
RSVP: A New Resource ReSerVation Protocol

Lixia Zhang1, Steve Deering1, Deborah Estrin2, Scott Shenker1, Daniel Zappala3

flixia, deering, shenkerg@parc.xerox.com, festrin, zappalag@usc.edu

ACCEPTED BY IEEE NETWORK MAGAZINE

1Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304.

2Information Sciences Institute and Computer Science Department, University of Southern California.

3Computer Science Department, University of Southern California, Los Angeles, CA 90089.

1

1 Introduction

The current Internet architecture, as embodied in the IP network protocol, o�ers a very simple

service model: point-to-point best-e�ort service. In recent years, several new classes of distributed

applications have been developed, such as remote video, multimedia conferencing, data fusion,

visualization, and virtual reality. It is becoming increasingly clear that the Internet's primitive

service model is inadequate for these new applications; this inadequacy stems from the failure of

the point-to-point best-e�ort service model to address two application requirements. First, many of

these applications are very sensitive to the quality of service their packets receive. For a network to

deliver the appropriate quality of service, it must go beyond the best-e�ort service model and allow

ows (which is the generic term we will use to identify data tra�c streams in the network) to reserve

network resources. Second, these new applications are not solely point-to-point, with a single sender

and a single receiver of data; instead, these applications can often be multipoint-to-multipoint with

several senders, and several receivers, of data. Multipoint-to-multipoint communication occurs,

for example, in multiparty conferencing where each participant is both a sender and a receiver of

data, and also in remote learning applications, although in this case there are typically many more

receivers than senders.

In recent years there has been a
urry of research activity devoted to the development of new

network architectures and service models to accommodate these new application requirements.

Even though there are rather fundamental di�erences between the various proposed architectures,

there is widespread agreement that any new architecture capable of accommodating multicast and

a variety of qualities of service can be divided into �ve distinct components, which we identify and

describe below.

Flow Speci�cation The network and the various data
ows need a common language so that a

source can tell the network about the tra�c characteristics of its
ow, and the network can in

turn specify the quality of service to be delivered to that
ow. Thus, the �rst component of

this new architecture is a
ow speci�cation, or
owspec, which describes the characteristics of

both the tra�c stream sent by the source, and also the service requirements of the application.

In some sense the
owspec is the central component of the architecture, since it embodies the

service interface that applications will interact with; the details of all of the other components

of the architecture are hidden from applications. Two proposals for a
owspec are described

in References [14, 17].

Routing The network must decide how to transport packets from the source to the receiver or, in

the case of multicast, receivers of the
ow. Thus, the second component of the architecture

is a routing protocol that can provide quality unicast and multicast paths. There are many

approaches to unicast routing; References [1, 5, 17] describe di�erent approaches to multicast

routing. None of the current proposals have yet dealt su�ciently with the interaction between

routing and quality of service constraints; that is the subject of future research.

Resource Reservation In order for the network to deliver to a particular
ow a quantitatively

speci�ed quality of service, like a bound on delay, it is usually necessary for the network to

set aside certain resources, such as a share of bandwidth or a number of bu�ers, for that
ow.

This ability to create and maintain resource reservations on each link along the transport

2

path is the third component of the architecture. References [7, 17] describe two approaches

to resource reservation; in this article we describe another.

Admission Control Because a network's resources are �nite, it cannot grant all resource reser-

vation requests. In order to maintain the network load at a level where all quality of service

commitments can be met, the network architecture must contain an admission control algo-

rithm; this algorithm determines which reservation requests to grant and which to deny, and

thereby maintains the network load at an appropriate level. References [10] and [13] describe

two admission control algorithms.

Packet Scheduling After every packet transmission, a network switch must decide whether and

which packet to transmit next. It is the packet scheduling algorithm which controls this

decision. The packet scheduling algorithm lies at the heart of any network architecture

because it determines which qualities of service the network to can provide. There are many

proposed packet scheduling algorithms; see References [4, 6, 8, 11, 12] for a few examples.

In this article we present our proposal for the third component of the architecture, a new resource

ReSerVation Protocol, RSVP. Similar to previous work on resource reservation protocols (e.g. ST-

II [17]), RSVP is a simplex protocol, i.e. it reserves resources in one direction. However, several

novel features in the RSVP design lead to the unique
exibility and scalability of the protocol.

RSVP is receiver-oriented, in that the receiver of the data
ow is responsible for the initiation

of the resource reservation. This design decision enables RSVP to accommodate heterogeneous

receivers in a multicast group; speci�cally, each receiver may reserve a di�erent amount of resources,

may receive di�erent data streams sent to the same multicast group, and may \switch channels"

from time to time (that is, change which data streams it wishes to receive) without changing its

reservation. RSVP also provides several reservation styles that allow applications to specify how

reservations for the same multicast group should be aggregated at the intermediate switches; this

feature results in more e�cient utilization of network resources. Finally, by using \soft-state" in

the switches, RSVP supports dynamic membership changes and automatically adapts to routing

changes. These features enable RSVP to deal gracefully and e�ciently with large multicast groups.

While the motivation for RSVP arose within the Internet context, our design is intended to be fully

general.

This article has 9 sections. We �rst list our design goals (Section 2), and then discuss the basic design

principles used to meet these goals (Section 3). Section 4 contains a more detailed description of

the protocol operation, and Section 5 describes how the protocol would work in a simple example.

Section 6 describes the current state of our RSVP implementation. We delay consideration of

related work until Section 7, and follow that with a discussion of unresolved issues in Section 8.

Finally, in Section 9, we conclude with a brief summary.

2 RSVP Design Goals

In the traditional point-to-point case, one obvious reservation paradigm would have the sender

transmit a reservation request towards the receiver, with the switches along the path either admit-

ting or rejecting the
ow. For the point-to-multipoint case, one may trivially extend this paradigm

3

to have the sender transmit the reservation request along a multicast routing tree to each of the

receivers. When we have multipoint-to-multipoint data transmissions, the straightforward exten-

sion of this paradigm would be to have each sender transmit a reservation request along its own

multicast tree to each receiver. However, the special properties of having multiple, heterogeneous,

receivers and/or multiple senders pose serious challenges that are not addressed by this simple

extension of the basic reservation paradigm. We outline these various challenges below and detail

how these challenges are not met by the strawman proposal of straightforwardly extending the

basic paradigm. In the process, we identify the seven goals which guided the design of RSVP.

