELECTRAlarge

Original (23.1k) 8.2 17.4 15.7 24.2 22.4 34.3
Original (14.6k) 9.50.2 18.00.5 15.40.5 24.20.6 21.70.2 33.10.1

ELECTRAfooled14.6k) 10.20.3 21.70.5 17.00.7 29.70.6 21.71.7 36.61.1
ELECTRArandom14.6k) 10.40.5 21.30.5 16.50.2 28.60.8 19.95.0 34.45.9
SDC (14.6k) 10.30.8 21.60.7 15.81.1 28.51.2 19.34.8 33.37.8

Orig + ELECTRAfooled (37.7k) 10.20.3 21.70.5 17.00.7 29.70.6 24.00.7 39.20.7
Orig + ELECTRArandom (37.7k) 10.40.5 21.30.5 16.50.2 28.60.8 23.50.5 38.40.4
Orig + SDC (37.7k) 10.30.8 21.60.7 15.81.1 28.51.2 24.50.6 39.90.6

Table 5.4: EM and F1 scores of various models evaluated on dev datasets of Bartolo et al. [2020].
Adversarial results in bold are statistically significant compared to SDC setting and vice versa
with p < 0.05.

Out-of-domain generalization to adversarial data We evaluate these models on adversar-
ial test sets constructed with BiDAF (DBiDAF), BERT (DBERT) and RoBERTa (DRoBERTa) in the
loop [Bartolo et al., 2020]. Prior work suggests that training on ADC data leads to models that
perform better on similarly constructed adversarial evaluation sets. Both BERT and RoBERTa
models fine-tuned on adversarial data generally outperform models fine-tuned on SDC data (or
when either datasets are augmented to the original data) on all three evaluation sets (Tables 5.5

58



Evaluation set → DRoBERTa DBERT DBiDAF
Training set ↓ EM F1 EM F1 EM F1

Finetuned model: BERTlarge

Original (23.1k) 6.0 13.5 8.1 14.2 12.6 21.4
Original (11.3k) 5.40.3 12.20.1 7.00.6 13.60.8 11.00.9 19.40.7

BERTfooled (11.3k) 11.02.6 21.03.0 14.63.7 24.74.0 25.16.5 39.16.9
BERTrandom (11.3k) 12.41.6 22.12.2 16.43.0 26.22.7 29.63.7 43.74.0
SDC (11.3k) 9.10.7 20.40.7 14.01.0 24.60.7 30.11.2 43.81.2

Orig + BERTfooled (34.4k) 15.20.8 25.10.6 20.40.4 31.00.4 32.40.6 47.00.6
Orig + BERTrandom (34.4k) 16.90.5 23.90.5 20.50.6 31.20.9 34.10.4 47.80.7
Orig + SDC (34.4k) 9.40.6 20.20.5 15.31.0 25.81.1 32.71.2 47.21.0

Finetuned model: RoBERTalarge

Original (23.1k) 15.7 25.0 26.5 37.0 37.9 50.4
Original (11.3k) 14.60.3 23.80.5 22.51.2 32.61.5 36.01.1 48.91.2

BERTfooled (11.3k) 21.91.6 32.21.6 30.21.6 42.51.6 46.31.6 61.91.5
BERTrandom (11.3k) 21.31.3 31.61.5 31.32.2 43.62.3 48.01.4 63.41.3
SDC (11.3k) 12.81.2 23.41.3 20.01.8 32.12.2 40.02.0 55.01.8

Orig + BERTfooled (34.4k) 25.20.9 36.41.0 35.90.9 48.50.8 49.60.7 65.11.1
Orig + BERTrandom (34.4k) 24.61.5 35.21.5 35.71.0 48.01.2 50.61.5 65.81.2
Orig + SDC (34.4k) 16.10.8 27.61.1 26.60.8 39.70.6 43.40.4 59.40.3

Finetuned model: ELECTRAlarge

Original (23.1k) 8.2 17.4 15.7 24.2 22.4 34.3
Original (11.3k) 8.50.4 16.70.5 14.31.0 23.00.9 20.71.4 32.01.3

BERTfooled (11.3k) 13.83.7 24.35.6 18.86.0 31.18.1 29.19.0 44.311.0
BERTrandom (11.3k) 14.81.8 25.91.1 22.32.9 34.62.5 34.83.4 50.52.7
SDC (11.3k) 11.60.6 22.70.7 17.81.2 30.41.3 32.51.8 49.31.6

Orig + BERTfooled (34.4k) 16.53.8 28.03.8 23.13.9 35.64.2 34.85.1 50.25.7
Orig + BERTrandom (34.4k) 18.44.2 28.95.0 25.95.9 37.26.9 37.27.5 51.19.1
Orig + SDC (34.4k) 15.61.1 27.01.1 22.70.6 36.00.8 34.50.9 49.51.2

Table 5.5: EM and F1 scores of various models evaluated on dev datasets of Bartolo et al. [2020].
Adversarial results in bold are statistically significant compared to SDC setting and vice versa
with p < 0.05.

and 5.4). A RoBERTa model fine-tuned on BERTfooled outperforms a RoBERTa model fine-tuned
on SDC by 9.1, 9.3, and 6.2 EM points on DRoBERTa, DBERT, and DBiDAF, respectively. We ob-
serve similar trends on ELECTRA models fine-tuned on ADC data versus SDC data, but these
gains disappear when the same models are finetuned on augmented data. For instance, while
ELECTRA fine-tuned on BERTrandom obtains an EM score of 14.8 on DRoBERTa, outperforming
an ELECTRA fine-tuned on SDC data by ≈ 3 pts, the difference is no longer significant when
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respective models are fine-tuned after original data is augmented to these datasets. ELECTRA
models fine-tuned on ADC data with ELECTRA in the loop perform no better than those trained
on SDC. Fine-tuning ELECTRA on SDC augmented to original data leads to an ≈ 1 pt improve-
ment on both metrics compared to augmenting ADC. Overall, we find that models fine-tuned
on ADC data typically generalize better to out-of-domain adversarial test sets than models fine-
tuned on SDC data, confirming the findings by Dinan et al. [2019].

Out-of-domain generalization to MRQA We further evaluate these models on 12 out-of-
domain datasets used in the 2019 MRQA shared task3 (Tables 5.6 and 5.7).4 Notably, for BERT,
fine-tuning on SDC data leads to significantly better performance (as compared to fine-tuning
on ADC data collected with BERT) on 9 out of 12 MRQA datasets, with gains of more than
10 EM pts on 6 of them. On BioASQ, BERT fine-tuned on BERTfooled obtains EM and F1
scores of 23.5 and 30.3, respectively. By comparison, fine-tuning on SDC data yields markedly
higher EM and F1 scores of 35.1 and 55.7, respectively. Similar trends hold across models and
datasets. Interestingly, ADC fine-tuning often improves performance on DROP compared to
SDC. For instance, RoBERTa fine-tuned on ELECTRArandom outperforms RoBERTa fine-tuned
on SDC by ≈ 7 pts. Note that DROP itself was adversarially constructed. On Natural Questions,
models fine-tuned on ADC data generally perform comparably to those fine-tuned on SDC data.
RoBERTa fine-tuned on BERTrandom obtains EM and F1 scores of 48.1 and 62.6, respectively,
whereas RoBERTa fine-tuned on SDC data obtains scores of 47.9 and 61.7, respectively. It is
worth noting that passages sourced to construct both ADC and SDC datasets come from the
Natural Questions dataset, which could be one reason why models fine-tuned on ADC datasets
perform similar to those fine-tuned on SDC datasets when evaluated on Natural Questions.

On the the adversarial process versus adversarial success We notice that models fine-tuned
on BERTrandom and ELECTRArandom typically outperform models fine-tuned on BERTfooled and
ELECTRAfooled, respectively, on adversarial test data collected in prior work [Bartolo et al.,
2020], as well as on MRQA. Similar observation can be made when the ADC data is augmented
with the original training data. These trends suggest that the ADC process (regardless of the
outcome) explains our results more than successfully fooling a model. Furthermore, models
fine-tuned only on SDC data tend to outperform ADC-only fine-tuned models; however, fol-
lowing augmentation, ADC fine-tuning achieves comparable performance on more datasets than
before, showcasing generalization following augmentation. Notice that augmenting ADC data
to original data may not always help. BERT fine-tuned on original 23.1k examples achieves
an EM 11.3 on SearchQA. When fine-tuned on BERTfooled augmented to the original data, this

3The MRQA 2019 shared task includes HotpotQA [Yang et al., 2018a], Natural Questions [Kwiatkowski et al.,
2019], SearchQA [Dunn et al., 2017], SQuAD [Rajpurkar et al., 2016], TriviaQA [Joshi et al., 2017], BioASQ
[Tsatsaronis et al., 2015], DROP [Dua et al., 2019], DuoRC [Saha et al., 2018], RelationExtraction [Levy et al.,
2017], RACE [Lai et al., 2017], and TextbookQA [Kembhavi et al., 2017].

4Interestingly, RoBERTa appears to perform better compared to BERT and ELECTRA. Prior works have hy-
pothesized that the bigger size and increased diversity of the pre-training corpus of RoBERTa (compared to those of
BERT and ELECTRA) might somehow be responsible for RoBERTa’s better out-of-domain generalization, [Baevski
et al., 2019, Hendrycks et al., 2020, Tu et al., 2020].
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Figure 5.2: Frequency of wh-questions generated.

drops to 8.7, and when fine-tuned on BERTrandom augmented to the original data, it drops to 11.2.
Fine-tuning on SDC augmented to the original data, however, results in EM of 13.6.

5.5 Qualitative Analysis

Finally, we perform a qualitative analysis over the collected data, revealing profound differences
with models in (versus out of) the loop. Recall that because these datasets were constructed in a
randomized study, any observed differences are attributable to the model-in-the loop collection
scheme.

To begin, we analyze 100 questions from each dataset and categorize them using the taxon-
omy introduced by Hovy et al. [2000]. We also look at the first word of the wh-type questions in
each dev set (Fig. 5.3) and observe key qualitative differences between data via ADC and SDC
for both models.

In case of ADC with BERT (and associated SDC), while we observe that most questions in
the dev sets start with what, ADC has a higher proportion compared to SDC (587 in BERTfooled

and 492 in BERTrandom versus 416 in SDC). Furthermore, we notice that compared to BERTfooled

dev set, SDC has more when- (148) and who-type (220) questions, the answers to which typically
refer to dates, places and people (or organizations), respectively. This is also reflected in the
taxonomy categorization. Interestingly, the BERTrandom dev set has more when- and who-type
questions than BERTfooled (103 and 182 versus 50 and 159, respectively). This indicates that
the BERT model could have been better at answering questions related to dates and people (or
organizations), which could have further incentivized workers not to generate such questions
upon observing these patterns. Similarly, in the 100-question samples, we find that a larger
proportion of questions in ADC are categorized as requiring numerical reasoning (11 and 18 in
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(d) ELECTRAfooled
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(f) SDC-ELECTRA

Figure 5.3: Frequency of question types based on the taxonomy introduced by Hovy et al. [2000].

BERTfooled and BERTrandom, respectively) compared to SDC (7). It is possible that the model’s
performance on numerical reasoning (as also demonstrated by its lower performance on DROP
compared to fine-tuning on ADC or SDC) would have incentivized workers to generate more
questions requiring numerical reasoning and as a result, skewed the distribution towards such
questions.

