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Abstract— Peer-to-peer technologies have proved to be content, capable of attracting large audiences. Due to the
effective for various bandwidth intensive, large scale ap- type of content they provide, some of these systems have
plications such as file-transfer. For many years, there has gainaq tremendous popularity. Still, there is very little to
been tremendous interest in academic environments for live derstandi bout th t | d behavi f
video streaming as another application of P2P. Recently, a no un ers_an _|ng about the protocols an . ehaviors _O
number of new commercial scale video streaming systems these applications. The systems, due to their commercial
have cropped up. These systems differ from others in the nature, have not been specified openly nor are available
type of content that they provide and attract a large num-  as open source.
ber of users from across the globe. These are proprietary | this paper, we will evaluate the performance of two
systems and very little |s.known about Fhelr a(chlt(_ecture of the most 0’ ular proprietary video streaming svstems
and behavior. This study is one of the first of its kind to i p p prop Yy g sy
analyze the performance and characteristics of P2P live available, PPLive and SOPCast. Both these systems are
streaming applications. In particular, we analyze PPLive based in Asia but have a significant user base in North
and SOPCast, two of the most popular systems in this America as well. These systems broadcast popular Asian

class. In this paper, we (1) present a framework in which 5,4 American content and attract a large number of
to analyze these P2P applications from a single observable USErs

point, (2) analyze control traffic to present a probable . . .
operation model and (3) present analysis of resource usage, While studying these systems, we were faced with
locality and stability of data distribution. We conclude that  several challenges that stem from the commercial nature

P2P live streaming has an even greater impact on network of these systems. These gymprietary systems, which
bandwidth utilization and control than P2P file transfer  neans that their source code is not available and there is
applications. A . .
no specification of the protocols available. This forced

us to conduct most of our studies treating the systems as
black boxes. Another challenge we faced was due to the

Peer-to-Peer (P2P) systems have been employed ifaét that there is no documentation or API that would
wide variety of distributed applications such as File Shagnable the development of test scripts. This meant that
ing and VOIP. The ubiquity, resilience and scalabilityve were unable to have a large number of vantage points
provided by P2P systems make them ideal for large scafethe system at any given point in time. Since the ap-
distributed applications. Recent studies have shown thglications had to be manually started from the Graphical
the overall P2P traffic on the Internet has been constanthger Interface (GUI) and the channels manually selected,
increasing [13], [14], [26]. our measurement has to be performed in locations that

Over the past few years, there has been a grea have physical access to.
deal of academic interest in the area of P2P videoTo evaluate these systems, we had to setup exper-
streaming applications. A lot of interesting research hasents to give us insight into the operation of these
been done and some encouraging results have bagstems from a small number of vantage points. We
reported [1], [3]-[5], [7], [11], [12], [16]-[18], [21], collected packet traces from runs of the systems under
[25], [28]. Most of these systems are available as pralifferent environments and analyzed the data. First, we
totype implementations and have been tested in limitagparated the control traffic from the data traffic in the
research environments. The deployment experience afilected traces. This allowed us to analyze the control
these applications is very limited with the only reportetraffic separately and reverse engineer the protocols used
deployment scenario described in [6], [29]. to get an understanding of how these systems work. We

Recently, a new breed of P2P video streaming applicpresent an overview of how these systems operate based
tions has emerged [19], [20], [24], [27]. These are conon our analysis of the control traffic. Next, we define
mercial grade systems that are broadcasting compelliaggeneric framework that can be used to evaluate the

I. INTRODUCTION



data distribution performance of such systems. For that

purpose, we define metrics to highlight the key characName | ISP | Bandwidth | NAT |
teristics of the distribution plane. Finally, we evaluate the cmu CMU - Pittsburgh LAN none
two systems using the framework formulated and presencmun CMU - Pittsburgh LAN full-cone
results. pittc || Comcast - Pittsburgh  cable symmetric
pittd Verizon - Pittsburgh DSL none
[l. PROTOCOLANALYSIS chic || Ameritech - Chicago  cable full-cone
dull Comcast - Dulles cable full-cone