In a wide area internetwork such as the Internet, receivers, as well as the paths used to reach the

receivers, can have very di�erent properties from one another. In particular, one must not assume

that all the receivers of a multicast group possess the same capacity for processing incoming data,

nor even necessarily desire or require the same quality of service from the network. For instance,

a source may be sending a layered encoding of a video signal; it is possible that certain receivers,

which are doing the decoding in software, would only have su�cient processing power to decode

the low-resolution signal while those receivers with hardware decoding, or more processing power,

could decode the entire signal. Furthermore, the paths used to reach all the receivers may not

have the same capacity; in the layered encoding example above, certain receivers might only have

low-bandwidth paths between them and the source and so could only receive the low-resolution

signal. The strawman proposal above is incapable of dealing with the receivers individually, and so

cannot address these heterogeneous needs. Therefore, our �rst design goal for RSVP is to provide

the ability for heterogeneous receivers to make reservations speci�cally tailored to their own needs.

The presence of multiple receivers raises another issue; the membership in a multicast group can

be dynamic. The strawman proposal would have to reinitiate the reservation protocol every time a

new member joined or an existing member left the multicast group. Reinitiation of the reservation

protocol is particularly burdensome for large groups because the larger the group size, the more

frequent are changes in group membership. So our second design goal for RSVP is to deal gracefully

with changes in the multicast group membership.

The strawman proposal deals with multiple senders by having each sender make an independent

resource reservation along its own multicast routing tree. This approach results in resources being

reserved along multiple, independent trees, even though the branches of di�erent trees often share

common links. This may be appropriate for some applications, but in other cases this duplication

can lead to a signi�cant wasting of resources. For example, in an audio conference with several

people, there is usually only one person, or at most a few people, talking at any one time because

of the normal dynamics of human conversation. Thus, instead of reserving enough bandwidth for

every potential speaker to speak simultaneously, in many circumstances it would be adequate to

reserve only enough network resources to handle a few simultaneous audio channels. Our third

design goal is for RSVP to allow end users to specify their application needs so that the aggregate

resources reserved for a multicast group can more accurately re
ect the resources actually needed

by that group.

Furthermore, in a multiparty conference, a receiver may only wish to, or may only be able to, watch

one or a few other participants at a time, but would like the possibility of switching among various

participants. The simple approach of delivering the data streams from all the sources and then

dropping the undesired ones at the receiver does not address network resource usage considerations

4

(e.g., e�cient use of limited bandwidth, or reducing the charges incurred for bandwidth usage). A

receiver should be able to control which packets are carried on its reserved resources, not only what

gets displayed on its local screen. Moreover, a receiver should be able to switch among sources

without the risk of having the change request denied, as could occur if a new reservation request

had to be submitted in order to \switch channels". Our fourth design goal for RSVP is to enable

this channel changing feature.

RSVP is not a routing protocol, and should avoid replicating any routing functions. RSVP's task

is to establish and maintain resource reservations over a path or a distribution tree, independent

of how the path or tree was created. In a large internetwork with a volatile topology and load,

these routes may change from time to time. Adapting to such changes in topology and load is the

explicit job of the routing protocol and it would be expensive and complicating to replicate the

function in RSVP. At the same time, however, RSVP should be able to cope with the resulting

routing changes. Our �fth design goal is that RSVP should deal gracefully with such changes

in routes, automatically reestablishing the resource reservations along the new paths as long as

adequate resources are available.

The strawman proposal does not deal gracefully with changes in routes, because there is no mech-

anism to discover the change and trigger a new resource reservation request. One could introduce

such a mechanism by having each source periodically refresh its reservation over the multicast rout-

ing tree. However, in large multicast groups such refreshing would lead to S messages arriving at

every receiver during every refresh period, where S is the number of sources. Our sixth design goal

is to control protocol overhead; by this we mean both avoiding the explosion in protocol overhead

when group size gets large, and also incorporating tunable parameters so that that the amount of

protocol overhead can be adjusted.

Our last design goal is not speci�c to the problem at hand but rather is a general matter of

modular design; we hope to make the general design of RSVP relatively independent of the other

architectural components listed in Section 1. Clearly a particular implementation of RSVP will

be tied quite closely to the
owspec and interfaces used by the routing and admission control

algorithms. However, the general protocol design should be independent of these. In particular,

our protocol should be capable of establishing reservations across networks that implement di�erent

routing algorithms, such as IP unicast routing, IP multicast routing [5], the recently proposed CBT

(Core-Based Tree) multicast routing [1], or some future routing protocols. This design goal makes

RSVP deployable in many contexts. However, for optimally e�cient routing decisions, routing

selection and resource reservation should be integrated so that the choice of route can depend on

the quality of service requested, and so that the stability of the route can be maintained over the

duration of the reservation. Such an integration would lead to more coordination between the

choice of which resources to reserve and the mechanics of establishing the reservation (which is

RSVP's main focus). This integration is something that requires further research.

Thus, in summary, we have identi�ed seven important design goals, which we list in Figure 1. RSVP

is primarily a vehicle used by applications to communicate their requirements to the network in a

robust and e�cient way, independent of what the speci�c requirements are. RSVP delivers resource

reservation requests to the relevant switches, but plays no other role in providing network services.

Thus, RSVP can communicate the requirements for, but does not directly provide for, a wide

range of network services. For instance, the synchronization requirements of
ows or the need for

5

reliable multicast delivery could be expressed in the
owspec that is distributed by RSVP and then

realized by the switches. Similarly, the
owspec could also carry around information about advance

reservations (reservations made for a future time) and preemptable reservations (reservations that

a receiver is willing to have preempted). RSVP is capable for supporting the delivery of these

and other services whenever these network services rely only on state being established at the

individual switches along the paths determined by the routing algorithm. Thus, while we have

described RSVP as a resource reservation protocol, it can be seen more generally as a switch state

establishment protocol.

3 Basic Design Principles

To achieve the seven design goals listed in Figure 1, we used six basic design principles which we

now describe. These design principles are listed in Figure 2.

3.1 Receiver-Initiated Reservation

The strawman proposal discussed in the previous section and all existing resource reservation

protocols are designed around the principle that the data source initiates the reservation request.

