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Components of object “semantics”

* Past studies associate semantic activation with visual and non-
visual areas, but intermingle picture and word stimuli (e.g., Just et
al., 2010)

* BOLD responses were associated with object semantics for pictures

vs. words presented in separate conditions

* Analyses of neural data included MVPA within a “searchlight”
procedure and correlations with stimulus image similarity as
measured by a variety of computer vision methods

Picture — word contrast,,,, for single
objects

« Compared representational dissimilarity matrices (RDM)
from voxel and CV image encodings (cf, Kriegeskorte 2008)
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® Constructed "searchlight"—123 voxel sphere—centered at each Iscussion

voxel (Kriegeskorte et al., 2006)
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* Compared voxel population responses within and between classes

(pictures vs. words)

Computer vision (CV) models of voxel
object encoding

¢ In ventral pathway, coding more consistent for visual
rather than semantic information

¢ Object contours (Shock graphs) predict BOLD activity
in anterior visual regions

* Object sub-regions’ features (SIFT, Geo. blur) predict
some subjects’ BOLD activity in distinct visual regions
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