Similarly, with ELECTRA, we observe that what-type questions constitute most of the ques-
tions in the development sets for both ADC and SDC, although data collected via ADC has a
higher proportion of these (641 in ELECTRAfooled and 619 in ELECTRArandom versus 542 in
SDC). We also notice more how-type questions in ADC (126 in ELECTRArandom) vs 101 in
SDC, and that the SDC sample has more questions that relate to dates (223) but the number is
lower in the ADC samples (157 and 86 in ELECTRArandom and ELECTRAfooled, respectively). As
with BERT, the ELECTRA model was likely better at identifying answers about dates or years
which could have further incentivized workers to generate less questions of such types. However,
unlike with BERT, we observe that the ELECTRA ADC and SDC 100-question samples con-
tain similar numbers of questions involving numerical answers (8, 9 and 10 in ELECTRAfooled,
ELECTRArandom and SDC respectively).

Lastly, despite explicit instructions not to generate questions about passage structure (Fig. 5.1),
a small number of workers nevertheless created such questions. For instance, one worker wrote,
“What is the number in the passage that is one digit less than the largest number in the passage?”
While most such questions were discarded during validation, some of these are present in the fi-
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nal data. Overall, we notice considerable differences between ADC and SDC data, particularly
vis-a-vis what kind of questions workers generate. Our qualitative analysis offers additional in-
sights that suggest that ADC would skew the distribution of questions workers create, as the
incentives align with quickly creating more questions that can fool the model. This is reflected
in all our ADC datasets. One remedy could be to provide workers with initial questions, ask-
ing them to edit those questions to elicit incorrect model predictions. Similar strategies were
employed in Ettinger et al. [2017], where breakers minimally edited original data to elicit incor-
rect predictions from the models built by builders, as well as in recently introduced adversarial
benchmarks for sentiment analysis [Potts et al., 2020].
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Finetuned model: BERTlarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 32.5 7.8 16.2 14.5 22.8 32.0 47.1 11.4 18.8 25.0 33.4
Original (11.3k) 20.81.7 36.03.4 6.21.4 12.71.8 13.11.1 19.81.6 42.40.4 55.90.1 10.30.6 18.30.4 20.00.9 27.90.7

BERTfooled (11.3k) 23.56.0 30.33.5 11.53.2 22.23.4 20.34.5 28.25.0 51.58.2 68.96.6 15.13.1 26.14.3 16.73.8 24.74.6
BERTrandom (11.3k) 30.33.5 46.82.8 14.42.0 25.12.5 26.73.3 35.33.0 61.35.8 75.94.5 18.41.8 29.92.0 21.93.1 30.93.8
SDC (11.3k) 35.12.1 55.71.1 14.60.4 24.70.6 31.70.7 41.20.7 63.21.2 77.70.7 19.70.6 31.00.6 26.04.3 35.54.7

Orig + Fooled (34.4k) 31.71.2 48.21.2 19.90.9 31.00.8 24.40.9 33.11.4 55.01.7 71.51.2 19.21.3 31.01.1 22.24.7 30.95.4
Orig + Random (34.4k) 34.91.2 51.80.9 21.40.6 33.10.4 27.11.2 36.11.2 62.30.9 77.10.7 21.01.4 33.01.3 27.73.9 37.14.0
Orig + SDC (34.4k) 38.81.5 56.01.3 19.40.9 31.11.0 31.90.4 41.60.6 62.40.7 77.80.2 20.71.4 32.71.2 29.02.4 38.83.1

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 33.9 36.3 48.7 16.2 25.6 11.3 19.3 32.5 46.0 16.8 25.3
Original (11.3k) 20.10.3 32.60.6 38.40.5 50.60.6 15.01.0 24.91.7 11.10.7 18.61.2 29.60.4 43.00.7 15.31.0 23.91.4

BERTfooled (11.3k) 27.26.4 43.27.5 28.05.7 42.86.5 22.74.7 37.56.4 6.11.7 11.82.2 42.67.6 60.67.9 16.14.6 24.35.4
BERTrandom (11.3k) 37.53.1 54.43.1 36.73.9 51.23.5 29.61.9 44.91.9 8.61.4 14.61.8 51.92.6 69.32.1 24.72.8 34.43.0
SDC (11.3k) 41.20.9 57.91.0 39.31.2 53.61.1 32.00.8 48.01.1 10.61.4 18.01.3 56.40.4 72.50.4 28.60.8 39.90.9

Orig + Fooled (34.4k) 34.41.0 51.10.8 39.91.3 54.10.8 26.30.9 42.81.1 8.71.5 14.51.7 47.60.5 66.30.5 21.90.7 30.90.8
Orig + Random (34.4k) 41.00.7 57.30.7 44.50.4 58.20.2 30.00.5 45.90.6 11.20.7 17.70.9 53.40.4 70.80.4 28.61.3 38.61.4
Orig + SDC (34.4k) 43.30.2 60.00.3 45.60.9 58.71.1 32.00.8 48.61.1 13.60.4 22.20.5 57.00.3 73.20.3 30.91.0 42.40.9

Finetuned model: RoBERTalarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 47.7 63.5 37.2 48.1 38.6 49.1 74.4 85.9 33.7 44.9 36.4 46
Original (11.3k) 46.30.1 62.71.0 34.70.3 46.50.8 36.61.8 46.92.1 72.30.8 84.50.3 30.70.2 42.20.3 34.90.4 44.40.2

BERTfooled (11.3k) 35.61.3 51.01.2 34.12.5 46.82.4 31.42.5 39.73.0 67.01.0 81.90.5 28.21.3 41.41.1 25.42.4 35.12.4
BERTrandom (11.3k) 40.41.2 57.41.2 38.12.2 51.22.0 36.71.6 45.51.7 71.00.5 84.40.3 31.61.3 45.31.1 29.81.4 39.31.6
SDC (11.3k) 41.31.0 59.71.0 24.42.2 38.92.9 41.10.8 51.80.5 72.60.6 84.60.3 29.51.1 43.31.2 35.61.8 46.11.7

Orig + Fooled (34.4k) 41.21.2 56.70.9 43.31.4 54.71.6 32.00.7 41.51.0 61.32.3 78.31.2 31.70.6 45.71.0 37.62.5 48.02.6
Orig + Random (34.4k) 45.71.0 62.20.8 46.51.4 58.01.2 38.90.9 48.90.8 67.61.2 82.60.9 33.61.1 47.10.7 40.01.6 50.31.7
Orig + SDC (34.4k) 43.10.8 60.90.4 40.21.4 53.80.8 40.01.4 51.91.5 70.90.4 83.30.4 32.90.8 45.70.7 40.91.1 51.91.3

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 48.1 63.5 55.3 67.6 38.6 54.4 39.7 49.3 61.9 76.7 47.5 59.6
Original (11.3k) 46.60.3 63.20.3 54.60.4 66.90.4 36.31.0 51.61.2 33.80.8 43.00.6 60.10.4 75.30.3 44.90.6 57.20.7

BERTfooled (11.3k) 46.50.8 63.30.8 41.61.2 56.61.1 33.81.2 50.71.6 15.31.9 21.51.9 60.00.6 77.60.5 37.01.7 45.92.1
BERTrandom (11.3k) 50.70.6 67.70.7 48.10.9 62.60.8 39.50.8 56.11.1 17.01.7 23.61.8 65.40.4 81.40.3 43.31.1 52.51.2
SDC (11.3k) 52.01.3 68.71.4 47.91.2 61.71.3 44.00.9 61.90.7 24.92.0 33.02.0 66.40.6 82.20.5 47.00.6 58.30.7

Orig + Fooled (34.4k) 47.21.1 64.71.1 53.20.7 66.80.6 33.90.7 52.00.7 28.22.1 35.32.5 58.20.8 76.90.6 38.80.9 48.61.0
Orig + Random (34.4k) 53.20.5 70.10.5 54.80.4 68.20.3 41.60.6 58.90.7 30.61.9 38.32.0 65.30.5 81.80.3 46.71.0 57.10.9
Orig + SDC (34.4k) 53.90.9 70.70.9 55.90.4 68.70.5 44.20.3 62.50.4 36.01.3 45.21.6 66.60.4 82.70.2 48.00.8 59.80.7

Finetuned model: ELECTRAlarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 29.1 42.8 17.6 26.9 18.9 27.1 53.4 67.4 19.6 28.5 32.5 41.8
Original (11.3k) 33.11.4 49.42.5 15.51.8 26.51.1 21.20.8 29.40.6 54.90.9 69.41.1 18.00.8 28.40.7 29.20.5 37.80.3

BERTfooled (11.3k) 32.44.6 50.23.6 19.94.3 33.43.5 25.24.2 35.13.7 57.04.9 74.63.1 20.62.5 34.02.5 19.53.3 28.54.0
BERTrandom (11.3k) 37.12.9 55.12.1 21.11.9 35.01.6 30.52.1 40.31.6 64.32.9 78.71.3 23.31.5 36.51.5 25.73.3 35.13.5
SDC (11.3k) 40.61.7 59.21.4 17.50.9 30.71.1 33.32.1 43.61.9 65.91.4 79.60.8 23.41.1 35.51.0 27.42.7 36.82.9

Orig + Fooled (34.4k) 31.71.3 48.21.3 19.90.9 31.00.8 24.50.9 33.11.4 55.01.7 71.51.2 19.21.3 31.01.1 22.24.7 30.95.4
Orig + Random (34.4k) 37.85.2 54.45.4 27.66.8 39.48.1 28.45.1 38.25.7 62.96.8 77.25.2 24.34.6 37.45.3 34.06.1 43.56.2
Orig + SDC (34.4k) 40.00.9 57.60.9 19.40.9 31.11.0 31.90.4 41.60.6 62.40.7 76.80.2 19.51.4 31.71.2 29.02.4 38.83.1

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 29.6 43 40.9 55.3 20.4 32.2 21.5 30.3 39.9 54.8 21 31.2
Original (11.3k) 26.80.2 39.70.2 38.70.9 54.20.9 21.01.0 33.21.1 17.21.5 24.81.6 40.51.2 55.91.2 23.91.8 33.51.8

BERTfooled (11.3k) 36.74.0 54.22.9 35.13.8 51.73.1 28.52.4 45.12.4 7.01.3 13.91.7 48.34.2 67.53.4 23.82.9 34.52.3
BERTrandom (11.3k) 41.42.4 58.41.6 43.21.7 58.51.3 33.31.6 49.81.6 9.21.5 16.82.1 55.42.3 72.91.7 28.91.4 39.91.0
SDC (11.3k) 43.01.4 59.61.1 46.11.0 60.40.8 35.31.1 51.91.1 10.51.4 19.01.6 58.61.4 74.91.0 29.01.6 60.71.3

Orig + Fooled (34.4k) 34.41.0 51.10.8 45.42.9 59.92.6 26.30.9 42.81.1 8.71.5 14.51.7 47.60.5 66.30.5 21.90.7 30.90.8
Orig + Random (34.4k) 41.44.7 57.44.5 46.23.8 60.03.5 31.74.2 47.55.2 14.92.2 23.12.2 55.24.6 72.14.6 29.85.2 40.25.2
Orig + SDC (34.4k) 43.90.5 60.40.3 49.40.5 63.00.7 32.40.7 49.00.8 13.60.4 22.20.5 57.61.0 74.01.0 31.70.8 43.40.6

Table 5.6: EM and F1 scores of various models evaluated on MRQA dev and test sets. Adver-
sarial results in bold are statistically significant compared to SDC setting and vice versa.
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Finetuned model: BERTlarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 32.5 7.8 16.2 14.5 22.8 32.0 47.1 11.4 18.8 25.0 33.4
Original (14.6k) 20.40.3 35.90.7 5.10.3 12.40.3 11.60.4 17.80.6 33.00.9 44.22.0 10.40.6 17.70.9 19.50.6 27.30.7

ELECTRAfooled (14.6k) 13.60.9 29.11.1 3.20.4 11.90.7 11.00.9 19.30.6 33.62.2 52.52.3 7.90.7 17.70.8 12.21.7 21.21.8
ELECTRArandom (14.6k) 15.90.8 32.01.7 3.10.4 10.50.9 12.10.9 20.41.4 35.73.1 55.63.7 9.50.7 19.10.8 14.61.8 23.91.8
SDC (14.6k) 17.10.7 34.51.0 2.60.3 10.10.9 11.90.8 21.21.2 34.23.4 53.74.1 9.21.0 19.00.7 17.51.1 27.41.3