In contrast, RSVP adopts a novel receiver-initiated design principle; receivers choose the level of

resources reserved and are responsible for initiating and keeping the reservation active as long as

they want to receive the data. We describe the motivation for this receiver-initiated approach

below.

A source can always transmit data, whether or not adequate resources exist in the network to deliver

the data. It is the receiver who knows its own capacity limitations; furthermore, the receiver is

the only one who experiences, and thus who is directly concerned with, the quality of service

experienced by the incoming packets. Additionally, if network charging is deployed in the future,

the receiver would likely be the party paying for the requested quality of service. Thus, it should

be the receiver who decides what resources should be reserved.

One could imagine having the receivers send this information to the source and then having the

source use this information in sending out the reservation request. To handle heterogeneous re-

quests, however, this approach would require that the sender bundle all requests together to pass

to the network, so that the network can �gure out, according to the location of individual receivers,

how much resource needs to be reserved on which links. For large multicast groups, this will likely

cause a multicast implosion at the sender. This implosion problem becomes more serious when

the multicast group membership changes dynamically and the reservation has to be periodically

renewed. Consider, as an extreme example, a cable TV �rm with broadcasting several channels

of programs; while there are relatively few sources, there are perhaps hundreds of thousands of

receivers, each of which can watch only one or a few channels at a time. In the strawman pro-

posal, whenever any individual receiver wants to switch between channels, it sends a message to

the source. In this case, where there are many receivers and frequent switching between channels,

each source has to accommodate an deluge of change requests. However, this overhead is clearly

super
uous, since we expect the resulting broadcast pattern to change relatively slowly because

6

the resulting multicast trees will likely be relatively stable except near the leaf nodes. In Section 4

we show how our receiver-initiated design accommodates heterogeneity among group members yet

avoids such multicast implosion.

The idea of the receiver-initiated approach was �rst inspired by Deering's work on IP multicast

routing [5]. The IP multicast routing protocol treats senders and receivers separately. A sender

sends to a multicast group in exactly the same way as it sends to a single receiver; it merely puts in

each packet a multicast group address in place of a host address. The multicast group membership

is de�ned as the group of receivers. Deering's multicast routing design can be considered a receiver-

initiated approach, in the sense that each receiver individually decides to join or leave the group

without a�ecting other receivers in the group, or a�ecting sources that send to the group. It is

the routing protocol that takes the responsibility of forwarding all multicast data packets to all the

current members in the group. Analogous to our argument that a sender does not care whether

adequate resources are available, a sender to a multicast group does not necessarily know who is

currently a member of the multicast group (i.e., receiving the data); in particular, it may not be a

member of the multicast group itself.

3.2 Separating Reservation from Packet Filtering

A resource reservation at a switch assigns certain resources (bu�ers, bandwidth, etc.) to the entity

making the reservation. A distinction that is rarely made, which will be crucial to our ability to

meet our design goals, is that the resource reservation does not determine which packets can use

the resources, but merely speci�es what amount of resources is reserved for whom. Notice that

the whom refers not to which packets can use the reserved resources, but rather speci�es which

entity controls the resources. There is a separate function, called a packet �lter, which selects those

packets that can use the resources; this �lter is set by the reserving entity. Moreover, the �lter can

be changed without changing the amount of reserved resources. Thus, one of the important design

principles in RSVP is that we allow this �lter to be dynamic; that is, the receiver can change it

during the course of the reservation. This distinction between the reservation and the �lter will

enable us to o�er several di�erent reservation styles, which we now describe.

3.3 Providing Di�erent Reservation Styles

As we discussed brie
y in Section 2 above, the service requirements of multicast applications dictate

how the reservation requests from individual receivers should be aggregated inside the network. For

example, as we discussed in Section 2, the typical dynamics of human verbal interaction results in

only one or a few people talking at any one time; thus, in many conferencing situations it would be

feasible to have all senders of audio signals to a conference share the same set of reserved resources,

where these resources were su�cient for a small number of simultaneous audio streams. In contrast,

there are no analogous limitations on video signals. Therefore, if the conferencing application also

includes video then enough resources must be reserved for the number of video streams one desires

to watch simultaneously. As in the usual multicast paradigm, if two receivers downstream of a

particular link are watching the same video stream for the lifetime of the application (e.g. when

attending a remote lecture), only a single reservation need be made on this link to accommodate

7

their needs. However, if these two receivers wish to occasionally switch among the senders during

the application lifetime (e.g. when participating in a distributed group meeting), then separate

reservations must be maintained. To support di�erent needs of various applications, while making

the most e�cient use of network resources, RSVP de�nes di�erent reservation styles which indicate

how intermediate switches should aggregate reservation requests from receivers in the same multi-

cast group. Currently there are three reservation styles: no-�lter, �xed-�lter, and dynamic-�lter.

We now describe these �lter styles; for the sake of brevity we will identify applications only by

their multicast address, although in the current Internet context a multicast application may be

identi�ed by the IP multicast address plus destination port number.

When a receiver makes a resource reservation for a multicast application, it can specify whether

or not a data source �lter is to be used. If there is no �lter, then any packets destined for that

multicast group may use the reserved resources (although some enforcement mechanism is needed

to make sure that the aggregate stream does not use more than the reserved amount; we will not

discuss enforcement mechanisms here). For example, the audio conference described above would

use a no-�lter reservation, so that a single reserved pipe can be used by whomever is speaking

at the moment. If source �ltering is needed, the �lter is speci�ed by a list of sources (again,

in the Internet context a data source can be speci�ed by the source host address plus source port

number, but we will only refer to the source host address in this exposition). Only the packets from

the speci�ed sources can use the reserved resources. Filtered reservations will be used to forward

individual images in video conferencing, enabling participants to reserve resources for particular

video streams.

A �ltered reservation can be either �xed or dynamic. A �xed-�lter reservation means that for the

duration of the reservation, the receiver will receive data only from the sources listed in the original

reservation request. A dynamic-�lter reservation allows a receiver to change its �lter to di�erent

sources over time.

In order to illustrate how intermediate nodes use these reservation styles to aggregate reservation

requests, consider the case where several receivers in the same multicast group make �xed-�lter

reservations over a common link. These reservations may be shared if the source lists overlap,

because the reservation will never be changed. Thus, only a single pipe (with the largest amount

of resources from all the requests) will be reserved for each source even when there are multiple

requests. Such aggregation can occur when members of a multicast application all listen or watch

the same audio or video signals, as in the case of a multicast lecture. Reservations using the no-�lter

style can also be aggregated in this manner, because if a receiver does not discriminate between

individual sources, it cannot switch among the sources either.