The systems we analyzed are proprietary and very lit- The length of the runs varies for the different experi-

tle is known about the underlying protocols used in therpnents we performed. Most of the experiments were run

The systems use peer-to-peer technologies 1o suppﬁ%&j 2-3 hour durations. However, some of the exper-
thousands of simultaneous clients. Before we prace ents to gather control and connectivity information

with the data analysis, we will outline the under_lyinqure run for shorter periods of time. The analysis

inale host ioini ; d then tuning i t%?esented later is done on snapshots of data collected
on a single host joining a system and then tuning into;a \ o traces.

channel, and collected packet traces for thege cases. Weie collected data from these sources in Oct 2005 and
were then able to separate the control traffic from tl"ts c 2005
actual data traffic from the packet traces. We inspectecie '
the control packets visually to classify them into th&- Protocol overview
different protocol messages. We were able to decodeThe systems that we analyzed seem to be following
a number of these protocol messages and get a betterery similar approach in their operation. Some of the
understanding of the protocols. key components of these systems are presented below.
Surprisingly, the two systems we analyzed showed 1) Software Update:Both systems analyzed have
remarkable similarity as far as their control protocolgutomatic software version checking and software up-
are concerned. We will present a general overview @fte capabilities. The client upon start-up contacts a
the protocols used in both these systems and compar#@bserver to get the latest version of the software. If
with the system described in [29]. We will also preserl2 newer version is available, the system can be directed
some specific examples from one of the protocols thi download that version and install it automatically. We
we analyzed. know very little about the software version and update
abilities of the system in [29].
2) Channel Lists:The system requires to get a list
of channels available for the client to tune in to. There
To analyze these applications, we had to collect packgtem to be two modes by which a client can get a
traces from these systems. To make sense of the laligé of available channels. A webserver listing all the
amount of traffic data that was collected, we definechannels available is provided. By clicking on the link
certain terms, such aparents and children We also for the channel the user is interested in, the client
came up with concepts suchdistanceand metrics such application can start. The second method is by starting
ascost of downloado better understand the behaviors othe application which in turn gets the channel list. The
these applications. In this section, we will describe howser can then click on a channel to tune into it.
we collected data, and define the terms and concepts tha8) Bootstrap: In [29], the source of the video stream
will be used in later sections. is described as a well-known location and all clients
initially go through the source to join any channel. In
the applications we analyzed, a webserver is used to
get initialization information. This communication with
Our test machines were all Intel Pentium 4 computees central webserver is done using HTTP using ASCII
running Windows XP operation systems. The choice afrings. The webserver or a component on the webserver
machines was based on the physical access restrictiovaintains bootstrapping information for each channel
We collected packet traces for each of the experimertigat is passed along to the clients upon joining the
using Ethereal [10]. These traces include the 128 bytesannel.
of the packet including data to allow us to analyze the 4) Maintaining Peers: Once the channel selection
control packets. The types of machines we collected tige sent to the central server, a list of possible neigh-
traces on are listed below. bors/peers is sent to the client. The list is usually on the

A. Experiment Setup

B. Data Collection



order of 10’s of hosts and the client attempts to connect1) Software Update: The application attempts to
with these hosts. During the course of the sessiotheck its software version with a central server. This
the client keeps getting regular updates about moiedone through an HTTP request sent to the centralized
neighbors from its existing neighbors. The client alsserver. If there are a number of clients that startup at
re-broadcasts its current neighbor list to its neighborhe same time, it is quite possible that the load on
This mechanism is very similar to the gossip protocdhis centralized web server can become extremely large
used in [29] to keep an updated list of peers. which might pose a concern for scalability.