Orig + Fooled (37.7k) 17.81.0 33.52.0 6.11.1 16.11.7 14.21.4 22.91.9 42.02.2 59.62.5 12.00.9 22.20.9 24.61.0 33.71.2
Orig + Random (37.7k) 20.01.1 36.41.6 6.80.9 17.11.0 14.61.0 23.51.5 44.01.3 61.81.3 12.00.9 22.00.9 23.90.8 33.51.0
Orig + SDC (37.7k) 21.80.6 39.21.1 6.10.5 16.10.7 16.70.9 25.91.0 43.40.7 61.01.1 11.90.7 22.50.7 25.40.5 35.50.6

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 33.9 36.3 48.7 16.2 25.6 11.3 19.3 32.5 46.0 16.8 25.3
Original (14.6k) 17.40.9 28.71.2 35.00.7 47.70.7 12.80.2 22.60.1 9.00.1 13.80.4 26.00.3 39.20.7 11.80.5 18.20.7

ELECTRAfooled (14.6k) 19.10.7 33.40.8 28.01.4 43.11.4 12.90.8 25.90.8 4.00.3 9.10.5 26.91.4 46.41.4 9.20.8 16.31.1
ELECTRArandom (14.6k) 21.21.0 35.51.3 29.02.3 43.82.3 13.80.8 27.11.3 4.20.4 9.10.6 29.21.6 48.32.2 10.00.7 17.31.2
SDC (14.6k) 23.51.2 37.81.3 28.41.7 43.51.4 15.60.8 30.31.0 5.00.5 9.90.7 31.50.7 50.50.8 10.00.9 19.11.3

Orig + Fooled (37.7k) 25.51.4 40.81.5 38.51.1 52.21.1 17.00.7 30.91.2 9.90.4 15.80.8 32.71.5 51.71.5 14.21.6 22.61.8
Orig + Random (37.7k) 26.71.2 41.91.2 38.61.0 52.60.7 17.00.4 30.70.7 9.20.9 14.61.2 34.30.6 53.30.8 14.10.7 22.71.1
Orig + SDC (37.7k) 29.01.0 42.60.8 38.70.3 52.40.1 18.70.6 33.90.5 11.10.7 16.60.9 36.10.7 54.90.5 15.10.3 24.20.2

Finetuned model: RoBERTalarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 47.7 63.5 37.2 48.1 38.6 49.1 74.4 85.9 33.7 44.9 36.4 46
Original (14.6k) 45.41.7 61.81.0 37.51.7 48.72.0 37.80.7 48.70.8 75.00.6 86.00.2 32.40.7 43.40.9 36.81.1 46.21.3

ELECTRAfooled (14.6k) 41.21.4 57.21.1 30.31.7 44.91.8 37.92.1 47.22.3 74.10.8 86.00.4 31.71.3 45.41.0 30.81.7 40.51.8
ELECTRArandom (14.6k) 43.31.4 60.01.5 34.12.4 48.82.0 39.21.5 48.81.6 75.50.5 85.90.2 32.60.7 46.30.5 32.21.2 42.21.4
SDC (14.6k) 43.71.0 62.50.7 27.52.6 43.42.9 42.30.9 53.51.1 74.90.8 85.30.7 31.50.9 46.01.0 36.32.0 47.22.0

Orig + Fooled (37.7k) 45.01.2 61.21.0 45.91.6 58.11.3 36.81.4 47.21.7 73.90.4 86.30.3 33.70.9 47.30.9 38.50.9 48.31.2
Orig + Random (37.7k) 46.31.0 62.60.8 45.51.2 57.80.8 39.11.3 49.31.3 74.70.5 86.60.2 34.10.2 47.20.4 39.91.5 49.91.9
Orig + SDC (37.7k) 47.50.5 64.00.5 42.71.1 55.51.0 42.11.3 53.71.1 74.70.9 86.90.5 33.91.2 47.31.0 41.90.4 52.50.3

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 33.9 36.3 48.7 16.2 25.6 11.3 19.3 32.5 46.0 16.8 25.3
Original (14.6k) 47.00.3 62.70.3 55.60.4 67.50.5 38.20.2 53.60.3 34.50.8 43.80.6 60.50.4 75.60.5 46.50.5 58.50.7

ELECTRAfooled (14.6k) 51.90.9 67.91.0 49.60.6 64.10.7 37.80.9 54.91.0 24.02.0 31.32.2 66.20.4 82.00.3 45.11.1 55.21.1
ELECTRArandom (14.6k) 54.50.8 71.00.8 51.60.6 65.90.6 40.21.1 57.71.2 24.32.6 32.92.6 66.90.2 82.60.2 45.80.8 56.21.0
SDC (14.6k) 55.80.8 71.80.8 51.70.5 65.80.5 43.90.8 62.11.0 24.42.4 32.92.4 68.40.5 84.30.3 47.30.7 59.10.7

Orig + Fooled (37.7k) 55.60.8 71.70.9 57.10.3 69.60.3 40.61.5 57.71.8 38.32.4 47.32.7 67.00.5 82.70.4 46.71.0 57.51.0
Orig + Random (37.7k) 56.00.2 71.90.3 56.50.2 69.10.3 42.30.3 59.30.7 39.41.6 48.51.7 68.00.2 83.30.2 47.80.3 58.80.3
Orig + SDC (37.7k) 57.50.7 72.80.6 56.90.3 69.40.3 44.30.7 62.70.7 39.31.0 48.61.1 69.90.4 84.30.2 48.60.5 60.10.5

Finetuned model: ELECTRAlarge

Evaluation set → BioASQ DROP DuoRC Relation Extraction RACE TextbookQA
Training set ↓ EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 29.1 42.8 17.6 26.9 18.9 27.1 53.4 67.4 19.6 28.5 32.5 41.8
Original (14.6k) 35.40.4 51.00.8 16.20.5 26.60.8 18.80.4 26.70.8 46.21.3 61.11.7 17.30.9 27.90.6 29.60.6 37.80.7

ELECTRAfooled (14.6k) 25.31.1 41.01.6 7.60.9 18.91.4 12.31.5 20.52.0 42.12.0 61.42.3 13.50.6 25.11.0 20.82.5 29.52.9
ELECTRArandom (14.6k) 25.54.9 41.65.5 7.82.6 19.25.3 12.12.3 19.72.9 40.37.7 57.79.4 13.02.7 24.03.7 20.33.5 28.83.4
SDC (14.6k) 25.07.5 41.01.7 5.92.1 17.94.4 13.23.0 22.54.9 42.76.6 61.97.5 13.42.7 24.74.0 20.83.8 29.53.4

Orig + Fooled (37.7k) 28.42.0 45.22.6 15.60.8 28.61.0 13.31.0 21.21.7 41.52.8 60.53.3 17.60.7 29.60.9 32.20.9 41.61.1
Orig + Random (37.7k) 28.61.6 44.92.0 16.30.6 29.01.2 12.81.0 20.91.6 39.43.3 58.83.6 16.61.3 29.01.1 32.40.4 42.20.5
Orig + SDC (37.7k) 29.71.9 47.02.2 15.60.8 29.11.3 16.40.7 27.10.8 48.01.8 67.01.5 19.00.6 32.10.8 33.70.4 43.80.9

HotpotQA Natural Questions NewsQA SearchQA SQuAD TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Original (23.1k) 19.4 33.9 36.3 48.7 16.2 25.6 11.3 19.3 32.5 46.0 16.8 25.3
Original (14.6k) 23.21.0 40.21.1 33.40.8 49.80.5 17.90.5 31.10.9 16.00.5 22.31.1 31.10.4 50.10.5 21.00.9 29.81.3

ELECTRAfooled (14.6k) 26.20.9 42.20.9 31.51.4 49.71.1 18.71.2 32.11.6 6.50.7 10.41.0 34.51.3 53.71.5 13.21.0 21.51.3
ELECTRArandom (14.6k) 24.75.5 40.96.9 27.96.8 45.77.6 17.23.1 30.83.8 6.41.6 10.32.1 34.15.8 53.16.2 12.43.4 20.14.5
SDC (14.6k) 24.43.3 41.75.2 28.86.2 46.78.3 19.23.6 35.53.2 8.30.9 12.81.6 34.74.2 54.15.1 13.42.0 22.73.5

Orig + Fooled (37.7k) 28.50.9 45.81.3 35.00.8 52.51.0 20.30.7 34.91.0 14.31.0 19.81.4 36.71.3 56.51.5 15.31.6 24.32.0
Orig + Random (37.7k) 28.11.5 45.91.3 34.11.1 51.71.1 19.21.1 34.11.8 14.30.8 20.11.3 35.61.7 55.31.4 15.01.4 24.52.0
Orig + SDC (37.7k) 30.51.1 47.80.8 35.81.1 53.40.8 23.00.7 40.20.7 16.50.6 22.81.1 40.60.6 60.70.4 18.80.8 30.00.8

Table 5.7: EM and F1 scores of various models evaluated on MRQA dev and test sets. Adver-
sarial results in bold are statistically significant compared to SDC setting and vice versa.
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Chapter 6

Does It Matter Who Gives The Feedback?

6.1 Overview

So far we’ve seen how human feedback can enrich machine learning models. As richer forms of
human feedback can help train NLP models that are reliable when deployed in the real world,
ensuring feedback received for a task is of high quality is top of the mind for researchers seeking
to obtain this feedback at scale. While crowdsourcing platforms like Amazon Mechanical Turk
offer easy access to a large human workforce, enabling researchers to easily collect feedback at
scale, they also present challenges arising from a workforce that is not reflective of the general
population. For instance, while ≈ 14% of the US population is Hispanic or Latino,1 they are
only ≈ 3%2 of AMT workers. Similarly, while ≈ 30% of the US population has obtained at least
a 4-year college degree, they make up for approximately 2/3rds of the crowdworkers on AMT.

Yet, whether or not diversity of crowdworkers matters in the kind of human feedback we
receive remains an understudied topic. Aside from the fact that AMT workforce is not represen-
tative of the population, several crowdsourcing studies (our previous studies included) restrict
their pool of workers to those in the United States, thereby so those providing feedback into
a human in the loop system are not representative of the world’s (or even the United States’)
population. These practices are commonly employed by academic as well as industry labs (for
quality or legal purposes; an industry lab I worked at once could legally not recruit crowdwork-
ers outside the United States), even though models trained with this feedback may be deployed
worldwide [Wiegreffe et al., 2021, Wallace et al., 2022]. Thus, it stands to reason that there
could be some benefits to diversifying the pool of workers. After all, preferences for a worker in
India might be different than for one in the US. Given humans think in ways that are specific to
their environment and cultural context, it stands to reason that if we want our machine learning
models to be able to accurately capture human behavior, we need a diverse set of workers who
can provide different perspectives.

Intuitively, for objective tasks (such as identifying dogs versus cats or identifying nouns in a
document), it shouldn’t matter who is performing the task. After all, there are indisputable objec-
tive answers in those cases. However, as we’ve seen in previous chapters, in response to machine

1Per US Census Data from 2021. Available at https://www.census.gov/quickfacts/fact/table/US/RHI725221.
2Per data obtained from our self-reported demographic survey
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learning (ML) growing to be a public concern, researchers have sought to employ crowdworkers
in diverse ways to create datasets that might help to ensure the models are reliable under a variety
of settings. Such feedback is often subjective and there could be several correct answers. Take
for example our previous work on counterfactually augmented data in Chapter 3. A document
can be edited in many different ways to make a counterfactual label applicable. Human edi-
tors have their own social biases and prior work has shown that people tend to edit phrases that
they consider socially inappropriate, selecting counterfactuals subject to their social and func-
tional norms [Byrne, 2016, Fazelpour, 2020]. Furthermore, in some cases, the interventions may
not be on the direct causal ancestors of the label but on enabling causes [Catellani et al., 2020,
Catellani and Milesi, 2001, Icard et al., 2017].

