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Abstract— Peer-to-peer technologies have proved to be
effective for various bandwidth intensive, large scale ap-
plications such as file-transfer. For many years, there has
been tremendous interest in academic environments for live
video streaming as another application of P2P. Recently, a
number of new commercial scale video streaming systems
have cropped up. These systems differ from others in the
type of content that they provide and attract a large num-
ber of users from across the globe. These are proprietary
systems and very little is known about their architecture
and behavior. This study is one of the first of its kind to
analyze the performance and characteristics of P2P live
streaming applications. In particular, we analyze PPLive
and SOPCast, two of the most popular systems in this
class. In this paper, we (1) present a framework in which
to analyze these P2P applications from a single observable
point, (2) analyze control traffic to present a probable
operation model and (3) present analysis of resource usage,
locality and stability of data distribution. We conclude that
P2P live streaming has an even greater impact on network
bandwidth utilization and control than P2P file transfer
applications.

I. I NTRODUCTION

Peer-to-Peer (P2P) systems have been employed in a
wide variety of distributed applications such as File Shar-
ing and VOIP. The ubiquity, resilience and scalability
provided by P2P systems make them ideal for large scale
distributed applications. Recent studies have shown that
the overall P2P traffic on the Internet has been constantly
increasing [13], [14], [26].

Over the past few years, there has been a great
deal of academic interest in the area of P2P video
streaming applications. A lot of interesting research has
been done and some encouraging results have been
reported [1], [3]–[5], [7], [11], [12], [16]–[18], [21],
[25], [28]. Most of these systems are available as pro-
totype implementations and have been tested in limited
research environments. The deployment experience of
these applications is very limited with the only reported
deployment scenario described in [6], [29].

Recently, a new breed of P2P video streaming applica-
tions has emerged [19], [20], [24], [27]. These are com-
mercial grade systems that are broadcasting compelling

content, capable of attracting large audiences. Due to the
type of content they provide, some of these systems have
gained tremendous popularity. Still, there is very little to
no understanding about the protocols and behaviors of
these applications. The systems, due to their commercial
nature, have not been specified openly nor are available
as open source.

In this paper, we will evaluate the performance of two
of the most popular proprietary video streaming systems
available, PPLive and SOPCast. Both these systems are
based in Asia but have a significant user base in North
America as well. These systems broadcast popular Asian
and American content and attract a large number of
users.

While studying these systems, we were faced with
several challenges that stem from the commercial nature
of these systems. These areproprietary systems, which
means that their source code is not available and there is
no specification of the protocols available. This forced
us to conduct most of our studies treating the systems as
black boxes. Another challenge we faced was due to the
fact that there is no documentation or API that would
enable the development of test scripts. This meant that
we were unable to have a large number of vantage points
in the system at any given point in time. Since the ap-
plications had to be manually started from the Graphical
User Interface (GUI) and the channels manually selected,
our measurement has to be performed in locations that
we have physical access to.

To evaluate these systems, we had to setup exper-
iments to give us insight into the operation of these
systems from a small number of vantage points. We
collected packet traces from runs of the systems under
different environments and analyzed the data. First, we
separated the control traffic from the data traffic in the
collected traces. This allowed us to analyze the control
traffic separately and reverse engineer the protocols used
to get an understanding of how these systems work. We
present an overview of how these systems operate based
on our analysis of the control traffic. Next, we define
a generic framework that can be used to evaluate the



data distribution performance of such systems. For that
purpose, we define metrics to highlight the key charac-
teristics of the distribution plane. Finally, we evaluate the
two systems using the framework formulated and present
results.

II. PROTOCOLANALYSIS

The systems we analyzed are proprietary and very lit-
tle is known about the underlying protocols used in them.
The systems use peer-to-peer technologies to support
thousands of simultaneous clients. Before we proceed
with the data analysis, we will outline the underlying
protocols employed. We conducted simple experiments
on a single host joining a system and then tuning into a
channel, and collected packet traces for these cases. We
were then able to separate the control traffic from the
actual data traffic from the packet traces. We inspected
the control packets visually to classify them into the
different protocol messages. We were able to decode
a number of these protocol messages and get a better
understanding of the protocols.