If a receiver expects to switch among di�erent sources from time to time, it must make a dynamic-

�lter reservation to avoid a�ecting the reception of other receivers in the same multicast application.

Because the receiver can change the list of sources in the �lter at any time during the course of

the reservation, the intermediate nodes cannot aggregate reservations of this style. In fact, this

separation between the resource reservation and the �lter is one of the key facets of RSVP; the

resource reservation controls how much bandwidth is reserved, while the �lter controls which packets

can utilize that bandwidth. In the dynamic-�lter reservation case, each receiver requests enough

bandwidth for the maximum number of incoming streams it can handle at once, and the network

must reserve enough resources to handle the worst case when all the receivers that requested

8

dynamic �lter reservations take input from di�erent sources, even though several receivers may

actually tune to the same source(s) from time to time. However, note that the total amount of

dynamic �lter reservations made over any link should be limited to the amount of bandwidth needed

to forward data from all the upstream sources.

In summary, having several di�erent reservation styles allows intermediate switches to decide how

individual reservation requests for the same multicast group can be e�ciently merged. The dynamic

�lter reservation style allows receivers to change channels. Thus, we have met design goals 3 and 4.

So far RSVP has de�ned three reservation styles; other styles may be identi�ed as new multicast

applications, with di�erent needs, are developed.

3.4 Maintaining \Soft-State" in the Network

The typical multipoint-to-multipoint applications we have considered are rather long-lived. Over

the lifetime of such an application, it is quite possible that new members may join and existing

members may leave, and routes may also change due to dynamic status changes at intermediate

switches and links. To be able to adjust resource reservations accordingly, and in a way transparent

to end applications, RSVP keeps soft-state at intermediate switches and leaves the responsibility of

maintaining the reservation to end users. The term soft-state was �rst used by Clark in [3] and, in

our context, refers to state maintained at network switches which, when lost, will be automatically

reinstated by RSVP soon thereafter. Thus, soft-state is appropriate in our context where frequent

routing changes and occasional service outages would render a more brittle (i.e., less self-stabilizing)

state to become, and perhaps remain, obsolete or incorrect.

More speci�cally, RSVP distinguishes two kinds of state information at each intermediate switch,

path state and reservation state. Each data source periodically sends a Path message that estab-

lishes or updates the path state, and each receiver periodically sends a Reservation message that

establishes or updates the reservation state (which is attached to the path state).

Path messages are forwarded using the switches' existing routing table; in other words the routing

decision is made by the network's routing protocol, not by RSVP. Each path message carries a

owspec given by the data source, as well as an F-
ag indicating if the application wishes to

allow �ltered reservations. In processing each path message, the switch updates its path state that

contains information about (1) the incoming link upstream to the source, and (2) the outgoing links

downstream from that source to the receivers in the group (as indicated by the multicast routing

table). In addition, if the F-
ag in the path message is on, the switch also keeps the information

about the source and the previous hop upstream to reach the source; this information allows the

switch to accommodate any style of reservation. If the F-
ag is o�, the switch will not maintain any

information about the speci�c source of the path message except adding its incoming link to the

path state, thus minimizing the state that must be kept at the switch. Consequently, only no-�lter

style reservations can be made for data streams from such sources. As we will show later in an

example, not maintaining per source information can, in some topologies, result in over-reserving

resources over certain links.

Each reservation message carries a
owspec, a reservation style, and a packet �lter if the reservation

uses a �ltered style (either �xed or dynamic). In processing each reservation message, the switch

9

updates its reservation state that contains information for the outgoing link the message came from

by recording (1) the amount of resources reserved, (2) the source �lter for the reserved resource, (3)

the reservation style, and if the style is dynamic-�lter, (4) the reserver (the sender of this reservation

message, which is one of the receivers of this multicast group). We see that the only time we need

to keep per receiver information in the reservation table is when the reservations involve dynamic

�lters; when all reservations are either no-�lter or �xed-�lter we can assign the reservation to

the multicast group as a whole and then only keep track of the total resources reserved on each

downstream link.

Reservation messages are forwarded back towards the sources by reversing the paths of path mes-

sages. In fact, the path information is maintained solely to do this reverse path forwarding of the

reservation messages. More speci�cally, reservation messages of the no-�lter style are forwarded to

all incoming links to the multicast group, and those of �ltered styles are forwarded to the previous

hops of the sources that are listed in the �lters.

Both path messages and reservation messages carry a timeout value that is used by intermediate

switches to set corresponding timers; the timers get reset whenever new messages are received.

Whenever a timer expires, the corresponding state will be deleted. This timeout-driven deletion

prevents resources from being orphaned when a receiver fails to send an explicit tear-down message

or the underlying route changes. It is also the only way to release the resources of no-�lter or

�xed-�lter reservations; in these cases, the switch cannot determine if the reservation is being

shared by multiple receivers, and so can only delete the reservation when it times out. It is the

responsibility of both senders and receivers to maintain the proper reservation state inside the

network by periodically refreshing the path and reservation state.

When a route or membership changes, the routing protocol running underneath RSVP will forward

future path messages along the new route(s) and reach new members. As a result, the path state

at switches will be updated, causing future reservation messages to traverse the new routes or new

route segments. Reservations along old routes, or along routes to inactive senders or receivers will

time out automatically. Because path and reservation messages are sent periodically, the protocol

will tolerate occasional corruption or loss of a few messages. This soft-state approach adds both

adaptivity and robustness to RSVP.

The advantages of the soft-state approach, however, do not come for free; the periodic refreshing

messages add overhead to the protocol operation. We next discuss how RSVP controls protocol

overhead.

3.5 Protocol Overhead Control

The RSVP overhead is determined by three factors: the number of RSVP messages sent, the size

of these RSVP messages, and the refresh frequencies of both path and reservation messages. As we

describe in more detail in Section 4, RSVP merges path and reservation messages as they traverse

the network. The merging of path messages means that, in general, each link carries no more than

a single path message in each direction during each path refresh period. Similarly, the merging

of reservation messages means that each link carries no more than a single reservation message in

each direction during each reservation refresh period. The maximum size of both the path and

10

reservation messages on a particular link is proportional to the number of data sources upstream.