In this chapter, we investigate whether diversity among workers who provide this feedback
might make a difference in what feedback is received. We design a suite of crowdsourcing studies
to study diverse forms of feedback across three different tasks: (i) select one of two plausible
summaries for a given article (obtaining binary feedback); (ii) converse with a dialog system
in real-time and rate the conversation (obtaining ratings that could be used as reward signal);
and (iii) write five questions for a given topic (obtaining free-form text) For the first task, since
the objective is not to train a new model but examine the differences between human feedback,
instead of training an abstractive summarizer and generating plausible summaries from it, we
select 100 news articles from the CNN-DailyMail corpus [See et al., 2017] and use existing
summaries generated by three recent summarization models—T5 [Raffel et al., 2020], GPT-
2 [Radford et al., 2018], and BART [Lewis et al., 2020]—as plausible summaries. We examine
how the choice of location of crowdworkers could impact which summaries crowdworkers select
for these articles and run this study both in the United States and in India. We show each article
and two plausible summaries to at least 10 crowdworkers in each country. For the interactive
dialog setup, we continue to assess whether crowdworkers in the United States versus those in
India offer different ratings for their interactions with a model. We collect at least 250 dialogs
for three recent open-domain dialog models—BlenderBot 3B, BlenderBot 90M, and Reddit 3B
[Roller et al., 2021]—from each country. In both setups we find significant differences in the
feedback received from crowdworkers in India versus those in the United States. We then collect
natural questions written by crowdworkers to analyze whether such differences could appear
in generative feedback as well (in this case, writing questions for a question answering task),
and analyze the embeddings of these questions. This analysis further appears to confirm our
hypothesis, thus suggesting that diversifying the pool of workers who offer feedback to machine
learning models could potentially provide insights that would be missed otherwise.

6.2 Related Work
Bhuiyan et al. [2020] investigate news credibility assessments by crowds versus experts to un-
derstand when and how ratings between them differ. They gather a dataset of thousands of
credibility assessments taken from journalism students, Upwork workers, expert journalists and
expert scientists, on a varied set of 50 news articles related to climate science. They examine
these ratings to find differences in performance due to rater demographics, political leanings,
genre of the article, and partisanship of the publication. Abebe et al. [2019] analyze Bing search
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Figure 6.1: Crowdsourcing platform for summarization feedback collection

queries from several African nations and find that different patterns emerge in health information
needs by demographic groups (age and gender) and country. They also find great discrepancies
in the quality of content returned by search engines to users by topic, highlighting differences in
user behavior and satisfaction. For instance, their analysis reveals that topics related to news on
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HIV/AIDS cures are more popular among men. On the other hand, women seek information on
topics related to breastfeeding, pregnancy, and family care. They also find different information
needs across age groups. For instance, while topics related to the socioeconomic implications of
HIV/AIDS, such as gender inequality, are more popular in the 18–24 age group, topics related to
concerns about transmission to partner and child are more popular among the 25–34 age group.

In NLP, focusing on evaluating natural language generation models, Karpinska et al. [2021]
run a series of story evaluation experiments with both crowdworkers and English teachers and
discover that crowdworkers (unlike teachers) fail to distinguish between model-generated text
and human-generated references. Sap et al. [2021] conduct two online studies with demograph-
ically and politically diverse participants to investigate the effects of annotator identities (who)
and beliefs (why) when annotating hate speech datasets. They disentangle what is annotated
as toxic by considering posts with three characteristics: anti-Black language, African American
English (AAE) dialect, and vulgarity. They find that more conservative annotators and those who
scored highly on their scale for racist beliefs were less likely to rate anti-Black language as toxic,
but more likely to rate AAE as toxic, and found strong associations between annotator identity
and beliefs and their ratings of toxicity generally. Similarly, in another work, Prabhakaran et al.
[2021] analyze annotated data for several NLP tasks and study the impact of majority voting as
an aggregation approach. They find that in the annotations for many tasks, the aggregated ma-
jority vote does not uniformly reflect the perspectives of all annotators in the annotator pool and
for many tasks in their analysis, a significant proportion of the annotators had very low agree-
ment scores with the majority vote label. They further find that these agreement scores may vary
significantly across different socio-demographic groups that annotators identify with.

Figure 6.2: Crowdsourcing platform for open domain dialog feedback collection

6.3 Data and Methods
We use Amazon’s Mechanical Turk crowdsourcing platform to recruit crowdworkers for our
study. To ensure high quality of the collected data, we restricted the pool to workers who had
already completed at least 5000 HITs and had an over 97% HIT approval rate. For each task,
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Figure 6.3: Crowdsourcing platform for collecting questions

we conducted several pilot studies to gather feedback from crowdworkers. We identified me-
dian time taken by workers to complete each task in our pilot studies and used that to design
incentive structure for the respective task. We also conducted multiple studies with different
variants of instructions to observe trends in the quality of questions and refined our instructions
based on feedback from crowdworkers. Feedback from the pilots also guided improvements to
our crowdsourcing interface. For both summarization and dialog, we focus on the country of
crowdworkers, thus collecting data from both the United States and India. Whereas, for, ques-
tion generation we only collect data from workers in the United States to perform comparisons
across gender, race and ethnicity, and political leaning. In total, over 3500 workers participated
in this study.

News summarization We select 100 articles from the CNN-DailyMail dataset and their
summaries created by three recent, high-performing abstractive summarization models—T5,
GPT-2 and BART.3 We show an article along with a baseline summary (chosen as one of the
three models) and another summary (one of the remaining two models) and ask crowdworkers to
select which of the two summaries better exhibits certain attributes (in their opinion). We focus
on six criteria on which a user must provide binary feedback: which summary is more factu-
ally consistent w.r.t the article, which summary captures relevant points of the article, which
summary is more fluent, which summary is more clear and easy to understand, which summary
is more coherent, which summary has less redundancy. We further ask crowdworkers to also
select which of the two summaries they would have preferred overall. Each crowdworker is re-
stricted to a maximum of 5 HITs. Crowdworkers are paid $1 per HIT. To ensure workers were
paying attention, we inserted attention checks where the two summaries were the same with
spacing differences so they appear different in length. Workers not paying attention would likely
select one summary to be better than the other rather than selecting the Tie option.

3These articles are a subset of the articles used by Fabbri et al. [2021]. This choice of articles allows us to use
existing, high quality summaries since the objective is not to train a new model but examine the differences between
human feedback.
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Open Domain Dialog For open domain dialog feedback, we make use of the single-model,
per-dialog evaluation setup from [Smith et al., 2022]. We use three recent open domain conversa-
tion models—BlenderBot 3B, BlenderBot 90M, and Reddit 3B. BlenderBot 3B and BlenderBot
90M differ in the number of parameters (3 billion and 90 million, respectively) and Reddit 3B
is simply BlenderBot 3B before it was finetuned on dialog datasets. We design an interactive
platform using ParlAI and Mephisto. Each interaction begins with a default Hi! prompt to the
conversational agent. A crowdworker engages in a live interaction with a conversational agent
for 8 turns following the agent’s first response. Once a dialog is complete, the worker is asked to
rate the whole conversation on five criteria: how engaging was the conversation, how relevant
were the agent’s responses, how natural (or robotic) the agent’s responses sounded, and fluency
of agent’s responses. For each model, we deploy 280 HITs on Amazon Mechanical Turk, both
in India, and in the United States (allowing for a buffer assuming ≈ 10% of the HITs may result
in spam). We pay workers $2 per HIT. Each worker does at most 2 HITs per model (a maximum
of 8 HITs per worker).

Question Answering In this setup, for a given topic, we ask a crowdworker to write 5 ques-
tions that they are genuinely curious about. We identify a mix of 51 topics, some of which have
been shown to invoke polarizing sentiments amongst different demographics such as abortion,
affirmative action and men’s rights, and others where we do not have a reason to expect such
differences to arise, such as AIDS, artificial intelligence, obesity, and sports. Following IRB
approval for this study, workers were asked to consent to participate in this study and only upon
consenting, they could self report their demographics in a Google Survey and start writing ques-
tions. We conducted a range of pilots to approximate the proportion of different demographic
groups in our worker pool. Our objective was to ensure we collected at least 3000 questions
from each demographic subgroup to perform meaningful comparisons, and this would also al-
low us to train QA models with ease (an insight from our experiments in Chapter 5). As Black
respondents were the smallest subgroup in our pilot studies (≈ 5% of respondents), we collected
a total of 61000 questions by showing each topic to 239 crowdworkers. As a result, this data
contained 3080 questions created by Black respondents. We pay workers $0.4 per HIT to gen-
erate these questions. While our initial goal was to collect questions, and then recruit additional
crowdworkers to find relevant Wikipedia passages that could answer these questions, our initial
analysis revealed several challenges with that approach. Thus, for now, we pause here and restrict
our analysis to differences in the questions asked by crowdworkers across different demographic
groups.

6.4 Analysis
Abstractive summarization We examine how workers recruited from India versus those re-
cruited from the United States select summaries offered by different summarization models. We
compute mean and standard error of scores obtained from crowdworkers (−1, 0, or 1) over 100
news articles. Our findings show statistically significant differences in scores obtained from
these workers across several evaluation criteria across all models (Table 6.1). For instance, while
crowdworkers in India preferred summaries generated by GPT-2 over summaries generated by
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Country Clarity Coherence Consistency Fluency Redundancy Relevance Overall

T5 versus GPT2

India −0.040.03 −0.390.03 −0.720.02 −0.250.03 −0.030.03 0.030.03 −0.360.03
US −0.060.03 −0.240.03 −0.650.02 −0.170.03 −0.040.03 0.070.03 −0.290.03

T5 versus BART

India −0.140.03 −0.270.03 −0.570.02 −0.230.03 −0.110.03 −0.070.03 −0.330.03
US 0.050.03 −0.150.03 −0.400.03 −0.090.03 0.010.03 0.090.03 −0.160.03

GPT2 versus BART

India −0.030.03 −0.250.03 −0.490.03 −0.290.03 −0.070.03 0.010.03 −0.270.03
US 0.070.03 −0.010.03 −0.320.03 0.000.03 0.000.03 0.160.03 0.030.03

Table 6.1: Scores given by workers in India and US on several criteria for a summarization task
shown in Fig. A score of -1 means a worker prefers the first model more than the second, zero
indicates a tie, and 1 indicates a preference for the second. Mean and standard error (over 100
article-summary pairs) of scores are reported. Results are bolded when the difference in ratings
obtained from workers in India versus the United States is statistically significant with p < 0.05.

Location ↓ Evaluation parameters
Relevance Fluency Naturalness Engaging

Blender Bot 3B

India 3.960.06 4.120.06 4.120.06 4.010.06
United States 4.380.06 4.510.05 4.370.06 4.180.06

Blender Bot 90M

India 3.570.07 3.820.07 3.740.07 3.800.07

United States 3.770.07 3.810.07 3.520.08 3.600.07

Reddit 3B

India 3.380.07 3.780.08 3.690.07 3.740.08

United States 3.300.09 3.610.09 3.510.09 3.180.09

Table 6.2: Likert scale ratings provided by crowdworkers following interaction with an open-
domain chatbot. Mean and standard error reported over 250 conversations, where each conversa-
tion involved a total of 16 dialog utterances (8 human, 8 chatbot). In scenarios where difference
between ratings provided by workers in India and those in the United States is statistically sig-
nificant with p < 0.05 have been bolded.