Surprisingly, the two systems we analyzed showed
remarkable similarity as far as their control protocols
are concerned. We will present a general overview of
the protocols used in both these systems and compare it
with the system described in [29]. We will also present
some specific examples from one of the protocols that
we analyzed.

A. Experiment Setup

To analyze these applications, we had to collect packet
traces from these systems. To make sense of the large
amount of traffic data that was collected, we defined
certain terms, such asparents and children. We also
came up with concepts such asdistanceand metrics such
ascost of downloadto better understand the behaviors of
these applications. In this section, we will describe how
we collected data, and define the terms and concepts that
will be used in later sections.

B. Data Collection

Our test machines were all Intel Pentium 4 computers
running Windows XP operation systems. The choice of
machines was based on the physical access restriction.
We collected packet traces for each of the experiments
using Ethereal [10]. These traces include the 128 bytes
of the packet including data to allow us to analyze the
control packets. The types of machines we collected the
traces on are listed below.

Name ISP Bandwidth NAT
cmu CMU - Pittsburgh LAN none
cmun CMU - Pittsburgh LAN full-cone
pittc Comcast - Pittsburgh cable symmetric
pittd Verizon - Pittsburgh DSL none
chic Ameritech - Chicago cable full-cone
dull Comcast - Dulles cable full-cone

The length of the runs varies for the different experi-
ments we performed. Most of the experiments were run
for 2-3 hour durations. However, some of the exper-
iments to gather control and connectivity information
were run for shorter periods of time. The analysis
presented later is done on snapshots of data collected
in these traces.

We collected data from these sources in Oct 2005 and
Dec 2005.

C. Protocol overview

The systems that we analyzed seem to be following
a very similar approach in their operation. Some of the
key components of these systems are presented below.

1) Software Update:Both systems analyzed have
automatic software version checking and software up-
date capabilities. The client upon start-up contacts a
webserver to get the latest version of the software. If
a newer version is available, the system can be directed
to download that version and install it automatically. We
know very little about the software version and update
abilities of the system in [29].

2) Channel Lists:The system requires to get a list
of channels available for the client to tune in to. There
seem to be two modes by which a client can get a
list of available channels. A webserver listing all the
channels available is provided. By clicking on the link
for the channel the user is interested in, the client
application can start. The second method is by starting
the application which in turn gets the channel list. The
user can then click on a channel to tune into it.

3) Bootstrap: In [29], the source of the video stream
is described as a well-known location and all clients
initially go through the source to join any channel. In
the applications we analyzed, a webserver is used to
get initialization information. This communication with
a central webserver is done using HTTP using ASCII
strings. The webserver or a component on the webserver
maintains bootstrapping information for each channel
that is passed along to the clients upon joining the
channel.

4) Maintaining Peers: Once the channel selection
is sent to the central server, a list of possible neigh-
bors/peers is sent to the client. The list is usually on the
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order of 10’s of hosts and the client attempts to connect
with these hosts. During the course of the session,
the client keeps getting regular updates about more
neighbors from its existing neighbors. The client also
re-broadcasts its current neighbor list to its neighbors.
This mechanism is very similar to the gossip protocol
used in [29] to keep an updated list of peers.

5) Requesting Data:As the client joins a session,
it exchanges control messages with its peers using a
gossip-like protocol. Although we were not able to
completely decode the messages exchanged, we know
that specific information about each neighbor is ex-
changed, referred to as the neighbor record. The record
includes connectivity information and possibly a buffer
map similar to [29]. The client then requests segments
of data from some of its peers. The size of the segments
as well as the scheduling algorithm used to request them
is not clear from our analysis.

D. Separating Data and Control Traffic

The first step in the analysis of the data plane involves
separation of control and data traffic. Control traffic can
create noise in the analysis of the data plane and thus
needs to be identified and eliminated. We used packet
size as a simple mechanism to separate control and data
traffic.