5) Requesting Data:As the client joins a session, The application on startup, opens a TCP connection on
it exchanges control messages with its peers usingpart 80 to a central server, update.pplive.com and sends
gossip-like protocol. Although we were not able t@n HTTP requesGET /update/pplive/update.inf. We
completely decode the messages exchanged, we knpglieve that if that file exists, PPLive assumes there is an
that specific information about each neighbor is expdate available. If it gets 404 Not Foundresponse, it
changed, referred to as the neighbor record. The rec@@ntinues the startup process with the current software
includes connectivity information and possibly a buffeversion.
map similar to [29]. The client then requests segments2) Channel list: The application next gets a list of
of data from some of its peers. The size of the segmemtsannels from a centralized server. With the list of
as well as the scheduling algorithm used to request thanannels, there is information about how to connect to

is not clear from our analysis. these channels, including Identifiers, trackers, etc. This
could be another flash crowd point in the system if a
D. Separating Data and Control Traffic large number of clients join at the same time.

The application opens a second TCP connection on

The first step in the analysis of the data plane involvegyit 80 to a central server, http://list.pplive.com/ and
separation of control and data traffic. Control traffic caGends an HTTP requeSET /web/xml/all.xml. This
create noise in the analysis of the data plane and thdsan xm| file containing the list of available channels.
needs to be identified and eliminated. We used packgis |ist is retrieved once at the initial startup time and
size as a simple mechanism to separate control and d@quritten in the client hard disk ashannel.xml The

traffic. format of the file is shown below.
The graph in Figure 1 shows the packet size distribu-

<root>

tion for PPLive and SOPCast. In both cases, about 40%g"hane>

<ChannelGuid>{7DOF9A10-F9C3-4AAE-A2D6-0E54639BC715}</ChannelGuid>

Of the packets are 40 byte packets_ These packets areBaseChanneIGuid>{ceb266b8-11d4-4ab3-83bc-c4b502a3n:b74}</BaseChanneIGuid>

<ChannelName>CCTV-5</ChannelName>

pure acknowledgments of data packets sent and receivedsShameNameEn>CCTv-5</ChannelNameEn>

<Author>.......... </Author>

Another 50% of packets are greater than 1 KBytes, with Auhorurhip:fiw.pplive.com</Autorrt>

<PlayLink>

the largest size packets being at 1400 bytes, which is ppives211.1620.46:8000Macker?

source={7DOF9A10-FIC3-4AAE-A2D6-0E54639BC715}&amp;type=udp&amp;

ap prox| mately th e M a.X| mum Transm ISSIOﬂ U n |t (MTU) chnname=CCTV-5&amp;engname=CCTV-5&amp;tracker=udpt://211.162.0.46:8000;

tcpt://211.162.0.46:8000;

for IP packets over Ethernet networks. There are about #Patre

<PeerCount>0</PeerCount>

10-20% packets that are in between these two ranges2ivae>odbivae>

<PreViewUrl />

and we conclude that these are the control packets. The:Quaiv>i00</uaty>

<Catalog>2</Catalog>

total amount of bandwidth used by the control packets Jeoemter =
is thus on the order of 5% of the total bandwidth. Slehannel>
Given the low frequency of the control packets as_;,-
shown by their small numbers, we concluded that any,:
pair of hosts that exchange more than 4KBps worth of ) » : -
data have data flow between them. We used this metric to! "€ channels are identified by a 16 byte identifier as

define parent child relationships as described in Secti¥f¢!l as a name. Thelaylink  object points to a host
-D. with a tracker running. The tracker is the initial point

where all clients connecting to the channel go to get a list

of neighbors. The ability of the tracker to communicate

through UDP and TCP is stated in this object along with
In this section, we will present the results of théhe port number for the tracker.

protocol analysis specifically for PPLive. As mentioned 3) Bootstrap MechanismThe application already has

earlier, the results for SOPCast are very similar and aimyformation about the tracker for each channel from

difference will be mentioned. the channel list it downloaded earlier. As soon as the

E. Specific Protocol Description
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user selects a channel, the client sends a UDP (or T@fessages received are of different sizes but they all have
depending on the tracker information it already hashe same format.
request to the tracker for that channel. 02 00 00 02 10 9a < header

The reply from the tracker is a message that contaibiSs S o ot o 45 o ar 45 b 55 o 11 7 < Chanelld
47 6e 01 03 <- number of hosts

the list of initial hosts that need to be contacted. The li§t a; o & o of 45 11 00 00 00 00 00 04 00 00 36 00 < Hosty
returned contains at most 50 hosts depending on the size

cb ba ad 88 a4 Of 48 1f 00 00 00 00 00 04 Oa 04 2e 00 <- Host3
of the group.