BART, crowdworkers from the United States had opposite preferences on almost all evaluation
criteria. Similarly, crowdworkers from India preferred T5 summaries over BART summaries
across all criteria, far more than US workers. Overall, it appears workers in India rank the
models as T5>GPT2>BART whereas workers in the United States find GPT2 and BART to be
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Figure 6.4: TSNE Plots of question representation (randomly selected five topics).

mostly tied.
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Open domain dialog Crowdworkers in this task were asked to rate the conversation from 1–5
on several attributes. We compute mean and standard error across ratings offered by crowd-
workers from India versus the United States (250 dialogs each) and found statistically significant
differences across both versions of BlenderBot (Table 6.2). Crowdworkers in the United States
found BlenderBot 3B to be more relevant, fluent, engaging, and natural than crowdworkers in
India did. On the other hand, crowdworkers in India found BlenderBot 90M to be more natu-
ral and engaging than the workers in US did. Interestingly, for Reddit 3B, the differences were
only on how engaging the crowdworkers thought it was, with crowdworkers from India finding it
more engaging than crowdworkers from the US and we see no differences on relevance, fluency,
or naturalness.

Question Generation From the 61000 questions, we subsample a set of 9205 questions. These
9205 questions allow us to sample 3000 questions for each demographic group we wish to study.
To observe the differences in questions written by crowdworkers from different demographic
groups for each topic, we compute embeddings for these questions using the text-davinci-002
model from OpenAI (the closest literature reference is InstructGPT). We then plot the embed-
dings for each topic using T-SNE to visualize these differences (Figure 6.4). Similar to the pre-
vious two setups, we find that the feedback offered by different demographic groups can be very
different and not explicitly considering demographics of the cohort could inadvertently exclude
those perspectives. For instance, while there is hardly any difference between representations of
questions for the topic vaccines by those identifying and males and females, there appears to be a
considerable difference across race/ethnicity, and political leaning. And while there appear to be
hardly any differences on the topic of mental health or game of thrones, it is less of a case for the
topic of affirmative action. We saw crowdworkers who self-identified as Female asked a lot more
personal questions on the topic of abortion such as “Will abortion affect my ability to get preg-
nant in the future?”, “Does having an abortion increase my chance of getting breast cancer?”,
and “How far in the pregnancy can I get an abortion?”, whereas those who self-identified as
Male asked more questions about legality and their rights, such as “What can I do if I change my
mind, or wish to rearrange my wife’s abortion appointment?”, “What is the relationship between
abortion access and crime rates?”, “Why does the government fund planned parenthood when
a lot of taxpayers are against abortion?” and “How will reduced access to abortion in the US
affect other areas of the globe?”.

6.5 Discussion
In this chapter we examine the idea that when seeking human in the loop feedback for ML mod-
els (such as picking one of two plausible summaries or rating a conversation), crowdworkers
of different demographics could offer different perspectives. For instance, while crowdworkers
in India preferred summaries generated by GPT-2 over summaries generated by BART, crowd-
workers from the United States had opposite preferences for almost all attributes. Similarly,
crowdworkers from India preferred T5 summaries over BART summaries across all criteria, far
more than US workers. For the question generation task, we observe from both embedding anal-
ysis and additional qualitative analysis that questions written by workers from one demographic
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express different perspectives than others.
There are several potential implications of these findings. First, if machine learning models

are trained on feedback that is not representative of the population, they may be biased. For in-
stance, if a model is trained on feedback obtained from workers who are mostly college educated,
it may be less accurate for those without a college education. Second, if different demographic
groups offer different kinds of feedback, this could impact the accuracy of the models. For exam-
ple, if US crowdworkers tend to rate summaries generated by GPT-2 as equally good as generated
by BART, but Indian crowdworkers have the opposite preference, using feedback from US work-
ers to train a summarization model could lead to summaries that are less acceptable to people in
India. These findings suggest that it is important to consider the diversity of the workforce when
collecting feedback for machine learning models. This is especially important when collecting
feedback at scale, as it can help to ensure that the feedback is representative of the population
and ties closely to this dissertation’s core thesis of the importance of human feedback in ensuring
NLP models are reliable when deployed in the real world. One shortcoming of our analysis is
that due to the same amount of money paid to workers in India and workers in the US, it could be
that the differences in ratings are a reflection of the increased compensation for workers in India
(adjusted for purchasing power) than for workers in the US, rather than qualitative differences
between populations. Additioanlly, while these findings offer evidence in support of recruiting a
more diverse workforce, one key limitation of this analysis is the lack of any results showing dif-
ferences on the downstream performance of an ML model trained with feedback from a diverse
group of crowdworkers versus a model trained with feedback from a rather homogeneous group
of crowdworkers, and is left as future work.
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Chapter 7

Resolving The Human Subjects Status Of
Machine Learning’s Crowdworkers

7.1 Overview

As the focus of machine learning (ML)—and, in particular, natural language processing (NLP)—
has shifted towards settings characterized by massive datasets, researchers have become reliant
on crowdsourcing platforms [Kovashka et al., 2016, Vaughan, 2017, Sheng and Zhang, 2019,
Drutsa et al., 2021]. These practices have produced hundreds of new datasets. In NLP, for the
task of passage-based question answering (QA) alone, over 15 new datasets containing at least
50k annotations have been introduced since 2016. Prior to 2016, the available QA datasets con-
tained at most an order of magnitude fewer human-annotated examples. The ability to construct
such enormous resources derives, in large part, from the liquid market for temporary labor en-
abled by crowdsourcing platforms, including Amazon Mechanical Turk, Upwork, Appen, and
Prolific. Over time, the relationship between the ML community and crowdworkers has evolved
to encompass a wide variety of tasks and interaction mechanisms. However, the positive view of
crowdsourcing as a means to produce better and larger datasets, potentially leading to technolog-
ical breakthroughs, has been offset by growing concerns about the ethical and social dimensions
of these one-off engagements with crowdworkers. Points of concern include (i) the low wages
received by crowdworkers [Fort et al., 2011, Whiting et al., 2019, Silberman et al., 2018, Kum-
merfeld, 2021]; (ii) disparate access, benefits, and harms of developed applications [Adelani
et al., 2021, Nekoto et al., 2020, Orife et al., 2020, Bender and Friedman, 2018, Kiritchenko
and Mohammad, 2018, Rudinger et al., 2018, Bender et al., 2021, Strubell et al., 2020]; (iii)
the reproducibility of proposed methods [Dodge et al., 2019, Ning et al., 2020, Freitag et al.,
2021, Card et al., 2020]; and (iv) concerns about fairness and discrimination arising in the re-
sulting technologies [Hovy and Spruit, 2016, Leidner and Plachouras, 2017, Bender et al., 2020,
Blodgett et al., 2020].

Our focus here is on what ethical framework should govern the interaction of ML researchers
and crowdworkers, and the unique challenges posed by ML research to regulators. While re-
searchers in fields like NLP typically lack expertise in human subjects research, they nevertheless
require practical guidance for how to classify the role played by crowdworkers in their research
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so that they can comply with relevant ethical and oversight requirements. Unfortunately, clear
guidance is presently lacking. Reflecting the current state of confusion, some institutions and
a recent paper by Shmueli et al. [2021] suggest that all ML crowdwork constitutes human sub-
jects research, while other institutions suggest that ML crowdworkers rarely constitute human
subjects Ipeirotis.

In this chapter, we address the source of confusion, arguing that difficulties in resolving the
appropriate designation of ML’s crowdworkers owe to several formidable challenges:

Novel relationships The ethical framework that oversight boards use to identify human subjects—
the U.S. Common Rule—was developed in the wake of abuses in biomedical and behavioral re-
search. This framework was especially influenced by dynamics in biomedical research, including
the need to distinguish clinical research from medical practice London [2021]. Binning activ-
ities into these categories facilitated the goal of ensuring that these distinct relationships were
governed by the relevant set of norms—the norms of clinical medicine or the norms of medical
research. Because the distinction between employees on a research team and study participants
is less ambiguous in medical contexts, little attention has been paid to criteria for distinguishing
research staff from study participants.

Novel methods Compared to biomedical or social sciences, where data are collected to answer
questions that have been specified in advance, ML research often involves a more dynamic work-
flow in which data are collected in an open-ended fashion and research questions are articulated
in light of data and its analysis. Additionally, while it is typical in biomedicine for teams that
gather data to analyze it, or for researchers to analyze data that was first gathered for clinical
purposes, in ML research there can be a more distributed division of labor with some research
groups collecting data that will serve as the foundation for future studies by a whole community
of researchers.

Ambiguity Under the Common Rule, whether an individual is a human subject hinges on
whether the data collected, and later analyzed, is about that individual. However, as Shmueli
et al. [2021] have noted, crowdworkers can fill such diverse roles in ML research (even within a
single study) that is becomes difficult to draw a line between which data is collected about the
crowdworker versus merely from them (but about something else) Shmueli et al. [2021].

Inexperience Despite the enormous productivity in this area, crowdsourcing-intensive NLP
papers seldom discuss the ethical considerations that would otherwise be central to human sub-
jects research and rarely discuss whether an Institutional Review Board (IRB) approval or exemp-
tion was sought prior to the study—only 14 (≈ 2%) of the aforementioned 703 papers described
IRB review or exemption Shmueli et al. [2021]1;

1It is worth noting that in other computing fields such as human computer interaction, it is common practice to
seek IRB review prior to collecting data from human annotators. Additionally, not all of these 703 papers came
from Common Rule institutions, so the actual percentage could be higher than 2%.
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Scale Currently NLP research is producing hundreds of crowdsourcing papers per year, with
703 appearing at the top venues (ACL, NAACL, EMNLP) alone from 2015 − −2020 Shmueli
et al. [2021].

Moreover, we argue that these challenges not only create confusion among stakeholders,
they also open the potential for loopholes, whereby researchers can avoid IRB oversight without
altering the substantive research procedures performed on participants London et al. [2020].
In particular, a single study that would be considered human subjects research could be split
into two parts: one in which researchers collect data about workers and release an anonymized
version to the public without analyzing information about the workers themselves; and a second
in which they or another team of researchers perform analysis on information about the workers.
According to some institutional policies, the latter two studies might not require research ethics
oversight whereas the single study would.

To ensure that ML research is conducted according to the appropriate ethical and regulatory
standards, greater clarity is required. In Section 7.2, we elaborate the criteria that define human
subjects for ethical and regulatory purposes in the United States. We briefly discuss the relation-
ship between the question of whether one or more persons satisfy these criteria and the question
of whether that research must undergo review by a properly constituted IRB. In Section 7.3, we
present prototypical examples from research in NLP to identify paradigmatic cases for which it
is clear/unclear how a given crowdworker should be classified. We then show how the diver-
sity of roles that crowdworkers can play in ML research poses a challenge for research ethics
and provide guidance on interpreting the Common Rule to identify when crowdworkers should
be classified as human subjects versus as extensions of the research team for both ethical and
regulatory purposes. Finally, in Section 7.4, we offer policy solutions to address these concerns.

7.2 Regulatory Framework
In the United States, the regulations that govern the use of human participants in scientific re-
search are set out in the Code of Federal Regulations (CFR) and are commonly referred to as the
Common Rule. These regulations are promulgated by the Executive Branch and apply only to
institutions that accept federal funds or that have agreed to abide by these rules. Nevertheless,
the language and the requirements laid out in these rules have been adopted by, and exert a great
deal of influence within, the larger literature on research ethics.

Because the Common Rule only applies to research with human participants, it sets out two
important criteria to determine whether a person constitutes a research participant: those used to
define research and those used to define a human subject.