The graph in Figure 1 shows the packet size distribu-
tion for PPLive and SOPCast. In both cases, about 40%
of the packets are 40 byte packets. These packets are
pure acknowledgments of data packets sent and received.
Another 50% of packets are greater than 1 KBytes, with
the largest size packets being at 1400 bytes, which is
approximately the Maximum Transmission Unit (MTU)
for IP packets over Ethernet networks. There are about
10-20% packets that are in between these two ranges
and we conclude that these are the control packets. The
total amount of bandwidth used by the control packets
is thus on the order of 5% of the total bandwidth.

Given the low frequency of the control packets as
shown by their small numbers, we concluded that any
pair of hosts that exchange more than 4KBps worth of
data have data flow between them. We used this metric to
define parent child relationships as described in Section
III-D.

E. Specific Protocol Description

In this section, we will present the results of the
protocol analysis specifically for PPLive. As mentioned
earlier, the results for SOPCast are very similar and any
difference will be mentioned.

1) Software Update: The application attempts to
check its software version with a central server. This
is done through an HTTP request sent to the centralized
server. If there are a number of clients that startup at
the same time, it is quite possible that the load on
this centralized web server can become extremely large
which might pose a concern for scalability.

The application on startup, opens a TCP connection on
port 80 to a central server, update.pplive.com and sends
an HTTP requestGET /update/pplive/update.inf. We
believe that if that file exists, PPLive assumes there is an
update available. If it gets a404 Not Foundresponse, it
continues the startup process with the current software
version.

2) Channel list: The application next gets a list of
channels from a centralized server. With the list of
channels, there is information about how to connect to
these channels, including Identifiers, trackers, etc. This
could be another flash crowd point in the system if a
large number of clients join at the same time.

The application opens a second TCP connection on
port 80 to a central server, http://list.pplive.com/ and
sends an HTTP requestGET /web/xml/all.xml . This
is an xml file containing the list of available channels.
This list is retrieved once at the initial startup time and
is written in the client hard disk aschannel.xml. The
format of the file is shown below.
<root>

<channel>
<ChannelGuid>{7D0F9A10-F9C3-4AAE-A2D6-0E54639BC715}</ChannelGuid>
<BaseChannelGuid>{ceb266b8-11d4-4ab3-83bc-c4b502a3cb74}</BaseChannelGuid>
<ChannelName>CCTV-5</ChannelName>
<ChannelNameEn>CCTV-5</ChannelNameEn>
<Author>..........</Author>
<AuthorUrl>http://www.pplive.com</AuthorUrl>
<PlayLink>

pplive://211.162.0.46:8000/tracker?
source={7D0F9A10-F9C3-4AAE-A2D6-0E54639BC715}&amp;type=udp&amp;
chnname=CCTV-5&amp;engname=CCTV-5&amp;tracker=udpt://211.162.0.46:8000;
tcpt://211.162.0.46:8000;

</PlayLink>
<PeerCount>0</PeerCount>
<Bitrate>0</Bitrate>
<PreViewUrl />
<Quatity>100</Quatity>
<Catalog>2</Catalog>
<ProgramList1 />
<ProgramList2 />

</channel>
<channel>

...
</channel>

...
</root>

The channels are identified by a 16 byte identifier as
well as a name. Theplaylink object points to a host
with a tracker running. The tracker is the initial point
where all clients connecting to the channel go to get a list
of neighbors. The ability of the tracker to communicate
through UDP and TCP is stated in this object along with
the port number for the tracker.

3) Bootstrap Mechanism:The application already has
information about the tracker for each channel from
the channel list it downloaded earlier. As soon as the
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(a) PPLive (b) SOPCast

Fig. 1. CDF of Packet Sizes

user selects a channel, the client sends a UDP (or TCP
depending on the tracker information it already has)
request to the tracker for that channel.