02 00 00 02 99 58 93 00 2d 5a 98 00 02 00 00 00 32 <- header The messages contain host information similar to the
3b 40 c6 fa a4 Of 48 1f 00 00 00 00 18 00 07 00 35 00 <- Hostl . . .

dabe 31 ad a4 Of 48 1f 00 00 00 00 00 00 34 07 01 00 < Host2 information reported from the tracker. This means that

other hosts are reporting back their neighbors. This is

typical of a gossip protocol.

the message which is 50 (0x32). Each host is represenigd 39 hosts (5 of which are private addresses) that

as a Structure, W|th the IP addreSS 59.64.198.250 be|ﬁ1g*’|ad earlier sent the UDP messages_ The hosts that
the first four bytes (for the first host 0x3b40c6fa), theeply to the TCP connection setup are used to exchange
UDP port 4004 being the next two bytes (0xa40f) anghe same information that was earlier exchanged over
the TCP port 8008 being the next two bytes (0x481f).ypp. Thus the communication mechanism is moved

4) Tuning into the channelOnce the initial list of fom UDP to TCP. From that point onwards, there is
hosts is retrieved, the system tries to connect to somef UDP communication with the host.

these hosts to get data. The system also gets updates from
these hosts and keeps increasing the list of hosts that it I1l. M ETHODOLOGY

knows about. We observed that the initial list contained ) .
some addresses that are private. This can be a concerfi® @nalyze the data collected, we defined key objects

if most hosts that are part of a group connect through®ad relationships between them. We know that any run

NAT. of our experiment yielded hundreds of host addresses,
In our trace, the system sent the same UDP messag@th Some were identified as key hosts. We then defined

39 of the 50 hosts in its initial list. This message contairf§etrics to compare the relatlon.sh|ps between different

the Channel ID of the channel the user has selected. 'Uns Of our experiments. We will present some of the
5 out of these 39 hosts the message is sent to wdlgfinitions used to classify objects and relationships and

private addresses and were thus not able to reply. Thidighlight key metrics of interest.

probably a bug in the software. The private addresses can E

easily be pruned by the system so that the clients dohAt ow

have to try connecting to them. The system received We define a flow to be an exchange of TCP or UDP

UDP replies from 15 of the 34 remaining hosts. All thepackets between the monitored host and another host. A

da bf 29 6c a4 Of 48 1f 00 00 00 00 b4 ef 08 00 34 00  <- Host50

4



flow between the monitored host'fand another host E. Distance

X is represented as a four-tuplé Pa, Pa,, IPx, Px,}, e also analyzed the locality of the resulting distribu-
where Py, is the TCP port on host A and’x, iS  {on tree by using estimates of distances between hosts.
a TCP port on host X. The flow has directionalyye ysed a database of subnets and their longitude and
ity such as the two flowg 1Py, Pa,,IPx, Px,} and |atitude to calculate the cartesian distance between a pair
{IPx, Px,, P4, Pa, } are treated as two separate flowsyt hosts. The distances were calculated by performing a
longest prefix match of the IP addresses to subnets in
the database. In cases where the prefixes did not match,
The rate of a flow is the amount of data in bytesye did not use that distance value in our calculations.
that the flow is comprised of for a particular duration ofrom all our results, we observe th#i% of the hosts
time. Using the notation for a flow, assurfi¢4;, X1) = match the geographical database.
{IPa, Pa,,IPx,Px,} is a flow between hosts A and Once the latitude and longitude information is avail-
X. The size of a packet that is part of this flow can baple for each host, we compute the cartesian distance
represented a$;(A1, X1,t) wheret is the timestamp between the two coordinates. If host A has co-ordinates
at which the packet is recorded. The rate of the flow &, 4,) and host X has co-ordinatés:, 1), then the

B. Rate of a flow

time ¢t1 can then be represented as distance between A and X in miles can be represented
as
R(A1, X4,t1) = ?:LAPI(Al,Xht)
, X1, A D(A, X) =k \/(v2 — 21)2 + (y2 — y1)?