RSVP controls the third overhead factor, the refresh frequencies, by tuning the timeout values

carried in path and reservation messages. The larger the timeout value, the less frequent the refresh

messages have to be sent. There exists, however, a tradeo� between the overhead one is willing

to tolerate and RSVP's responsiveness in adapting to dynamic changes. For instance, reservation

messages are forwarded according to the path state maintained at intermediate switches, which

in turn gets synchronized with the routing protocol state every time a path message is processed.

When a route changes, reservations along the new route (or new route segments) will not be

established until a new path message has been sent (causing the path state to be updated), and a

new reservation message has been sent along the new route.

Our current RSVP implementation uses static timer values which are chosen on the basis of engi-

neering judgment; in the future we will investigate adaptive timeout algorithms to optimally adjust

the timer values according to observed dynamics in route and membership changes, as well as the

loss probability of RSVP messages.

3.6 Modularity

In the context of a real-time, multicast application, RSVP interfaces to three other components in

the architecture: (1) the
owspec, which is handed to RSVP by an application, or some session

control protocol on behalf of the application, when invoking RSVP; (2) the network routing protocol,

which forwards path messages towards all the receivers, causing RSVP path state to be established

at intermediate switch nodes; and (3) the network admission control, which makes an acceptance

decision based on the
owspec carried in the reservation messages.

We list modularity as one of RSVP's design goals because we would like to make RSVP as indepen-

dent from the other components as possible. We have attempted to make few assumptions about

these other components, and those assumptions that we have made are described explicitly.

We make no assumptions about the
owspec to be carried by RSVP. RSVP treats the
owspec as

a number of uninterpreted bytes of data that need to be exchanged among only the applications

and the network admission control algorithm. We assume that the admission control algorithm

operates by having an RSVP reservation packet containing a
owspec pass through the switches

along the delivery path for that
ow (but obviously in the reverse direction), with each switch

returning an admit or reject signal; the resource reservation is established only if all switches along

the path admit the
ow. We also assume that the packet scheduling algorithm can change packet

�lters without needing to establish a new reservation.

The only assumptions that we make about the underlying routing protocol(s) are that it provides

both unicast and multicast routing, and that a sender to a multicast group can reach all group

members under normal network conditions; obviously, in the case of a network partition no routing

protocol can guarantee this reachability. We do not assume that a sender to a multicast group is

necessarily a member of the group, nor do we assume that the route from a sender to a receiver is

the same as the route from the receiver to the sender.

11

4 RSVP Operation Overview

RSVP, and indeed any reservation protocol, is a vehicle for establishing and maintaining state in

switches along the paths that each
ow's data packets will travel. Because reservation messages

are initiated by each receiver, RSVP must make sure that the reservation messages from a receiver

follow exactly the reverse routes of the data streams from all the sources (that the receiver is

interested in). In other words, RSVP must establish a sink tree from each receiver to all the sources

to forward reservation messages.

The sink tree for each receiver is formed by tracing, in the reverse direction, the paths (as de�ned by

the multicast routing protocol) from the receiver to each of the sources (see Figure 4). Periodic path

messages are forwarded along the routing trees provided by the routing protocol, and reservation

refresh messages are forwarded along the sink trees to maintain current reservation state. However,

a reservation message propagates only as far as the closest point on the sink tree where a reservation

level greater than or equal to the reservation level being requested has already been made.

Each switch uses the path states to maintain, for each multicast group, a table of incoming and

outgoing interfaces. Each incoming interface keeps the information about the
owspecs it has

forwarded upstream (which is needed in merging reservation requests from multiple downstream

links). For each outgoing link, there is a list of senders; associated with each sender in this list is

the previous hop address from which data from that sender arrives at the current switch. There is

also a set of reservations. Generally speaking, each reservation consists of a reserver, a �lter, and

the amount of resources reserved. For no-�lter reservations, the �rst two �elds are not needed; and

for �xed-�lter reservations, the �rst �eld is not needed.

We now review the process of creating and maintaining reservations in more detail. Before or when

each data source starts transmitting, it sends a path message which contains the
owspec provided

by the data source. When a switch receives a path message, it �rst checks to see if it already has

the path state for the named target (which can be either a single host or a multicast group, plus the

destination port number); if not it creates path state for that target. The switch then obtains the

outgoing interface(s) of the path message from the routing protocol in use, and updates its table

of incoming and outgoing links accordingly; the source address (and port number in the Internet

context) carried in the path message will also be recorded if the path message indicates that the

application may require a �ltered reservation. This path message is forwarded immediately only if

it is from a new source or indicates a change in routes. The switch can detect a change in routes

by checking to see if the outgoing interfaces indicated by the routing protocol's routing table are

di�erent than the outgoing links maintained in the path state. Otherwise, the switch discards the

incoming path message and instead periodically sends its own path messages which contain the

path information carried in all the path messages that it has received so far.

When a receiver receives a path message from a source for whose data it would like to create a

reservation, the receiver sends a reservation message using the (possibly modi�ed)
owspec that

came in the incoming path message. As described earlier, the reservation message will be guided

along the reverse route of the path messages to reach the data source(s). Along the way if any

switch rejects the reservation, an RSVP reject message will be sent back to the receiver and the

reservation message discarded; otherwise if the reservation message requires a new reservation to be

12

made, it will propagate as far as the closest point along the way to the sender(s) where a reservation

level equal or greater than that being requested has been made.

Once the reservation is established, the receiver periodically sends reservation refresh messages

(which are identical in format to the original request). As the reservation requests are forwarded

along the sink trees, the switches merge the requests for the same multicast group by pruning those

that carry a request for reserving a smaller, or equal, amount of resources than some previous

request. As an example, let us assume that H1 in Figure 4 is a video source and that H4 has

reserved enough bandwidth to receive the full video data stream while H5 wants to receive only

low resolution video data. In this case, when the reservation request from H5 reaches S4, S4 will

make the requested reservation over the link from S4 to H5, and then S4 will drop the request (i.e.,

not forward it upstream) because su�cient resources have been reserved already by H4's request.

When a sender (receiver) wishes to terminate the connection, the sender (receiver) sends out a

path (reservation) teardown message to release the path state or reserved resources. There is no

retransmission timer for this teardown message. In cases where the teardown message is lost, the

intermediate nodes will eventually time out the corresponding state. As we noted above, no-�lter

or �xed-�lter reservations cannot be explicitly torn down because the switches do not maintain

su�cient state.