The reply from the tracker is a message that contains
the list of initial hosts that need to be contacted. The list
returned contains at most 50 hosts depending on the size
of the group.
02 00 00 02 99 58 98 00 2d 5a 98 00 02 00 00 00 32 <- header
3b 40 c6 fa a4 0f 48 1f 00 00 00 00 18 00 07 00 35 00 <- Host1
da be 31 ad a4 0f 48 1f 00 00 00 00 00 00 34 07 01 00 <- Host2
...
...
da bf 29 6c a4 0f 48 1f 00 00 00 00 b4 ef 08 00 34 00 <- Host50

The header contains the number of hosts that are in
the message which is 50 (0x32). Each host is represented
as a structure, with the IP address 59.64.198.250 being
the first four bytes (for the first host 0x3b40c6fa), the
UDP port 4004 being the next two bytes (0xa40f) and
the TCP port 8008 being the next two bytes (0x481f).

4) Tuning into the channel:Once the initial list of
hosts is retrieved, the system tries to connect to some of
these hosts to get data. The system also gets updates from
these hosts and keeps increasing the list of hosts that it
knows about. We observed that the initial list contained
some addresses that are private. This can be a concern
if most hosts that are part of a group connect through a
NAT.

In our trace, the system sent the same UDP message to
39 of the 50 hosts in its initial list. This message contains
the Channel ID of the channel the user has selected.

5 out of these 39 hosts the message is sent to were
private addresses and were thus not able to reply. This is
probably a bug in the software. The private addresses can
easily be pruned by the system so that the clients don’t
have to try connecting to them. The system received
UDP replies from 15 of the 34 remaining hosts. All the

messages received are of different sizes but they all have
the same format.
02 00 00 02 10 9a <- header
0f 7d c3 f9 ae 4a a2 d6 0e 54 63 9b c7 15 <- ChannelID
0c 30 e9 6f 4d 8f 9f 45 be dd 42 db 96 9e 11 e7
84 47 6e 01 03 <- number of hosts
8c 6d 2a d4 a4 0f 48 1f 00 00 00 00 00 04 00 00 3c 00 <- Host1
...
...
cb ba ad 88 a4 0f 48 1f 00 00 00 00 00 04 0a 04 2e 00 <- Host3

The messages contain host information similar to the
information reported from the tracker. This means that
other hosts are reporting back their neighbors. This is
typical of a gossip protocol.

The system then tries to open TCP connections to
all 39 hosts (5 of which are private addresses) that
it had earlier sent the UDP messages. The hosts that
reply to the TCP connection setup are used to exchange
the same information that was earlier exchanged over
UDP. Thus the communication mechanism is moved
from UDP to TCP. From that point onwards, there is
no UDP communication with the host.

III. M ETHODOLOGY

To analyze the data collected, we defined key objects
and relationships between them. We know that any run
of our experiment yielded hundreds of host addresses,
but some were identified as key hosts. We then defined
metrics to compare the relationships between different
runs of our experiments. We will present some of the
definitions used to classify objects and relationships and
highlight key metrics of interest.

A. Flow

We define a flow to be an exchange of TCP or UDP
packets between the monitored host and another host. A
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flow between the monitored host A1 and another host
X is represented as a four-tuple{IPA, PA1 , IPX , PX1},
where PA1 is the TCP port on host A andPX1 is
a TCP port on host X. The flow has directional-
ity such as the two flows{IPA, PA1 , IPX , PX1} and
{IPX , PX1 , IPA, PA1} are treated as two separate flows.

B. Rate of a flow

The rate of a flow is the amount of data in bytes,
that the flow is comprised of for a particular duration of
time. Using the notation for a flow, assumeF (A1, X1) =
{IPA, PA1 , IPX , PX1} is a flow between hosts A and
X. The size of a packet that is part of this flow can be
represented asPl(A1, X1, t) where t is the timestamp
at which the packet is recorded. The rate of the flow at
time t1 can then be represented as

R(A1, X1, t1) =
∑t1+∆

t=t1 Pl(A1, X1, t)
∆

In our results we use a∆ of 20 seconds, so that
bandwidth is calculated on non-overlapping intervals of
20 second each.

C. Duration of a flow

The duration of the flow is defined as the time between
the first packet of the flow and the last packet seen for
the flow. Note that this includes cases where a flow stops
for a period of time and starts again.