In our results we use @ of 20 seconds, so thatyheref; is the constant for the distance of 1 degree and
bandwidth is calculated on non-overlapping intervals G§ equal to approximately 69.2 miles.

20 second each.
F. Cost

We define a cost metric that will be used to analyze
The duration of the flow is defined as the time betweehe distance property mentioned earlier. The cost metric

the first packet of the flow and the last packet seen fig associated with download and is measured in miles per

the flow. Note that this includes cases where a flow stopgte. We analyze how efficient the downloads are for the

C. Duration of a flow

for a period of time and starts again. different cases in terms of proximity of the parents. To
) ) ] calculate cost, we use a simple weighted average of the
D. Parent and Child relationships distance between the parents and the measured host.

This term defines a key relationship between observedLet B, be the total number of bytes received from a
hosts. The rate of all flows between A and X can bparentp, and D, be the distance between the host and

represented as a summation its parentp. The cost of download( for the host can
Z Z be represented as
R(A, X, t1) = R(Aq, X4,t1)
. e B
An observed host A is classified agarent of host X ZW’ P
at timet1 if A similar metric can be used to describe the cost of

R(A, X,t1) > R, data sent to children.

where R, is 4KBps in our experiments. We choose thi&. Stability
limit as hosts that send less than that amount of data arens most distribution strategies end up making a tree
likely to be exchanging control information rather thafior distributing a unit of data, we need to characterize
data. Similarly, an observed host B ichild of host X  the stability of the resulting distribution tree. We define
at timet1 if a stability of a distribution structure in terms of the
R(X,B,tl) > R, frequency of changing the parents for a host. We have
two slightly different notions for change in this regard.
We define a period\ and look at the parents at a

start time ofty. We then compare that with the parents
1Any notion of a host in this thesis, refers to the IP address of the 0 P P

host. Thus A will be used to describe the host A and the IP addre%&® O_bserve at, = to + A. Let the set _Of Pafe”ts at
of AIPy. any timet, be equal toP,. Let the cardinality ofP,

where R, is 4KBps in our experiments.



be represented g#,|. One definition of stability for a Tota Data SentReceved vs Tme

host at timet,, can be o ' ‘ ‘ ‘ -
8000 4
P NPl
| Pn

This definition of stability looks at the rate of change
of parents. AsS,, — 0, the structure becomes stable.
Another metric for stability can be defined to take into
account the differences between the set of parents. Le¢
the setd,, be equal toP,\P,,_1 = {z € P,|x ¢ P,_1}
represent the elements that arefip but not in P,,_;. e
This refers to the parents that have been newly acquirec 0 T T a m e ae m me
Similarly, the setL,, be equal toP,_; \ P, = {z € ime (seconds)
P,_1|z ¢ P,} represent the parents that have been left et Bt (¢ o Capacty ks,
Then stability can be represented as 16000 - ‘ - ‘ W=

B | Pnl
|Pa| + |An| + |Ln|
We used both these definitions in our analysis.
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IV. DATA PLANE
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In this section, we present the data plane analysis 0
the application. Other applications analyzed exhibited <ot
similar data plane structures. 200k .