5 Example

To illustrate in more detail how RSVP works, we consider a simple network con�guration. There are

5 hosts connected by 7 point-to-point links and 3 switches (we assume that for the links connecting

them directly to a switch, the hosts act as switches in terms of reserving resources). To simplify the

description, in the following examples we assume adequate network resources exist for all reservation

requests. Furthermore, the example involves only a single multicast group, so we do not discuss the

addressing used to distinguish reservations made for one multicast group from reservations made

for other multicast groups.

We describe the cases of no-�lter and �ltered reservations separately; we start with the simpler

case, no-�lter reservations, and then discuss the case of �ltered reservations.

5.1 No-�lter Reservations

Let us consider an audio conference to be held among 5 participants, one at each of the 5 hosts

depicted in Figure 5 (therefore each host behaves both as a source and a receiver at the same time).

We assume that (1) the routing protocol has built a multicast routing tree so that each sender can

reach all the receivers; (2) each switch has received RSVP path messages with the F-
ag o� from

all the sources (therefore the switches do not record source information) and stored complete path

state, as below (although in a real application sources may start at di�erent times hence the path

state would be built up over time); and (3) no reservations have been made yet.

13

S1 S2 S3

Incoming-links L1, L2, L6 L5, L6, L7 L3, L4, L7

Outgoing-links L1, L2, L6 L5, L6, L7 L3, L4, L7

We now describe how reservations are created. H1 wants to receive data from all other senders to

the multicast group, but only wants enough bandwidth reserved to carry one audio stream; thus, it

sends a reservation message R1(B, no-filter) to S1, where B is the amount of bandwidth needed

to forward one audio stream. When S1 receives R1(B, no-filter), it �rst reserves resources over

L1 (in the direction from S1 towards H1), then attaches the following reservation state to the path

state to indicate the amount of the reservation made over L1:

S1

Incoming-links L1 L2 L6

Outgoing-links L1(B) L2 L6

Finally, S1 forwards R1(B, no-filter) over all incoming-links, in this case L2 and L6. Note that

the switch never forwards any RSVP message over the link the message came from.

The copy of R1(B, no-filter) that was sent along L6 reaches S2, which reserves B over L6 and

forwards the message to links 5 and 7. When the copy of R1(B, no-filter) that was sent along

L7 reaches S3, that switch reserves B over L7 and then forwards R1(B, no-filter) over links 3

and 4.

When H2 wants to create a reservation, it sends a reservation message, R2(B, no-filter), to S1.

Upon receipt of R2(B, no-filter), S1 �rst reserves B over L2, so the path state then becomes:

S1

Incoming-links L1 L2 L6

Outgoing-links L1(B) L2(B) L6

S1 then forwards R2(B, no-filter) over L1 only, because it has forward an identical request over

L6 previously.

After all the receiving hosts have sent RSVP reservation messages, an amount B of resources have

been reserved over each of the 7 links in each of the two directions.

Before leaving this example of no-�lter reservation, let us consider the tradeo� between keeping

extra state information and the possibility of over-reserving resources on certain links as we men-

tioned earlier. In the above example we had assumed that all the path messages had the F-
ag

o�, therefore there is no per source information kept at the switches. As a result, if each of the

receivers had requested an amount 2B of bandwidth (i.e., an amount enough to carry two full audio

streams), then an amount 2B would be reserved on every link even though on link L1 (and similarly

on links L2, L3, L4, and L5) in the direction away from H1 we need only reserve an amount B since

there is only a single source upstream on the link. In general, a no-�lter reservation should indicate

how much should be reserved as a function of the number of sources upstream; in this example

it would be B units per upstream source. Unfortunately, one cannot know the number of sources

upstream without keeping a list of the sources. Had the F-
ag been set in all the path messages,

the switches would have kept track of individual sources and by paying this extra cost in increased

state, only the required amount of resources would have been reserved along all the links.

Although not maintaining per source information can lead to an over-reserving of resources over

some of the network links, as the above example showed, in those applications where there are many

14

data sources, but few resources are needed for each source (such as in a data-gathering application

with many sensors), one may still choose to reduce the switch state at the possible expense of

over-reserving resources over some links.

5.2 Filtered Reservations

Now consider the case where H2, H3, H4, and H5 are receivers (i.e., members of the multicast

group), and H1, H4, and H5 are sources. All path message have the F-
ag set, so each switch needs

to keep a list of sources associated with their previous hops. Assume that S1 has received path

messages from all of the sources, but that no reservations have yet been made. Thus, S1's path

state contains the following entry:

S1

Outgoing-links L2(src:H1,H1 | H4,S2 | H5,S2) L6(src:H1,H1)

The notation L2(src:H1,H1 | H4,S2 | H5,S2) indicates that data from sources H1, H4, and H5

are sent out along outgoing link L2; for each source, H1, S2, and S2 are the previous hop addresses

from which data from that source arrives, respectively. H1 is not a receiver, so L1 is not among

the outgoing links of S1.

Now assume that H2 sends the following reservation message, denoted R2(B, H4). That is, H2

wants to receive packets only from source H4, and is reserving an amount B that is su�cient for

one source. The reservation message R2(B, H4) reaches S1 via the L2 interface. S1 �nds that H4

is indeed one of the sources it has heard, and that the packets from H4 come from S2. S1 reserves

bandwidth B over L2, and forwards R2(B, H4) over L6 to S2.

S2's path state contains the following entries:

S2

Outgoing-links L5(src:H1,S1 | H4,S3) L6(src:H4,S3 | H5,H5 L7(src:H1,S1 | H5,H5)

When S2 receives R2(B, H4), it reserves B over L6, and then forwards the message R2(B, H4) to

S3 (which is the previous hop towards H4).

S3's path state contains the following entries:

S3

Outgoing-links L3(src:H1,S2 | H4,H4 | H5,S2) L4(src:H1,S2 | H5,S2 L7(src:H4,H4)

Upon receiving R2(B, H4), S3 reserves B over L7, and forwards the message to H4. When the

message reaches H4, a pipe of B has been reserved from H4 to H2. This describes the reservation

events surrounding the reservation request R2(B, H4).