D. Parent and Child relationships

This term defines a key relationship between observed
hosts. The rate of all flows between A and X can be
represented as a summation

R(A,X, t1) =
∑
∀A1

∑
∀X1

R(A1, X1, t1)

An observed host A is classified as aparent of host X
at time t1 if

R(A,X, t1) > Rp

whereRp is 4KBps in our experiments. We choose this
limit as hosts that send less than that amount of data are
likely to be exchanging control information rather than
data. Similarly, an observed host B is achild of host X
at time t1 if

R(X, B, t1) > Rc

whereRc is 4KBps in our experiments.

1Any notion of a host in this thesis, refers to the IP address of the
host. Thus A will be used to describe the host A and the IP address
of A IPA.

E. Distance

We also analyzed the locality of the resulting distribu-
tion tree by using estimates of distances between hosts.
We used a database of subnets and their longitude and
latitude to calculate the cartesian distance between a pair
of hosts. The distances were calculated by performing a
longest prefix match of the IP addresses to subnets in
the database. In cases where the prefixes did not match,
we did not use that distance value in our calculations.
From all our results, we observe that80% of the hosts
match the geographical database.

Once the latitude and longitude information is avail-
able for each host, we compute the cartesian distance
between the two coordinates. If host A has co-ordinates
(x1, y1) and host X has co-ordinates(x2, y2), then the
distance between A and X in miles can be represented
as

D(A,X) = k ∗
√

(x2 − x1)2 + (y2 − y1)2

wherek is the constant for the distance of 1 degree and
is equal to approximately 69.2 miles.

F. Cost

We define a cost metric that will be used to analyze
the distance property mentioned earlier. The cost metric
is associated with download and is measured in miles per
byte. We analyze how efficient the downloads are for the
different cases in terms of proximity of the parents. To
calculate cost, we use a simple weighted average of the
distance between the parents and the measured host.

Let Bp be the total number of bytes received from a
parentp, andDp be the distance between the host and
its parentp. The cost of download,C for the host can
be represented as

C =

∑
∀p(Dp ×Bp)∑

∀p Bp

A similar metric can be used to describe the cost of
data sent to children.

G. Stability

As most distribution strategies end up making a tree
for distributing a unit of data, we need to characterize
the stability of the resulting distribution tree. We define
a stability of a distribution structure in terms of the
frequency of changing the parents for a host. We have
two slightly different notions for change in this regard.

We define a period∆ and look at the parents at a
start time oft0. We then compare that with the parents
we observe att1 = t0 + ∆. Let the set of parents at
any time tn be equal toPn. Let the cardinality ofPn
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be represented as|Pn|. One definition of stability for a
host at timetn can be

Sn = 1− |Pn−1

⋂
Pn|

|Pn|
This definition of stability looks at the rate of change

of parents. AsSn → 0, the structure becomes stable.
Another metric for stability can be defined to take into

account the differences between the set of parents. Let
the setAn be equal toPn\Pn−1 = {x ∈ Pn|x /∈ Pn−1}
represent the elements that are inPn but not in Pn−1.
This refers to the parents that have been newly acquired.
Similarly, the setLn be equal toPn−1 \ Pn = {x ∈
Pn−1|x /∈ Pn} represent the parents that have been left.
Then stability can be represented as

Xn = 1− |Pn|
|Pn|+ |An|+ |Ln|

We used both these definitions in our analysis.

IV. DATA PLANE

In this section, we present the data plane analysis of
the application. Other applications analyzed exhibited
similar data plane structures.

A. Network Resource Usage

The resource in terms of network bandwidth used
is an important metric in analysing these applications.
Most network environments are sensitive to network
bandwidth utilization and administrators want some level
of control over the bandwidth utilized by each member
of the organization. Unlimited download or upload usage
is often prohibited in controlled Internet environments.
This is the major reason that Bit-Torrent has the concept
of fairnesswhere the amount of data uploaded from a
host is propotional to the amount of data downloaded.
This reduces the risk of freeloaders using up most of the
network upload capacity without paying for it. In [15],
the authors claim that ISP’s need to be included into
the model so that the data exchanged between the ISP’s
can be controlled. We analysed the network bandwidth
utilization for these applications in various environments.