A. Network Resource Usage 0 ﬂ;n 260 aén 460 560 sén 7(‘]0 800

Time (Seconds)

The resource in terms of network bandwidth used
is an important metric in analysing these applications.
Most network environments are sensitive to network
bandwidth utilization and administrators want some level  Fig. 2. Send and Receive rates for high capacity nodes
of control over the bandwidth utilized by each member
of the organization. Unlimited download or upload usage
is often prohibited in controlled Internet environmentd-or Figure 2(a), the bandwidth sent from this node to
This is the major reason that Bit-Torrent has the concepther nodes is in the range of 5-8 Mbps. The bandwidth
of fairnesswhere the amount of data uploaded from #eceived by this node is around 500 Kbps which is
host is propotional to the amount of data downloadedpproximately the rate of the video stream being played.
This reduces the risk of freeloaders using up most of tffene thing that is obvious from this graph is that there is
network upload capacity without paying for it. In [15],no fairness, as the ratio of bandwidth sent to bandwidth
the authors claim that ISP’s need to be included int@ceived is 16:1. It seems as if there is no policy
the model so that the data exchanged between the ISEasitrol on how much bandwidth can be uploaded from
can be controlled. We analysed the network bandwidéh particular host. To verify this, we conducted another
utilization for these applications in various environment&xperiement in which we ran multiflecmu clients

The two scenarios of interest for this analysis are simultaneously to see if the total bandwidth uploaded
high bandwidth and a low bandwidth client. In both thestsom CMU is controlled. The results, as seen in Figure
types of clients, there was no NAT present. However, 2(b), indicate that no such policy bound exists and the
high bandwidth node with a NAT showed results verpandwidth uploaded from CMU is as high at 18 Mbps.
similar to a low bandwidth node. As concluded earlier, Similar graphs were plotted for themurun of App-
NAT handling is inadequate in these application and evéh Figure 3(a) shows that the ratio between bandwidth
a high capacity node is consideredd from the point sent and bandwidth received is 8:1. This ratio is The
of view of the application if it has a NAT attached to it.results look very similar to that of a low capacity node.

Figure 2 shows the graphs for sent and received
bandwidth forcmu pittd and cmun runs for App-B.  2In this case, we ran 3 separate clients simultaneously

(a)cmu
(b)3 instances of cmu
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have an adverse effect on the performance observed by

. . : . .. the client.
This points to the very rudimentary handling of NAT’s in The number of children supported by the two types

this apph_catlon. If the node is behind a NAT, its upIoao(I)1E nodes is very different. The high capacity node
capacity is not used. : . :
. supports about 15-20 children, while the low capacity
Another measure of the resource usage is the numbe . . : o
. . npde supports no children. This points to the built in
of children that are supported by a node as a function Ol taimess in the svstem
time. This is shown in Figure 4(a) for a high capacity Y :

and Figure 4(b) for a low capacity node. The number of In figure 5, we see the bandwidth received and sent by
parentd in both cases is about the same. If the node ha$®4 The parent;s ser?d ﬁOO—ZOﬁKbps of da‘:{a ﬁ?d there
goodparent, then from our observations, one such paréifff 3-5 parents for this host. The number of children is
is enough to get the data. However, we see that in bdf#t!Ch higher, each one is being sent about 100-200Kbps.
cases the number of parents is 3 to 5. That is probablyAnOther interesting observation made during this anal-
because of group dynamics where parents leaving thelS was of the structure of the data plane. We observe
channel could cause disruption for children that gthat the number of hosts that are communicated with are
not have other parents already sending data. In sucAn4ch greater than the number of parents or children.
scenario, looking for a new parent and establishing lh@Ppears that the delivery of the video stream is done

connection with that parent could take valuable time arfirough an unstructured data plane where connectivity
is maintained through randomness. It has been known

3As defined in Section 11l through work done in [8] and [9] that the probability
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of connectivity for a random graph increases as the

outdegree of a node increases. Figure 6(a) plots the

cumulative fraction of peers that the client received datato the data plane structure. We tried to analyze the three
from versus the total number of bytes received. Figutevels of the structure that are available to us through our
6(b) plots the same graph, this time for peers that dateasurement. This includes the parents and children of
was sent to versus total number of bytes sent. The figu@§ost. Figure 7 shows the visibility we have to the entire
show that the host in our examplenu communicated Structure.