First, in order to be a participant in research, research must be taking place. Research is de-
fined, in part, as “a systematic investigation, including research development, testing, and eval-
uation, designed to develop or contribute to generalizable knowledge.” Second, human subjects
are then defined as follows:

(e)(1) Human subject means a living individual about whom an investigator (whether profes-
sional or student) conducting research:

(i) Obtains information or biospecimens through intervention or interaction with the individ-
ual, and uses, studies, or analyzes the information or biospecimens; or
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Studies/Analyzes Uses

Intervention Identifying better crowdsourcing
strategies via a randomized study

Train an ML model on data collected
in a gamification environment

Interaction Analyzing data collected via surveys
on Mechanical Turk

Asking crowd to annotate a dataset
to train ML models

Table 7.1: Examples of research interactions with the crowd.

(ii) Obtains, uses, studies, analyzes, or generates identifiable private information or identifi-
able biospecimens. (45 CFR 46.102 (e)(1))

For simplicity, we limit our discussion to the production of information, rather than to a discus-
sion of specimens.

Two points of clarification are in order. First, we note that in (e)(1), the definition of a human
subject requires that researchers obtain information about the individual in question. This does
not imply that the researcher is conducting research about the individual, per se, since research
aims to produce generalizable knowledge. In the biomedical context, for example, a study might
seek to determine the effect of some intervention on blood pressure among the population of
individuals who suffer from a particular disease. To answer this question, researchers might
measure the blood pressure of specific individuals with that disease. That information is then
analyzed to produce generalizable knowledge pertaining to the underlying population. However,
as we will see, delineating precisely which information is about an individual can be difficult in
many settings where crowdworkers are engaged by ML researchers. Second, conditions (i) and
(ii) lump together a range of cases that vary in substantive ways. Condition (i) is a combination
of two conjuncts. The first conjunct concerns the way that information is produced: information
can arise from intervention or from interaction. These terms are defined respectively as:

(2) Intervention includes both physical procedures by which information or biospecimens are
gathered (e.g., venipuncture) and manipulations of the subject or the subject’s environment
that are performed for research purposes.

(3) Interaction includes communication or interpersonal contact between investigator and
subject.

Of these possibilities, interaction is the weaker condition. Interventions can reasonably be
understood as the subset of interactions that produce a change in either the individual (e.g.,
administering a drug, or drawing blood) or their environment (e.g., placing an individual in
an imaging device). By contrast, interactions include communication or interpersonal contact
that generate information without necessarily bringing about a change to the individual or their
environment. For example, a study might involve randomizing a group of participants to receive
either an investigational intervention in addition to usual care, or to receive only usual care.
Although the former group receives an intervention—something they would not have received
outside of the context of research—the latter group is not subject to an intervention. Nevertheless,
their inclusion in a group that is randomized within a study constitutes a form of social interaction
necessary to generate data that controls for confounding, and so helps to produce generalizable
knowledge.
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The second conjunct in condition (i) requires that information that arises in one of these two
ways is then used, studied, or analyzed. Of these, use is the broadest category, as there may be
myriad ways information from a social interaction might be used in the course of research. In
contrast, study and analysis seem to constitute a strict subset of uses in which data are analyzed or
evaluated, presumably to generate the generalizable knowledge that defines the study in question.
Table 7.1 provides a representation of the combinations of views that result from combining
these modes of interaction and types of use. Among these, the intervention analysis condition
is the most narrow and captures a paradigm of the researcher-participant relationship. Namely,
a person is a human subject if, in the course of research, they are the target of an intervention
from which a researcher generates information that is then the subject of an analysis that is
intended to produce the generalizable information that is the focus of the research. In contrast,
the interaction use criteria are weaker, holding that a person is human subject if, in the course of
research, researchers interact with them in a way that produces information that is used to further
the goals of research.

Condition (ii) deals with cases in which researchers obtain, use, study, analyze or generate
private information about a living individual. This condition is intended to cover cases in which
researchers might not interact with living persons, in the sense outlined in condition (i), but
they nevertheless use or generate private information about a living individual in the course of
their research. This condition therefore applies to research involving datasets that include private
information about living individuals or to research that would generate that information from
datasets that might not include private information about living individuals taken on their own.

These definitions play a key role in demarcating which set of ethical and regulatory require-
ments apply to an activity. A research activity that does not involve human subjects does not fall
under the purview of the regulations governing research with human subjects. Consequently, if
there are no human subjects in a study then the study does not need to be reviewed by an IRB.
In contrast, if a researcher is carrying out research with human participants, then that researcher
incurs certain moral and regulatory responsibilities. Among these regulatory responsibilities is
the duty to present one’s research for review by an IRB.

This last claim might come as a surprise to some who read the Common Rule, since a signif-
icant portion of ML research, and NLP research in particular, is likely to be classified as exempt.
Per 46.104.(3)(i), research involving benign behavioral interventions in conjunction with the col-
lection of information from an adult subject through verbal or written responses (including data
entry) or audiovisual recording can qualify for exempt status if the subject prospectively agrees
to the intervention and information collection and at least one of the following criteria is met:

(A) The information obtained is recorded by the investigator in such a manner that the identity
of the human subjects cannot readily be ascertained, directly or through identifiers linked
to the subjects;

(B) Any disclosure of the human subjects’ responses outside the research would not reasonably
place the subjects at risk of criminal or civil liability or be damaging to the subjects’
financial standing, employability, educational advancement, or reputation.

However, a researcher cannot unilaterally declare their research to be exempt from IRB
review. Rather, exempt is a regulatory category whose status must be certified by an IRB
(§46.109.(a)). This can seem paradoxical to some since, in order to qualify for an exemption,
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researchers must submit sufficient information about their research to the IRB so that the latter
can determine that these, or other applicable criteria (as laid out in the Common Rule) are met.2

Nevertheless, the work required to secure this certification is usually less than is required to sub-
mit a full protocol and the certification is usually granted in less time than it would take for an
IRB to provide a review of that protocol involving the full IRB board. For present purposes, the
main point is that if a researcher at an institution bound by the Common Rule carries out human
subjects research without first having that research reviewed by the relevant IRB, then that re-
searcher would be in violation of that institution’s regulatory obligations, even if that research
would have qualified for an exemption.

7.3 Common Rule and ML Research
Based on the preceding analysis, we can now identify a large subset of ML research in which
crowdworkers are clearly human subjects. These cases fit squarely into the paradigm of research,
familiar in biomedicine and social science, where researchers interact with crowdworkers to pro-
duce data about those individuals, and then analyze that data to produce generalizable knowledge
about a population from which those individuals are considered to be representative samples.

First, we consider studies where researchers assign crowdworkers at random to interventions
in order to produce data that can be analyzed to generate generalizable knowledge about best
practices for utilizing crowdworkers. Here, the crowdworkers are clearly human subjects. They
are the target of an intervention that was designed for the specific purpose of capturing data
about them (namely, their performance at some task), that could then be analyzed qualitatively
and statistically to address the central hypotheses of the study.

For instance, consider Khashabi et al. [2020], who engage crowdworkers to investigate which
workflows result in higher quality question-answering datasets. They recruit one set of crowd-
workers to write questions given a passage, while another group of crowdworkers are shown
a passage along with a suggested question and are tasked with minimally editing this question
to generate new questions. In these settings the data is about the workers themselves, as is the
analysis. Investigating adversarial setups for generating question answering datasets, Kaushik
et al. [2021a] conduct a large-scale controlled study focused on a question answering task. One
set of workers is asked to write five questions after reading a passage, highlighting the answers
to each, and are awarded a base pay of $0.15 per question. Another set of crowdworkers is
shown the same passages but asked to write questions that elicit incorrect predictions from an
ML model trained using a different dataset to perform passage based question answering. To
incentivize workers to spend more time thinking about ways to fool this existing model, work-
ers are paid $0.15 for each question that fools the model in addition to the base pay of $0.15
per question. The research team later analyzed this data to identify the differences between the
questions generated by both sets of workers and derive insights about how each data creation
setup influences crowdworker behavior. They also trained various machine learning models on
these datasets and evaluated them on several other question answering datasets to establish which

2This is a commonality in administrative rulemaking as well as judicial review. After all, Courts get to determine
whether something is in their jurisdiction but a plaintiff has to provide information to enable a court to make that
determination.
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interaction mechanism produced better data (as measured by performance of models trained on
the respective datasets), producing generalizable knowledge to aid future data collection efforts.

Humans subjects research in NLP is not limited to studies aimed at dataset quality. Hayati
et al. [2020] paired two crowdworkers in a conversational setting and asked one crowdworker
to recommend a movie to the other. They then study the resulting data to identify what rec-
ommendation and communication strategies lead to successful recommendations, and use these
insights to train automated dialog systems. In another work, Pérez-Rosas and Mihalcea [2015]
asked crowdworkers to each write seven truths and seven plausible lies on topics of their own
choice. The authors also collected demographic attributes (such as age and gender) for each
crowdworker. They then analyzed how attributes of deceptive behavior relate to gender and age.
They also train classifiers using this data to predict deception, gender, and age. In these cases,
the researchers interacted with crowdworkers to produce data about the crowdworkers that was
then analyzed to answer research hypotheses, creating generalizable knowledge.

7.3.1 Cases Where the Human Subjects Designation is Problematic
Unlike the above, many ML crowdsourcing studies do not fit neatly within the paradigm of re-
search that is common in biomedicine and the social sciences. For example, crowdworkers are
often brought in, not as objects of study, but to perform tasks that could have been—and some-
times are—performed by members of the research team themselves. Note that in these cases,
members of the research team certainly do interact with crowdworkers and that those interactions
produce data that in some meaningful sense is used to produce generalizable knowledge. More-
over some of the collected data certainly is about the worker e.g., for the purpose of facilitating
payment. However, in these cases, the data that is analyzed in order to produce generalizable
knowledge are not about the crowdworkers in any meaningful sense.

In perhaps the most common category of crowdsourcing study in machine learning, re-
searchers hire workers to label a training dataset that will be used for training ML models. For
instance, Hovy et al. [2014] recruit crowdworkers to annotate parts of speech in text. They then
train machine learning models on this data to predict parts of speech on test set. In another
study, Taboada et al. [2011] recruit crowdworkers to create a collection of words associated with
a sentiment label which is then used to produce a sentiment classification model. Countless such
datasets are introduced every year. Often researchers interact with the crowdworkers and use
the data generated as a result of that interaction. While it might appear that any such research
satisfies the interaction + use criteria from the Common Rule, the subtle distinction is that the
information used to produce generalizable knowledge is not about the worker.

In many of these cases, crowdworkers are performing tasks that are routinely performed by
research team members themselves when working data on smaller scales. For example, Ko-
vashka et al. [2016] describe numerous computer vision papers where researchers provide their
own labels. In another example, NLP researchers often ask crowdworkers to not only provide
the correct label for a document, but also to highlight rationales, contiguous segments in the text
that provide supporting evidence. Notably, while DeYoung et al. [2020] recruit crowdworkers
to annotate rationales for various classification tasks, Zaidan et al. [2007] opt to annotate the
rationales themselves. In another setting, Kaushik et al. [2020] recruit crowdworkers, who given
a text and associated label, were tasked to minimally edit the text to make a counterfactual label
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applicable. In a followup study, instead of recruiting crowdworkers, Gardner et al. [2020] opt to
make these edits themselves.

How should crowdworkers in these cases be classified? On a strict reading of the claim that
a human subject is a living individual “about whom” researchers obtain information that is used
or analyzed to produce generalizable knowledge, then crowdworkers in these cases would not
be classified as human subjects. This reading is consistent with the practice of some IRBs. For
example, Whittier College’s IRB states:3

Information-gathering interviews with questions that focus on things, products, or
policies rather than people or their thoughts about themselves may not meet the def-
inition of human subjects research. Example: interviewing students about campus
cafeteria menus or managers about travel reimbursement policy.

