Daniel Leeds, 15-212 R10, October 31, 2007
Modules

A signature describes an interface
signature PB =
sig
type Phonebook
val empty : Phonebook
val get : Phonebook -> string -> int option
val put : ((string * int) * Phonebook) -> Phonelko
val delete : Phonebook -> string -> Phonebook
end

A structure contains an implementation
structure PhonebookList PB =
struct
type Phonebook = (string * int) list
val empty = nil
fun get nil s = NONE
| get ((a,b)::xs) s =if a =s then SOME(lseajet xs s
fun put (entry,P) = entry::P
fun delete nil s = nil
| delete ((a,b)::xs) s =if a = s then (a(bEtete xs s) else delete xs s
end

PhonebookList.empty
open PhonebookList
empty

I mper ative Programming — coding with side effects

Assignment: val x = ref 2 : int ref
Re-assignment: x :=5
De-referencing: 'x
Evaluating multiple expressions:

(y:=12; x :=ly+4;y :=9)
Loops: while E do (E1; E2; ...; EN)



fun impFact n =
let val resultp = ref 1
andip=ref0
in while lip <ndo (ip :=lip + 1;
resultp := Ireput lip) ;
Iresultp
end

funirev| =
let val resultp = ref []
and Ip = ref |
in while not (null (!lp)) do
(resultp := hd(!lp) :: !resultp
Ip :=ti('Ip));
Iresultp
end

signature COMPLEX =
sig
type t
val empty : t
val complement : t -> t
valsum:t*t->t
valprod:t*t->t
val diff :t*t->t
end

structure Comp : COMPLEX =
struct
type t = real*real
val empty = (0.0,0.0)
fun complement (x,y) = (x,~1.0*y)
fun sum ((a,b),(c,d)) = (at+c,b+d) : (real*real)
fun prod ((a,b),(c,d)) = (a*c-b*d,a*d+b*c) : (l&eeal)
fun diff ((a,b),(c,d)) = (a-c,b-d) : (real*real)
end