with a large number of other hosts even though actual Even with the limited visibility we have to the entire
parent and child relationships established are low. Abogéta plane structure, we are able to do some analysis
1% of the hosts communicated with became parentsa the relationship between the three levels. We use the
while only about 2% of them became children. The largéoncepts of distance and cost introduced in Section II
number of communication links established point to for this analysis.

random structure where the root is the source of theyy, analyze the cost of data received at a high capacity
broadcast_ and all other hosts_ try to keep connected 484 4 |ow capacity node. Figure 8 shows the cost of
the root via large number of links. download for a few cases. Figure 8(a) plots the average
cost of download per byte versus time for tt@urun.
We can see that the cost of downloading data is about
As mentioned in Section IV-A, the data plane appeas3K miles per byte. That is approximately the distance
to be constructed randomly. However it is not possible tacross the pacific ocean. On further visual investigation
analyze the entire structure as we have limited visibilitgf the parents, it is clear that almost all of the parents

B. Locality of Peers
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are hosts in Asia Figure 8(b) is a similar figure for a e
run of chic. In this case, the cost of download is mostly .
under 8K miles with some spikes at 12K miles. Upon :
further investigation of the parents, it seems like mosté
of the parents of this host were other hosts in Americe: ==
within 6K miles, while there were a few times where the @ ..
prominent parents were in Asia (12K miles).
To explain this difference between the parent selectior
for each host, we have to assume certain properties ¢ =*[
the system. We believe that the system chooses paren oL -
solely based on performance. The high capacity host,
being in a very favorable environment gets good perfor- (b) chic
mance when it connects to the parents in Asia. Therefore, Fig. 8. Cost of download
it stays with those parents and does not change to closer,
local parents. On the other hand, the low capacity node
is in a bandwidth restricted environment going througt® @ host in the US, only to be sent back to other hosts in
an ISP that has strict contracts about bandwidth withsia. This fact also reaffirms the hypothesis of a random
other ISP’s. This host, therefore, does not get goddructure, that does not account for locality while making
performance from parents in Asia and therefore has @gcisions about selecting parents for a particular client.
choose paren'Fs _that are closer. Some of the_se Cloﬁe.rStabiIity of the data plane
parents are within the same ISP as the host itself and
thus provide a much better performance. Wg hgve cpncluded that_the data plane strl.Jcturel of _the
We can also look at the high capacity node’s Ch”dreﬁppllcatmns is rapdom, Wlth tr_]e oqu selection criteria
and see their cost and distribution. Figure 9(a) sho/g" @ Parent to child relationship being the performance
the cost of uploading data to the children for the ho&zcewed. We can also analyze the stablllty of this random
cmu The average cost is around 5K miles, but th,étructure by looking at the changes in the structure over

graph in Figure 9(b) clearly shows what the distributiof™Me- In this analysis, we have to account for group
of children looks like. This graph is a CDF of chilgdynamics that necessitate a change in the structure. We

distances for themu host. It is clear from this graph d0 not have an accurate measure of the group dynamics

that about 60% of the children are in Asia (13K m"esérom the measurements performed. We still believe that

while the other 40% are either in the US or Europe. he results are interesting and shed some light on the data
This last set of results is very interesting as it poingdlane. The stability of the data plane can be assessed by

to the inefficiency of the systems. Data is sent from AsidSINg the metrics defined in Section 111-G.
Figure 10(a) plots the variablg, versus time. Recall

4mainly in China and Japan the S,, is a metric defined in Section 11I-G and measures
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Fig. 9. Cost of upload for high capacity node Fig. 10. Percentage of parents changed

the rate of changes of parents over time. The graph shofys Inefficient Distribution of Data
the instability of parents for a run gfttd with an average From the analysis of the control and data planes,

of about 30% of changed parents between the intervalg, onciude that there is no planning or co-ordination
This means that on average, 3 out of the 4-5 parents §€, eq in the decision making. A lot of important

dl_fferent from one interval t(_)_the (_)ther. The graph IYecisions, such as how to pick a parent, seem to fol-
Figure 10(b) shows the stability using tHi, variable. low a randomized greedy algorithm. The inefficiency is