In contrast, other IRBs adopt a far more expansive reading of the language in the Common
Rule. For instance, Loyola University’s IRB says:4

In making a determination about whether an activity constitutes research involving
human subjects, ask yourself the following questions:
1) Will the data collected be publicly presented or published?
AND
2) Do my research methods involve a) direct and/or indirect interaction with partic-
ipants via interviews, assessments, surveys, or observations, or b) access to identifi-
able private information about individuals, e.g., information that is not in the public
domain?
If the answer to both these questions is “yes”, a project is considered research with
human subjects and is subject to federal regulations.”

Note that this interpretation does not distinguish whether the information is about an individual
or just obtained via a direct and/or indirect interaction. This view appears to be shared by other
IRBs as well.5

How does information about versus merely from impact human subjects determination?
Traditionally, research ethics has not had to worry about who is a member of the research team
and who is a participant in that research. This ambiguity arises in cases of self-experimentation,
but such cases are relatively rare and fit squarely into the intervention + analysis category from
the Common Rule. The scope of the effort required to produce data that can be used in ML
research has engendered new forms of interaction between researchers and the public. Without
explicit guidance from federal authorities in the Office of Human Research Protections, individ-
ual IRBs will have to grapple with this issue on their own.

Our contention is that in the problematic cases referred to in this section, crowdworkers
are best understood as augmenting the labor capacity of researchers rather than participating as
human subjects in that research. This argument has two parts.

3Archived on February 14, 2022. https://web.archive.org/web/20220214194123/
https://www.whittier.edu/academics/researchethics/irb/need

4Archived on February 14, 2022. https://web.archive.org/web/20220214194036/
https://www.luc.edu/irb/irb II.shtml

5Archived on February 27, 2022. https://web.archive.org/web/20220228012326/
https://www.bsc.edu/academics/irb/documents/BSC%20IRB%20Decision%20Tree.pdf
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The first part is an argument from symmetry. Within a division of labor, if more than one
person can carry out a portion of that division of labor, then the way that we categorize the
activity in question should depend on substantive features of that activity rather than on the
identity of the individual in question.6 From this, it follows that if a task is performed by a
researcher in one instance and then by one or more crowdworkers in a second instance, then our
categorization of that activity should be the same in both cases. The argument from symmetry
alone entails only that either the crowdworker and the researcher are both part of the research
team or both human subjects.

The second part of the argument appeals to three additional considerations that support clas-
sifying both parties as part of the research team. First, when researchers perform the tasks in
question it seems clear that they are not self-experimenting—they are not subjects in their own
study. Second, this impression or intuition is explained by the fact that these interactions produce
information that contributes to the production of generalizable knowledge, but that this informa-
tion is better classified as coming from, rather than being about, these individuals. Researchers
interact with other members of their team to produce information and this information is used
in research, but this use involves creating or refining the instruments, materials, metrics, and
other means necessary to carry out research. Its purpose is to create the means of generating new
knowledge rather than to constitute that data or evidence base whose study or analysis will gener-
ate this new knowledge. Third, ignoring the distinction between data that is about a person rather
than merely from them, and holding that both researchers and crowdworkers are human subjects
in these cases, creates a regulatory category so broad that it would class members of every re-
search team, including those in traditional biomedical and social science, as as human subjects.
The reason is simply that those researchers routinely interact with other members of their team
to create information that is used to produce generalizable knowledge. But this consequence is
absurd.

7.3.2 Loopholes in Research Oversight
The analysis in the previous section illustrates one challenge that ML research poses for research
ethics. Part of the ethical rationale for the oversight of research with human participants is that
the interests of study participants can be put at risk when researchers interact with or intervene
upon them for the purpose of generating generalizable knowledge. These risks can derive from
the nature of the interaction or intervention, or from the use that is made of the resulting informa-
tion. A loophole in research oversight has been defined “as the unilateral ability of a researcher
to avoid an oversight requirement without altering the substantive research procedures performed
on participants” London et al. [2020]. Loopholes in research oversight are morally troubling, in
part, because they violate a concern about equal treatment for like cases: if researchers interact
with individuals for the purpose of generating data that is about those individuals and general-
izable knowledge is produced from the study or analysis of that data, then the interests of those

6One might argue that the way we treat unionized vs non-unionized workers or independent contractors vs
employees are counterexamples where the work might be exactly the same but the identity of the individual and
a feature about them makes a difference regarding workplace protections amongst other things. In these cases,
although, prior agreements might shape the entitlements of agents, they do not alter the classification of the activity
performed i.e., whether the task is work or research.
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individuals should receive the same level of oversight regardless of how the labor in this process
is organized. However, two features of ML research make the Common Rule particularly prone
to loopholes: the way that labor is divided between the collection and the analysis of data and
the way that research questions often arise after data collection.

Scenario 1 It is clear that the Common Rule envisions several ways in which labor might be di-
vided in research. First, in traditional biomedical or social science research it is common for the
same individuals who collect data to also analyze that data in the course of their research. This
division of labor is presupposed in 45 CFR 46.102 (e)(1)(i) which says that when a researcher
conducting research “[o]btains information or biospecimens through intervention or interaction
with the individual, and uses, studies, or analyzes the information or biospecimens”, that re-
search activity would be categorized as human subjects research. In this scenario, ethics review
covers two morally weighty aspects of this division of labor: whether researchers interact with
participants in ways that respect their autonomy and safeguard their welfare and whether they
use the information that they obtain from these interactions in a way that respects the rights and
welfare of the people this information is about.

Second, it is common for data or biospecimens to be generated in the course of the provision
of medical care or other health services. In these cases the interactions of medical professionals
with patients are not shaped around research purposes—they are shaped by the goals and pur-
poses of the provision of health care or other medical services. As such, those interactions are
usually governed by the norms of medical or professional ethics. Research ethics review thus
focuses on whether the data or specimens in question constitute or include identifiable private
information and, if so, whether research with this information respects the rights and welfare of
the individuals from whom the information was gathered.

It is not clear that the Common Rule envisioned a division of labor in which researchers
would interact with individuals for research purposes (i.e., where the interactions are shaped by
the goal of generating generalizable knowledge rather than the provision of health services) but
those researchers would not use, study or analyze that information themselves. To be clear, this is
different from secondary use of data that was gathered for research purposes since, in traditional
biomedical or behavioral research, the initial research would likely have been subject to research
oversight. That oversight would ensure that researchers interact with participants on terms that
respect their rights and welfare and subsequent oversight would evaluate additional uses of that
data.

In contrast, it is common for ML researchers to collect large datasets in an open-ended man-
ner before hypotheses are formulated, often with the goal of facilitating a range of future research
in broad topic areas Williams et al. [2018a], Zhang et al. [2021], Aggarwal et al. [2021], Ao et al.
[2021], Le et al. [2021], Zang et al. [2021]. For example, Williams et al. [2018a] collect a
large scale corpus for the task of recognizing textual entailment. They train an ML model on
this dataset and release the dataset with anonymized crowdworker identifiers for future research.
Similarly, Mihaylov et al. [2018] and [Talmor et al., 2019] collect large scale question answer-
ing datasets created by crowdworkers, train ML models on this data, and release these datasets
with anonymized crowdworker identifiers for future research. Since these studies only involved
interacting with crowdworkers, and using or analyzing data from crowdworkers, they may not
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require IRB review. Subsequently, Geva et al. [2019] took these anonymized datasets and ana-
lyzed information about the crowdworkers. Specifically, they looked at how ML models trained
on data created by one set of crowdworkers do not generalize to data created by a disjoint set of
crowdworkers. They further train ML models, which given a document as input, predict which
crowdworker wrote that document. Since Geva et al. [2019] did not interact with the crowd-
workers, and only analyzed existing (anonymized) datasets, their studies also may not require
IRB review. However, had the researchers who collected these datasets also analyzed this in-
formation, that study would have required IRB review. As part of this review, an IRB would
not only perform oversight over the questions asked, but also how the researchers interact with
the crowd and whether adequate protections are in place for crowdworkers participating in these
studies.

Although a significant portion of ML research poses few risks to participants, there are cases
where interactions or interventions are less benign, as when researchers ask crowdworkers to
write toxic comments. For example, Xu et al. [2020] recruit crowdworkers to interact with an
automated chatbot with the aim of eliciting unsafe responses from the chatbot, using this data to
train models that are better at generating safe responses. Crowdworkers may not be human sub-
jects in this case, insofar as the information they provide is not about them in the relevant sense.
However, in this example, the research team also created a taxonomy of offensive language types
to classify human utterances citing potential use for this taxonomy in future research. From this
larger data set inferences could be drawn about the proclivities to, or proficiency of, particular
crowdworkers using offensive language of particular types.

In each of these cases, datasets are collected which contain information that is from crowd-
workers for the purposes of producing generalizable knowledge that can include information
that is about the crowdworkers. A loophole in research oversight is created because 45 CFR
46.102 (e)(1)(i) holds that individuals participating in a study are considered human subjects if
researchers both obtain and use, study or analyze that information in a single study. To be clear,
releasing such a dataset with identifiable private information for research purposes would fall
under clause (ii) from 45 CFR 46.102(e)(1) (discussed in Section 7.2). Once the dataset has been
created, then using it for research purposes would fall under this same clause, as long as the
identifiable private information remains.

A division of labor in which one set of researchers interact with individuals specifically for
the purpose of generating data necessary to produce generalizable knowledge and then release
that data (with anonymized identifiers) so that another set of researchers can analyze it represents
a loophole because, unlike the secondary use of data from ordinary clinical practice, this data is
produced by researchers who interact with individuals for research purposes–to produce data
that will help to create generalizable knowledge. But, unlike the case where the researchers
themselves analyze this data, this research activity would not be subject to oversight or review
aimed at providing credible social assurance that those interactions respect individual autonomy
and welfare [London, 2021]. Anonymizing the data that is produced helps to shield individuals
from harm that results from the way that information is used, such as uses that expose sensitive
personal information. But whether the means used to gather that data respect the autonomy and
wellbeing of those individuals is not subject to oversight or review.

As a result, one way to address loopholes of this type would be to amend 45 CFR 46.102
(e)(1)(i) to explicitly include the release of data alongside its use, study or analysis.
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Scenario 2 Amending 45 CFR 46.102 (e)(1)(i) to include the release of data may not be suf-
ficient to foreclose a second scenario in which loopholes might arise. Consider a scenario in
which a research team interacts with crowdworkers to collect some data from and some that is
about them and then proceeds to analyze both sets of data. This single protocol fits the mold of
traditional research in biomedicine or the social sciences and so would constitute research with
human subjects. Now consider a scenario in which the research team distributes this work over
two separate protocols. In the first protocol they propose to gather data that is both from and
about crowd workers but only use data that is from them in their analyses. This study might not
require IRB approval because it does not analyze, study or use data that is about crowdworkers.
The researchers then anonymize the full dataset and submit a second protocol in which they an-
alyze the now-anonymized data to answer questions about the crowd workers. The second study
might not require IRB approval because it does not involve obtaining information via any inter-
action with living individuals and it does not involve generating or using any identifiable private
information.

In this scenario, a single study that would require IRB approval could be decomposed into
separate studies that involve the same interactions or interventions on crowdworkers in order to
answer the same set of hypotheses but in a way that avoids research ethics oversight. Because the
researchers are not releasing their data publicly, the proposal in the previous section would not
close this loophole. As a result, the determination of whether an ML project constitutes research
with human participants might need to be made at a higher level than the individual study pro-
tocol. In the context of drug development, a trial portfolio has been defined as a “series of trials
that are interrelated by a common set of objectives” London and Kimmelman [2019]. In ML
research, the determination of whether an activity constitutes research with human participants
may need to be made at the portfolio level by considering whether data to be generated and the
questions to be investigated across an interrelated set of investigations are about the crowdwork-
ers. For portfolio level reviews to succeed, however, researchers would need to identify ex ante
the scope and nature of the data they are collecting and the full range of questions they might
seek to answer from that data across multiple studies. Given the dynamic nature of ML research
and the extent to which research questions are often posed after data has been collected, this may
require consultation with IRBs to determine the conditions under which an envisioned portfolio
of studies would or would not constitute research with humans and the steps that can be taken ex
ante to facilitate the ability of researchers to pursue important questions as they arise.