The two scenarios of interest for this analysis are a
high bandwidth and a low bandwidth client. In both these
types of clients, there was no NAT present. However, a
high bandwidth node with a NAT showed results very
similar to a low bandwidth node. As concluded earlier,
NAT handling is inadequate in these application and even
a high capacity node is consideredbad from the point
of view of the application if it has a NAT attached to it.

Figure 2 shows the graphs for sent and received
bandwidth for cmu, pittd and cmun runs for App-B.

(a)cmu
(b)3 instances of cmu

Fig. 2. Send and Receive rates for high capacity nodes

For Figure 2(a), the bandwidth sent from this node to
other nodes is in the range of 5-8 Mbps. The bandwidth
received by this node is around 500 Kbps which is
approximately the rate of the video stream being played.
One thing that is obvious from this graph is that there is
no fairness, as the ratio of bandwidth sent to bandwidth
received is 16:1. It seems as if there is no policy
control on how much bandwidth can be uploaded from
a particular host. To verify this, we conducted another
experiement in which we ran multiple2 cmu clients
simultaneously to see if the total bandwidth uploaded
from CMU is controlled. The results, as seen in Figure
2(b), indicate that no such policy bound exists and the
bandwidth uploaded from CMU is as high at 18 Mbps.

Similar graphs were plotted for thecmu run of App-
A. Figure 3(a) shows that the ratio between bandwidth
sent and bandwidth received is 8:1. This ratio is The
results look very similar to that of a low capacity node.

2In this case, we ran 3 separate clients simultaneously
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(a)cmu
(b)pittc

Fig. 3. Send and Receive rates for App-A

This points to the very rudimentary handling of NAT’s in
this application. If the node is behind a NAT, its upload
capacity is not used.

Another measure of the resource usage is the number
of children that are supported by a node as a function of
time. This is shown in Figure 4(a) for a high capacity
and Figure 4(b) for a low capacity node. The number of
parents3 in both cases is about the same. If the node has a
goodparent, then from our observations, one such parent
is enough to get the data. However, we see that in both
cases the number of parents is 3 to 5. That is probably
because of group dynamics where parents leaving the
channel could cause disruption for children that do
not have other parents already sending data. In such a
scenario, looking for a new parent and establishing a
connection with that parent could take valuable time and

3As defined in Section III

(a) cmu

(b) dull

Fig. 4. Number of Peers

have an adverse effect on the performance observed by
the client.

The number of children supported by the two types
of nodes is very different. The high capacity node
supports about 15-20 children, while the low capacity
node supports no children. This points to the built in
unfairness in the system.

In figure 5, we see the bandwidth received and sent by
cmu. The parents send 100-200Kbps of data and there
are 3-5 parents for this host. The number of children is
much higher, each one is being sent about 100-200Kbps.

Another interesting observation made during this anal-
ysis was of the structure of the data plane. We observe
that the number of hosts that are communicated with are
much greater than the number of parents or children.
It appears that the delivery of the video stream is done
through an unstructured data plane where connectivity
is maintained through randomness. It has been known
through work done in [8] and [9] that the probability
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(a) parents

(b) children

Fig. 5. Bandwidth to Peers for high capacity node

of connectivity for a random graph increases as the
outdegree of a node increases. Figure 6(a) plots the
cumulative fraction of peers that the client received data
from versus the total number of bytes received. Figure
6(b) plots the same graph, this time for peers that data
was sent to versus total number of bytes sent. The figures
show that the host in our example,cmu, communicated
with a large number of other hosts even though actual
parent and child relationships established are low. About
1% of the hosts communicated with became parents,
while only about 2% of them became children. The large
number of communication links established point to a
random structure where the root is the source of the
broadcast and all other hosts try to keep connected to
the root via large number of links.