Both these graphs point to the high rate of change ﬂfghlighted by the analysis of locality of upload and

parents. Although we have not discounted for the grougyniad for high capacity nodes. As noted earlier, test
dynamics, we do not believe that all this variation can b, jes in North America often download data from hosts

explain through group dynamics and that in fact, MO§} asja, only to upload large amounts of data back to
of this variation is due to the random nature of the daﬁ’osts in Asia.

plane.

B. Unfairness

V. SUMMARY OF RESULTS It is the richly connected high capacity nodes that

have to pay the price of the inefficiency in the system.
As part of this analysis, we identified the majotn our analysis, each such node supported at least 15-
shortcomings and the challenges that applications in tf#8 children. Clearly, the system depends entirely on the
class are likely to face. availability of such nodes.
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C. NAT handling thorough description of the control protocol used by the

We have seen that the applications do not hand®Stem.
NAT’s effectively. A host behind a NAT can receive
traffic, but is unable to send any data to other hosts.
These systems. need to implement NAT identification Tp;g study is one of the first attempts to measure
and traversal using well-known protocols, such as STUNymmercial scale video broadcast applications that use
and TURN [22], [23] to deal with such connectivitypeer-to-peer technology. These applications are different
restrictions. from others in their commercial content that can attract
large numbers of users. We have gained valuable insight

.. to the working of these applications by analyzing the
The systems analyzed use HTTP as a ublqunngerI traffic in different scenarios. This helped us iden-

mechanism to join the P2P network. However, moﬁy the key system components in applications of this

communication after that follows using TCP, with UDPclass. Furthermore, a methodology is formulated to study

being used sparingly. As most of the data transfeﬁ | f h licati f inal ;
occur in small chunks, the delay properties of TCP fo{ e data planes of such applications from a single point

) ) %% observation. Metrics such as resource usage, locality
sma!l amounts of data might not be |d¢al for real-tim download and stability of the distribution structure
appllcau_ons. Also, we see that Fhe clients setup TC re defined, that can be used to study applications in
connections with each other even if they are not receiving, space.
data on these connections yet. The overhead associatea] our study of these applications, we note that the

\r’]\lg; ‘;?ig'hntgbgpa?iizlﬁéeiJgfgg%ner:\?vcgﬁgs on a Slngl%reedy algorithms used and the locality independence of

the underlying model leads to very high resource usage
E. Security across key network boundaries. There is also a lack of

As seen by this analysis, most of the control protocorg-for-tat fairness in these applications which further lead
are not encrypted. This can lead to malicious attacks tH3t Uneven distribution of bandwidth upload. We also
can make key components of the system ineffective. Tﬁgserve that these systems make it difficult to implement

messages are sent over HTTP, UDP and TCP in plain @t Pandwidth restrictions, which is a key component of
and can be used to interfere with the normal operatic?nsucceSSf“I application. The data distribution structure is
of the system. built randomly without any consideration of bandwidth.

Even if such restrictions could be placed in the building
VI. RELATED WORK of the data distribution structure, the instability observed

Significant amount of research has been conductedifhthe resulting structure makes it challenging to imple-
assessing the viability of peer-to-peer live video strearfient a convergence in the data plane.
ing, and some encouraging results have been reported hese systems prove the possibility of peer-to-peer
[1], [3]-[5], [7], [11], [12], [16]-[18], [21], [25], [28]. random distribution structures for live video streaming.
However, most of these systems have been tested ohigwever, key questions as to the network usage, locality
in research environments, and the deployment experieffedownload and stability of the distribution structure

VIl. CONCLUSION

D. Transport Protocol

of these applications is very limited. remain to be answered.
We are aware of only one other study (conducted
simultaneously with our work) that measures propri- REFERENCES
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