7.4 Discussion
There is currently considerable confusion about when ML’s crowdworkers constitute human sub-
jects for ethical and regulatory purposes. While some sources suggest treating all crowdworkers
as human subjects [Shmueli et al., 2021], our analysis makes a more nuanced proposal, iden-
tifying: (i) clear-cut cases of human subjects research: these require IRB consultation, even if
only to confirm that they belong to an exemption category; (ii) crowdsourcing studies that do
not constitute human subjects research because the analyses that produce generalizable informa-
tion do not involve data about the workers; (iii) difficult cases, where the distinctive features of
ML’s crowdworking studies combine with ambiguities in the Common Rule to create substantial
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uncertainty about how to apply existing requirements; and (iv) loopholes, whereby researchers
can escape the human subjects designation without making substantive changes to the research
performed.

Part of the spirit of research oversight is to safeguard the rights and interests of individuals in-
volved in research. In some cases, crowdworkers are the subjects of interventions or interactions
that are designed to generate information about them which researchers intend to analyze in order
to create generalizable knowledge. In these cases, the task of securing their rights and interests
rightfully falls into the domain of human subjects ethics and oversight. But if researchers don’t
seek to either obtain or use, study, analyze or release information about a person (in some mean-
ingful sense), then it is not clear that frameworks for the protection of participants in research
with human subjects are applicable or appropriate. Individuals who are not research participants
can still be exposed to risks to their well-being and threats to their autonomy. This is true of
most social interactions. It is particularly true of employment interactions as employers often
have access to sensitive, private, identifiable information (such as Social Security Number, travel
records, and background check reports) about their employees. But the solution to ensuring that
crowdworkers have credible public assurance that their rights and interests are protected is not to
expand the definition of human subjects to include all crowdworkers.

Recommendations:
1. ML researchers must work proactively with IRBs to determine which, if any, information

they will generate that is about versus merely from crowdworkers and whether, given the
full range of questions they intend to investigate across the portfolio of studies involving
this data, the anticipated set of studies constitutes human subject research. They should
also recognize that as the questions they investigate change, the status of the research they
are conducting may change correspondingly. Researchers should therefore work proac-
tively with their IRB to determine when modifications to ongoing research require a new
submission or the submission of a protocol modification for IRB review.

2. IRBs should not reflexively classify all ML research involving crowdworkers as human
subjects research. At the same time, IRBs should also establish clear procedures for eval-
uating portfolios of research to address the possibility of loopholes in research oversight.
They should also communicate with ML researchers clearly about the conditions under
which the classification of research might change and the conditions under which a revised
protocol would need to be submitted.

3. The Office of Human Research Protections (OHRP) should offer more precise guidance
about what it means for information or analysis to be “about” a set of individuals. We also
recommend that OHRP should revise the Common Rule so that 45 CFR 46.102(e)(1) con-
dition (i) reads: “Obtains information or biospecimens through intervention or interaction
with the individual, and uses, studies, analyzes, or releases the information or biospeci-
mens.” In short, this modification would require that an original investigator who collects
data through interaction with humans and plans to release a dataset (even if anonymized)
that could be used to ask questions about those individuals must secure IRB approval for
the research in which those data are gathered. Subsequent studies that draw upon the
resulting anonymized public resource would not be marked as human subjects research,
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provided that they do not attempt to re-identify the individuals represented in the dataset.
This modification would resolve the loophole identified in this paper. OHRP also has a
role to play in offering guidance to ML researchers, which could be achieved by issuing
an agency Dear Colleague letter or an FAQ document.
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Chapter 8

Conclusion

To facilitate training of NLP models that can generalize well under plausible distribution shifts,
this thesis put forth methods, datasets, and analysis of the benefits offered by several forms
of human in the loop feedback. We discussed in detail three specific forms of feedback—
counterfactually augmented data, feature feedback, and adversarial data collection—and demon-
strate the promise of leveraging human-in-the-loop feedback to disentangle the spurious and
non-spurious associations, yielding classifiers that hold up better when spurious associations do
not transport out of domain. A large part of the thesis focused on counterfactually augmented
data, where we present evidence that by leveraging humans not only to provide labels but also
to intervene upon the data, revising documents to accord with various labels, we can elucidate
the difference that makes a difference. Moreover, we can leverage the augmented data to train
classifiers less dependent on spurious associations. Additionally, through our discussions on di-
versity impacts, we highlighted another important aspect that must be considered when designing
an NLP workflow involving crowd labor—reflecting thoughtful benefit and risk assessments. Fi-
nally, although the US Common Rule provides stringent protection of human subjects in research
settings involving even small amounts of money or personal information disclosure, such untai-
lored regulations are detrimental for certain fields like natural language processing due to the
wide scale use of anonymous participant contributions over digital interfaces. Thus, special con-
siderations need to be taken when framing ethical standards for studies deploying crowdsourcing
for value extraction from humans’ linguistic production.

In sum, this dissertation has advanced our understanding of how human interactions with
machine learning systems can be leveraged to increase model efficacy for natural language pro-
cessing, across varied datasets and application contexts, and makes a compelling case for the
effectiveness and potential of employing human-in-the-loop feedback in NLP models to facil-
itate better performances under distribution shift. Drawing from this dissertation, researchers
are better equipped to understand more precisely how humans can provide critical feedback that
enables better performing NLP systems while being mindful of ethical concerns pertaining to
the autonomy of research participants, data privacy, and staying apprised of newer interpreta-
tions of regulations regarding human subjects research. These considerations will both ensure
fair use of data within society and promote greater understanding between human view points
and predictive models. By looking into counterfactually augmented data, feature feedback, and
adversarial collection of data, we have demonstrated the power of human input to design efficient
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NLP systems that exhibit improved generalization performance compared to traditional super-
vised learning approaches that rely merely on label information. This demonstrates how pow-
erful these collaborative approaches are when it comes to improving NLP model performance
while avoiding many well known pitfalls associated with automation-alone approaches. It may
seem that these approaches are no longer necessary as the community has largely adopted large
pretrained language models. Though large pretrained language models are widely used, coun-
terfactual augmentation may still be necessary to break spurious correlations as such pretrained
models learn the wrong associations from prior texts, for instance, a pretrained model created
before the Civil Rights movement might have encoded white supremacy as the norm. Finetuning
via augmented data could help combat such undesired spurious patterns. The success of these
systems’ ability to generalized could prove transformative across a wide range of high impact
applications including healthcare systems and autonomous vehicles where reliability is essential
due to the potentially life altering consequences they carry. As such, this work provides linchpin
information supportive towards continued exploration within this area so as enable technology
able to tackle these problems at peak performance levels.

8.1 Future Directions

This thesis is centered on building NLP models with richer forms of human feedback so they are
reliable when deployed in the real world. Going forward we believe these models will play an
important role towards the practical deployment and use of NLP systems. However, there are still
many open questions remaining in this area. In this section, we provide possible extensions to
our work, which we believe can enhance the experience of practitioners while building complex
sequence systems for real-world scenarios.

8.1.1 Developing more efficient ways to collect counterfactuals from hu-
mans

In Chapter 3, we demonstrated the effectiveness of counterfactually augmented data. However,
getting crowdworkers to edit documents is costly and the costs increase with the length of the
documents. Furthermore, as documents become longer, it is unclear whether crowdworkers are
capturing all nuances in the document in order to ensure that the counterfactual document is
coherent. Several works [Wu et al., 2021, Madaan et al., 2021, Robeer et al., 2021, Paranjape
et al., 2022] have since looked at automatic counterfactual creation but in their attempts to remove
humans from the process (and making it cheap to generate counterfactuals), they may suffer from
a lack of diversity that human editors would bring to the table. We could explore different ways
of eliciting information from crowdworkers that would allow us to construct counterfactuals with
less human effort while enjoying the benefits of diversity that humans could offer. For example,
instead of asking workers to edit the entire document, we could offer suggestions for potential
edits and ask them to now choose one of the plausible alternatives. Following this choice of
selection, they could now edit this document to resolve any syntactic and semantic errors that
might be in the automatically generated counterfactual.
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8.1.2 Developing better ways to incorporating human feedback into ma-
chine learning models

In our work on incorporating counterfactual feedback from humans into our models, we chose
the examples for which we’d seek counterfactuals through random selection. Then once we ob-
tained these counterfactual examples, to inject causal knowledge into our classifiers, we simply
augmented counterfactual examples to the original data. These point to two opportunities for
future work. Are there smarter ways to select initial examples that: (i) reduce the number of
examples for which counterfactuals are required; and (ii) maximize performance gains over ran-
dom selection? Furthermore, once we obtain this feedback, how could we smartly incorporate
this into our models other than through data augmentation? In this regard, Teney et al. [2020]
have explored a gradient supervision approach to better extract signal from this data (and their re-
sults point to better improvements versus augmentation). A contrastive learning approach could
also be a promising direction.

Additionally, in Chapter 7 we highlighted the role of diversity amongst our human workforce
when considering human in the loop feedback. Given humans think in ways that are specific to
their environment and cultural context, it stands to reason that if we want our machine learning
models to be able to accurately capture human behavior, we need a diverse set of workers who can
provide different perspectives. However, we have currently not thought about how to integrate
distinct feedback offered for the same example by two humans. For instance, depending on
your cultural context, some text might be offensive and not culturally appropriate but in another
context it might be completely fine. It is not obvious right now what would be the best way to
incorporate both of these into a training scheme that recognizes the cultural contexts behind the
feedback offered.

8.1.3 Studying how humans and machine learning systems can work to-
gether most effectively to solve problems

Finally, as human in the loop systems are widely deployed, it is critical to understand how they
impact the end users. What are the user needs other than simply higher accuracy and reliability?
And what would it mean to serve those needs to the fullest extent possible? Several researchers
actively work in this area and made advances in answering these questions [Yin et al., 2019,
Poursabzi-Sangdeh et al., 2020, Alvarez-Melis et al., 2021, Inel et al., 2021, Lai et al., 2021,
2022, Chen et al., 2022] but a lot remains to be answered.

8.1.4 Developing a research ethics framework for governing labor interac-
tions

In Chapter 8, we shared that if researchers don’t seek to either obtain or use, study, analyze or re-
lease information about a person (in some meaningful sense), then it is not clear that frameworks
for the protection of participants in research with human subjects are applicable or appropri-
ate. However, individuals who are not research participants can still be exposed to risks to their
well-being and threats to their autonomy. We shared that in these cases crowdworker rights and
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interests are safeguarded through ethical and regulatory frameworks that govern employment
relationships, workplace safety, and other labor practices. However, a coherent framework to
govern these researcher-crowdworker relationships does not yet exist. This would be an impor-
tant direction to pursue future work in.
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Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain adap-
tation. In Artificial Intelligence and Statistics (AISTATS), 2010. 5.2

Emily M Bender and Batya Friedman. Data statements for natural language processing: To-
ward mitigating system bias and enabling better science. Transactions of the Association for
Computational Linguistics, 6:587–604, 2018. 7.1

Emily M Bender, Dirk Hovy, and Alexandra Schofield. Integrating ethics into the nlp curriculum.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics:
Tutorial Abstracts, pages 6–9, 2020. 7.1

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021. 7.1

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D Manning. Modeling biological processes for reading
comprehension. In Empirical Methods in Natural Language Processing (EMNLP), 2014. 2.1

Md Momen Bhuiyan, Amy X Zhang, Connie Moon Sehat, and Tanushree Mitra. Investigating
differences in crowdsourced news credibility assessment: Raters, tasks, and expert criteria.
Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2):1–26, 2020. 6.2
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