B. Locality of Peers

As mentioned in Section IV-A, the data plane appears
to be constructed randomly. However it is not possible to
analyze the entire structure as we have limited visibility

(a) parents

(b) children

Fig. 6. Fraction of parent and child relationships for a high capacity
node

into the data plane structure. We tried to analyze the three
levels of the structure that are available to us through our
measurement. This includes the parents and children of
a host. Figure 7 shows the visibility we have to the entire
structure.

Even with the limited visibility we have to the entire
data plane structure, we are able to do some analysis
on the relationship between the three levels. We use the
concepts of distance and cost introduced in Section III
for this analysis.

We analyze the cost of data received at a high capacity
and a low capacity node. Figure 8 shows the cost of
download for a few cases. Figure 8(a) plots the average
cost of download per byte versus time for thecmu run.
We can see that the cost of downloading data is about
13K miles per byte. That is approximately the distance
across the pacific ocean. On further visual investigation
of the parents, it is clear that almost all of the parents
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Fig. 7. Visibility of the data plane

are hosts in Asia4. Figure 8(b) is a similar figure for a
run of chic. In this case, the cost of download is mostly
under 8K miles with some spikes at 12K miles. Upon
further investigation of the parents, it seems like most
of the parents of this host were other hosts in America
within 6K miles, while there were a few times where the
prominent parents were in Asia (12K miles).

To explain this difference between the parent selection
for each host, we have to assume certain properties of
the system. We believe that the system chooses parents
solely based on performance. The high capacity host,
being in a very favorable environment gets good perfor-
mance when it connects to the parents in Asia. Therefore,
it stays with those parents and does not change to closer,
local parents. On the other hand, the low capacity node
is in a bandwidth restricted environment going through
an ISP that has strict contracts about bandwidth with
other ISP’s. This host, therefore, does not get good
performance from parents in Asia and therefore has to
choose parents that are closer. Some of these closer
parents are within the same ISP as the host itself and
thus provide a much better performance.

We can also look at the high capacity node’s children
and see their cost and distribution. Figure 9(a) shows
the cost of uploading data to the children for the host
cmu. The average cost is around 5K miles, but the
graph in Figure 9(b) clearly shows what the distribution
of children looks like. This graph is a CDF of child
distances for thecmu host. It is clear from this graph
that about 60% of the children are in Asia (13K miles)
while the other 40% are either in the US or Europe.

This last set of results is very interesting as it points
to the inefficiency of the systems. Data is sent from Asia

4mainly in China and Japan

(a) cmu

(b) chic

Fig. 8. Cost of download

to a host in the US, only to be sent back to other hosts in
Asia. This fact also reaffirms the hypothesis of a random
structure, that does not account for locality while making
decisions about selecting parents for a particular client.

C. Stability of the data plane

We have concluded that the data plane structure of the
applications is random, with the only selection criteria
for a parent to child relationship being the performance
received. We can also analyze the stability of this random
structure by looking at the changes in the structure over
time. In this analysis, we have to account for group
dynamics that necessitate a change in the structure. We
do not have an accurate measure of the group dynamics
from the measurements performed. We still believe that
the results are interesting and shed some light on the data
plane. The stability of the data plane can be assessed by
using the metrics defined in Section III-G.

Figure 10(a) plots the variableSn versus time. Recall
theSn is a metric defined in Section III-G and measures

9



(a) Average

(b) CDF

Fig. 9. Cost of upload for high capacity node

the rate of changes of parents over time. The graph shows
the instability of parents for a run ofpittd with an average
of about 30% of changed parents between the intervals.
This means that on average, 3 out of the 4-5 parents are
different from one interval to the other. The graph in
Figure 10(b) shows the stability using theXn variable.
Both these graphs point to the high rate of change of
parents. Although we have not discounted for the group
dynamics, we do not believe that all this variation can be
explain through group dynamics and that in fact, most
of this variation is due to the random nature of the data
plane.

V. SUMMARY OF RESULTS

As part of this analysis, we identified the major
shortcomings and the challenges that applications in this
class are likely to face.

