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Encoding and decoding ventral activity  Fitting results for the first pair of layers Fitting results for the second pair of layers

* Models of perception in anterior stages of the visual stream are
few in number and tests of these models' consistency with
neural data have been limited

* Cadieu et al have demonstrated HMAX's ability to predict
responses in V4

* We explore HMAX's ability to describe fMRI activity throughout
the ventral stream

Experimental design

* Participants shown images of 60 objects, 6 x each
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Determine extent to Adjust model configuration second pair of layers using a greedy search
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