Suppose that sometime afterwards, H5 sends the reservation message R5(2B, *), where * indicates

a request for dynamic-�lter reservation. When S2 receives this reservation message R5(2B, *), it

reserves 2B over L5 (at least 2 sources can go that direction) for H5; and forwards the reservation

message R5(2B, *) over L6 and L7.

When S1 receives R5(2B, *), it �nds out that there is only one source going out L6. It therefore

reserves an amount B over L6 for R5 and then passes the reservation request on to H1.

15

When S3 receives R5(2B, *), it �nds out that there is only one source going out L7, and has

a �xed-�lter reservation already. S3 does not reserve any more, nor does it further forward the

request to L4.

Suppose now that at some point H4 decides to terminate both receiving and sending, and does not

transmit any teardown messages. Since H4 will no longer be sending path or reservation refreshes,

all H4 related state will time out, resulting in the following outgoing-link entries in the various

switches:
S1 L2(src:H1,H1 | H5,S2) L6(src:H1,H1)

S2 L5(src:H1,S1) L6(src:H5,H5) L7(src:H1,S1 | H5,H5)

S3 L3(src:H1,S2 | H5,S2)

S1 stops forwarding R2(B, H4) from H2 and returns an RSVP error message to H2. S2 forwards

future R5(2B, *) reservation refreshes to the L6 direction only since there are no more sources in

L7 direction.

For the sake of simplicity, in the above example we have assumed that each of the data streams

requires the same amount of bandwidth to forward. RSVP is designed to handle the case where

each source may demand di�erent amount of resources, and each receiver may receive only a subset

of the data from each source. In �xed-�lter reservations, this requires that each source �lter must

be associated with a speci�c amount of resources. In dynamic-�lter reservations, the receiver must

either receive the same amount of data when \switching channels", or it must specify a speci�c

amount of resources for each of the sources in its current �lter, and the sum of its total incoming

data volume does not change over the lifetime of the reservation.

6 Implementation Status

This article is intended to illustrate, at a general level, how RSVP works. There are many details

that, for the sake of brevity and clarity, we have not presented. In particular, we have not described

with any speci�city the merging algorithm. However, we have veri�ed this design in a packet-level,

interactive simulator, where all such details have been tested.

The simulator used is written by one of us (LZ), and has been used in several previous simulation

studies ([4, 10, 18]). The simulator provides modules that imitate the actual behavior of common

network components, such as hosts, links, IP routers, and protocols such as IP, TCP, and UDP.

We veri�ed RSVP design by implementing the protocol in the simulator and then observing, step

by step, how the protocol handles various dynamic events, such as new senders/receivers joining a

multicast group, or existing members leaving. Indeed, the design of most protocol details emerged

from an iterative process of simulation and redesign.

Using the simulator code as a starting point, the protocol has been implemented by Sugih Jamin

(USC) for experimentation on Dartnet, which is a cross-country T1 network testbed sponsored by

ARPA linking roughly a dozen academic and industrial research institutions. Preliminary tests

have been performed on this implementation, but no systematic performance studies have been

done as yet.

16

7 Related Work

In the course of exploring network algorithms that deliver quality of service guarantees, there have

been several proposals and prototype implementations of network resource reservation algorithms

over the last few years (see, for example, [6], [2]). However, almost all of these prototypes deal

exclusively with unicast reservations.

The Stream Protocol, ST [7], was a pioneering work in multicast reservation protocol design. ST

was designed speci�cally to support voice conferencing and was capable of making both unicast and

multicast resource reservations. At the time ST was proposed, there was no work on sophisticated

multicast routing, so ST would make resource reservations over a single, duplex distribution tree

which was created by blending the paths from unicast routing; this was done with the assumptions

that the routes were reversible and the application data tra�c would travel in both directions.

However ST requires a centralized Access Controller to coordinate among all the participants and

to manage the tree establishment.

The successor to ST, ST-II [17], continues to create its own multicast trees by blending the paths

from unicast routing; however, ST-II establishes multiple simplex reservations to eliminate the

Access Controller. Each data source makes a resource reservation along a multicast tree that is

rooted at the source and reaches out to all the receivers; the reservation made along the tree uses

a single
owspec, therefore ST-II cannot accommodate heterogeneous receivers. Because each data

source makes its reservation independently, a single pipe is reserved from every source to every

receiver in the same multicast application group. An analysis of ST-II implementation and design

issues is provided in [15].

Thus, neither ST nor ST-II provides a robust and e�cient solution to the multipoint-to-multipoint

resource reservation problem; they share several of the limitations of the strawman proposal de-

scribed earlier. The RSVP design e�ort was initiated to �ll this vacuum. Recently, however, there

have been other proposals to �ll this need. Pasquale et al. have proposed a dissemination-oriented

approach in their work on multimedia multicast channels [16]. They share with us the viewpoint

that, in order to e�ciently support heterogeneous receivers, each receiver must be able to specify a

stream �lter for the subset of the data it is interested in receiving, and furthermore that, in order

to not waste network resources, the �lters from all the receivers should be propagated towards the

sender so that the subset of the data that no one is interested would be stopped at the earliest

point along the source propagation tree. However, they only considered single source applications

(such as cable TV), as opposed to RSVP's functionality of supporting multipoint-to-multipoint ap-

plications, and they have mainly focused on the programming interface to applications, as opposed

to our interest in designing a protocol that reserves resources inside the network and adjusts the

reservation to dynamic environmental changes.

8 Unresolved Issues

While RSVP has been simulated and tested to some extent, we fully expect that further incremental

design changes will be made as we gain experience with RSVP, both on DARTnet and also through

further simulation. Besides these incremental changes, however, there are several larger design

17

issues that remain unresolved. These issues are:

� RSVP was designed with minimal expections of routing. Path messages are used to essentially

invert the routing tables, a function that routing could easily provide if it were so designed. If

we were to design new routing algorithms, what routing support would we include to support

resource reservation algorithms?

� In this design we have associated �lters with resource reservations. In fact, �lters could be

applied to
ows even without reserved resources. Furthermore, there are �lter styles besides

the ones described here that might be useful. For instance, as has been proposed by Jacobson

[9], for remote lectures with several speakers at separate sites one might want a dynamic

�ltered reservation where the �lter is the same for each receiver; this feature would allow the

audience to switch (in unison) to di�erent speakers with only one set of resources reserved.