(a)Sn

(b)Xn

Fig. 10. Percentage of parents changed

A. Inefficient Distribution of Data

From the analysis of the control and data planes,
we conclude that there is no planning or co-ordination
involved in the decision making. A lot of important
decisions, such as how to pick a parent, seem to fol-
low a randomized greedy algorithm. The inefficiency is
highlighted by the analysis of locality of upload and
download for high capacity nodes. As noted earlier, test
nodes in North America often download data from hosts
in Asia, only to upload large amounts of data back to
hosts in Asia.

B. Unfairness

It is the richly connected high capacity nodes that
have to pay the price of the inefficiency in the system.
In our analysis, each such node supported at least 15-
20 children. Clearly, the system depends entirely on the
availability of such nodes.

10



C. NAT handling

We have seen that the applications do not handle
NAT’s effectively. A host behind a NAT can receive
traffic, but is unable to send any data to other hosts.
These systems need to implement NAT identification
and traversal using well-known protocols, such as STUN
and TURN [22], [23] to deal with such connectivity
restrictions.

D. Transport Protocol

The systems analyzed use HTTP as a ubiquitous
mechanism to join the P2P network. However, most
communication after that follows using TCP, with UDP
being used sparingly. As most of the data transfers
occur in small chunks, the delay properties of TCP for
small amounts of data might not be ideal for real-time
applications. Also, we see that the clients setup TCP
connections with each other even if they are not receiving
data on these connections yet. The overhead associated
with setting up multiple TCP connections on a single
host might be an issue in large networks.

E. Security

As seen by this analysis, most of the control protocols
are not encrypted. This can lead to malicious attacks that
can make key components of the system ineffective. The
messages are sent over HTTP, UDP and TCP in plain text
and can be used to interfere with the normal operation
of the system.

VI. RELATED WORK

Significant amount of research has been conducted in
assessing the viability of peer-to-peer live video stream-
ing, and some encouraging results have been reported
[1], [3]–[5], [7], [11], [12], [16]–[18], [21], [25], [28].
However, most of these systems have been tested only
in research environments, and the deployment experience
of these applications is very limited.

We are aware of only one other study (conducted
simultaneously with our work) that measures propri-
etary P2P video broadcast systems [30]. Perhaps due
to limitation of space, they give only a brief overview
of the system and discuss performance with respect to
relatively few metrics. The results from our experiments
were consistant with the ones reported by them. How-
ever, our work provides a more comprehensive analysis.
For example, by analysing the rate of change of peers,
we are able to quantify the stability of the system. In
addition, our analysis of locality is more detailed. We
calculate the cost of download or upload in terms of
distance per byte, which gives a much better idea of
the inefficiency in the system. Also, we provide a more

thorough description of the control protocol used by the
system.

VII. C ONCLUSION

This study is one of the first attempts to measure
commercial scale video broadcast applications that use
peer-to-peer technology. These applications are different
from others in their commercial content that can attract
large numbers of users. We have gained valuable insight
to the working of these applications by analyzing the
control traffic in different scenarios. This helped us iden-
tify the key system components in applications of this
class. Furthermore, a methodology is formulated to study
the data planes of such applications from a single point
of observation. Metrics such as resource usage, locality
of download and stability of the distribution structure
are defined, that can be used to study applications in
this space.

In our study of these applications, we note that the
greedy algorithms used and the locality independence of
the underlying model leads to very high resource usage
across key network boundaries. There is also a lack of
tit-for-tat fairness in these applications which further lead
to uneven distribution of bandwidth upload. We also
observe that these systems make it difficult to implement
fair bandwidth restrictions, which is a key component of
a successful application. The data distribution structure is
built randomly without any consideration of bandwidth.
Even if such restrictions could be placed in the building
of the data distribution structure, the instability observed
in the resulting structure makes it challenging to imple-
ment a convergence in the data plane.

These systems prove the possibility of peer-to-peer
random distribution structures for live video streaming.
However, key questions as to the network usage, locality
of download and stability of the distribution structure
remain to be answered.
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