Thus, one unresolved issue is de�ning the general service model and interfaces for such �lters,

where these de�nitions are not speci�cally tied to the presence of resource reservations.

� Our current simulations and tests deal only with reasonably small networks and small mul-

ticast groups. We do not yet understand how RSVP performs when the size of the multicast

groups gets very large. Can one use caching strategies to avoid the router state explosion

when S (the number of senders) and/or R (the number of receivers) gets very large? This

issue is particularly relevant to the case of cable TV, where every home would want a dynamic

reservation, but the switches obviously would not want to keep individual reservation state

for each home.

9 Summary

RSVP's architecture is unique in that: (1) it provides receiver-initiated reservations to accommo-

date heterogeneity among receivers as well as dynamic membership changes; (2) it separates the

�lter from the reservation, thus allowing channel changing behavior; (3) it supports a dynamic and

robust multipoint-to-multipoint communication model by taking a soft-state approach in maintain-

ing resource reservations; and (4) it decouples the reservation and routing functions and thus can

run on top of, and take advantage of, any multicast routing protocols.

We have veri�ed the �rst RSVP design, as described above, by detailed simulation and a preliminary

implementation. Much testing remains to be done in the context of larger scale simulations, as well

as in real prototype networks such as DARTnet.

10 Acknowledgments

We would like to gratefully acknowledge useful conversations with Bob Braden, David Clark, Ron

Frederick, Shai Herzog, Sugih Jamin, and Danny Mitzel.

18

References

[1] Ballardie, A., Tsuchiya, P., and Crowcroft, J., Core Based Trees (CBT), Internet Draft,

November, 1992.

[2] Cidon, I., Segall, A., Fast Connection Establishment in High Speed Networks, in the Proceed-

ings of ACM SIGCOMM '90, September, 1990.

[3] Clark, D. D. The Design Philosophy of the DARPA Internet Protocols, in the Proceedings

of ACM SIGCOMM '88, August, 1988.

[4] Clark, D. D., Shenker, S., and Zhang, L. Supporting Real-Time Applications in an Integrated

Services Packet Network: Architecture and Mechanism, in the Proceedings of ACM SIG-

COMM '92, August, 1992.

[5] Deering, S., Multicast Routing in a Datagram Internetwork, Tech. Report No. STAN-CS-92-

1415, Stanford University, December, 1991.

[6] Ferrari, D., Banerjea, A., and Zhang, H., Network Support for Multimedia: A Discussion of

the Tenet Approach, Technical Report TR-92-072, Computer Science Division, University of

California at Berkeley, November 1992.

[7] Forgie, J., ST { A Proposed Internet Stream Protocol, Internet Experimental Notes IEN-119,

September 1979.

[8] Golestani, S. J., Duration-Limited Statistical Multiplexing of Delay Sensitive Tra�c in Packet

Networks, In Proceedings of INFOCOM '91, 1991.

[9] Jacobson, V., private communication

[10] Jamin, S., Shenker, S., Zhang, L., and Clark, D., Admission Control Algorithm for Predictive

Real-Time Service, Proceedings of 3rd InternationalWorkshop on Network and Operating

System Support for Digital Audio and Video, November, 1992.

[11] Kalmanek, C., Kanakia, H., and Keshav, S., Rate Controlled Servers for Very High-Speed

Networks, In Proceedings of GlobeCom '90, pp 300.3.1-300.3.9, 1990.

[12] J. Hyman, A. Lazar, and G. Paci�ci. Real-Time Scheduling with Quality of Service Constraints,

In IEEE JSAC, Vol. 9, No. 9, pp 1052-1063, September 1991.

[13] Hyman, J. M., Lazar, A. A., Paci�ci, G.: Joint Scheduling and Admission Control for ATS-

based Switching Nodes: Proc. ACM SIGCOMM '92, August, 1992.

[14] Partridge, C., A Proposed Flow Speci�cation, Internet RFC-1363, July, 1992.

[15] C. Partridge and S. Pink. An Implementation of the Revised Internet Stream Protocol (ST-2),

In Internetworking: Research and Experience, Vol. 3, No. 1, pp 27-54, March 1992.

[16] Pasquale, J., Polyzos, G., Anderson, E., and Kompella, V., The Multimedia Multicast Channel,

Proceedings of 3rd International Workshop on Network and Operating System Support

for Digital Audio and Video, November, 1992.

19

[17] Topolcic, C., Experimental Internet Stream Protocol: Version 2 (ST-II), Internet RFC 1190,

October, 1990.

[18] Zhang, L., A New Architecture for Packet Switching Network Protocols, In Technical Report

TR-455, Laboratory for Computer Science, Massachusetts Institute of Technology, 1989.

20

1. Accommodate heterogeneous receivers

2. Adapt to changing multicast group membership

3. Exploit the resource needs of di�erent applications in order to use network resources e�ciently

4. Allow receivers to switch channels

5. Adapt to changes in the underlying unicast and multicast routes

6. Control protocol overhead so that it does not grow linearly (or worse) with the number of
participants

7. Make the design modular to accommodate heterogeneous underlying technologies

Figure 1: The Seven Design Goals of RSVP.

1. Receiver-Initiated Reservation

2. Separating Reservation from Packet Filtering

3. Providing Di�erent Reservation Styles

4. Maintaining \Soft-State" in the Network

5. Protocol Overhead Control

6. Modularity

Figure 2: The Six Design Principles of RSVP.

H3

H4

H5

S1

S2
S3

H1

H2

S4

Figure 3: A simple network topology with the multicast routing trees depicted. H1 and H2 are
data sources, and H3, H4, and H5 are receivers. The solid lines depict the routing tree of H1 and
the dotted lines the routing tree of H2. In general, the set of sources and the set of receivers may
overlap partially or completely; here, for the sake of clarity, we consider the case where they are
disjoint.

21

H3

H4

H5

S1

S2
S3

H1

H2

S4

Figure 4: A simple network topology with the sink trees depicted. H1 and H2 are data sources,
and H3, H4, and H5 are receivers (sinks). The dotted lines depict the sink tree of H3 and the solid
lines the sink tree of H4. For clarity the sink tree of H5 is omitted.

H1

H2 H3

H4H5

S1
S2

S3

L1

L2 L3

L4
L5

L6 L7

Figure 5: Network Topology.

22

