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Abstract

The programming language Standard ML (SML) draws much of its expressive power from advanced
concepts in type theory. In addition, unlike other HOT (Higher-Order Typed) languages, SML has the
distinction of being formally defined. Unfortunately, the Definition of SML is not type-theoretic, making it
difficult to analyze and extend. Much work in the last decade has thus been devoted to better understanding
the type-theoretic underpinnings of SML, particularly with respect to its module system.

In my thesis work I plan to study several extensions to SML that would enhance its support for modular
programming even further. My methodology for formalizing these extensions follows the approach advocated
by Harper and Stone, who gave an interpretation of SML that involves elaborating SML programs into type
theory. This approach allows me to design my extensions at the level of the underlying type theory, which is
the ideal setting for language design, but provides the option to fall back on elaboration techniques when type
inference or syntactic sugar is key to making a language feature palatable. I will incorporate my extensions
into the TILT compiler for SML, whose front-end is a suitable testbed for implementation as it is based on
the Harper-Stone framework.

This proposal describes my work thus far on extending SML with higher-order modules, modules as first-
class values, and recursive modules. A running theme in my type theory for modules is the importance of
effects. The design of my type system for the first two extensions is driven by the intuition that the creation
of abstract data types should be thought of as an effect. My type system is more expressive than previous
systems because it distinguishes type abstraction (a compile-time effect) from type generativity (a run-time
effect). While my proposal for recursive modules relies more heavily on elaboration techniques, its success
hinges critically on the introduction of a type of lazy memoized modules, used to encapsulate term-level
computational effects.
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1 Introduction

The most notable aspect of the programming language Standard ML (SML) is its powerful type system. By
enforcing strong invariants on how program data may be reliably manipulated, types facilitate the coherent
modular development of robust programs. The module system of SML extends the power of the core type
system by allowing programmers to specify and enforce their own invariants in the form of abstract data
types. Furthermore, advanced features of SML’s type and module systems, like parametric polymorphism
and functors, support generic programming and code reuse, thus carrying to a typed setting most of the
purported flexibility of untyped languages.

Unlike other full-fledged strongly-typed languages, such as Objective Caml and Haskell, SML has the
distinction of being formally defined.1 The Definition of SML [28] provides a clear and rigorous point of
reference for both users and implementers of the language. The static semantics of SML given by the Defi-
nition classifies well-typed program expressions with so-called semantic objects. Like the syntactic classifiers
present in SML itself (e.g., types and signatures), semantic objects describe how a program expression may
be used in the rest of the program.

The reason that the Definition employs semantic objects, instead of defining SML via a direct type system,
is that the language of syntactic classifiers is too limited. For example, consider the following polymorphic
function:

fun f x =

let fun g y = if true then x else y

in g x

end

While typechecking f, assuming x has been assigned the type variable α, the semantic object assigned to
the inner function g is α → α. In contrast, the semantic object assigned to the entire function f generalizes
the type variable α to become ∀α. α → α. The distinction is important: f is a polymorphic function, but
g is not polymorphic inside the body of f and can only be applied to terms of the same type as x. The
syntactic type language of SML lacks an explicit ∀ constructor and is therefore unable to encode this critical
distinction between monotypes and polytypes.

The very existence of the Definition has been a key factor in the success of SML, encouraging the develop-
ment of independent implementations of the language while providing stability of SML code bases across those
implementations. The flip side of that stability is that the semantic object language is closely tailored to the
needs of SML, often to the point of seeming ad hoc from a more general semantic perspective. For instance,
SML supports two forms of type definitions. A type definition of the form type t = τ binds a type identifier
t as shorthand for type τ . A datatype definition of the form datatype t = C1 of τ1 | ... | Cn of τn

creates an abstract type t whose elements can be constructed from values of types τ1, . . . , τn using C1, . . . , Cn

respectively, where τ1, . . . , τn may refer recursively to t. To accommodate the presence of both definition
forms, the semantic objects of the Definition that correspond to type definitions are type environments that
bind type identifiers to type structures. A type structure, in turn, is a pair (θ,VE ) consisting of a type θ
and a value environment VE . If the type structure corresponds to a type definition, then VE is empty.
Otherwise, θ must be an abstract type name and VE is the environment listing θ’s constructors along with
their types. Thus, type structures do not provide a unified semantic account of SML type definitions so
much as a merging of two utterly different definition forms into a single either/or form.

1.1 Type Theory and Elaboration

While the Definition’s semantic approach is perfectly suitable for a formal definition, much work in the last
decade has been devoted to better understanding the type-theoretic underpinnings of SML, particularly with
respect to the module system [25, 15, 16, 14, 21, 22, 19]. There are several reasons for this. For one, the
methodology of type theory offers an extensible framework for studying language features and clarifying
the relationships between them. There are established techniques for proving properties like safety and
decidability of type systems, making it easier to design sound and effective extensions to a type system.

1Faxén [10] recently gave a static semantics formalizing most of the Haskell 98 Report [1], in a manner rather similar to the
approach of Harper and Stone [19] described below. The informal Report remains the definition of Haskell, however.
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Another reason is the advent of type-directed compilation [17, 47, 43, 41]. In traditional compilers, even
for a strongly-typed language like SML, type information is discarded after typechecking. In type-directed
compilers, the intermediate languages of the compiler are typed so as to enable optimizations that rely on
type information. For instance, the TILT compiler for SML developed at CMU [47, 45, 36] maintains type
information in order to implement intensional type analysis [17] and tag-free garbage collection [32]. Thus,
regardless of how SML programs are typechecked, a type-directed SML compiler will at some point need
to translate them into an internal typed language. Such a translation may be construed as an interpreta-
tion of SML in terms of more basic type-theoretic mechanisms. TILT performs this translation as part of
typechecking, based on the framework of Harper and Stone [19, 18].

Harper and Stone formalize the elaboration of SML programs into a comparatively simple, yet powerful,
type theory, referred to in TILT as the HIL, or “High Intermediate Language”. There is a natural tension in
the design of such a type theory. On one hand, a simple design is better because it draws out the connections
between related language features and avoids redundancy. On the other hand, it is desirable for the theory
to be as high-level as possible, in order to avoid heavy reliance on elaboration tricks and come closer to
modeling the actual semantics of SML. The HIL strikes a balance between these goals, especially in its
module system, which is based on the Harper-Lillibridge formalism of translucent sums [14]. HIL modules
are very close to their SML counterparts in many respects, and the presence of interfaces (in the form of
HIL signatures) makes the HIL high-level enough to serve as an interchange format for separate compilation.
At the same time, the elaborator uses HIL modules to encode polymorphism (using functors) and type
generativity, including datatype generativity (using opaque signature ascription), thus simplifying the HIL
itself.

The type system of the HIL consists of a set of judgments regarding well-formedness, type equivalence
and subtyping. Well-formedness judgments typically have the form

Γ ` IL-phrase : IL-class

where IL-phrase is some HIL expression like a term, type constructor or module, and IL-class is its classifier,
like a type, kind or signature, respectively. The Harper-Stone (HS) elaborator consists of a set of judgments
transforming well-formed SML expressions into well-formed HIL expressions. These judgments generally
have the form

Γ ` EL-phrase ; IL-phrase : IL-class

where EL-phrase is an external-language (SML) expression, IL-phrase is its translation, and IL-class the type
of the translation. The form of these elaboration judgments is reminiscent of judgments in the Definition,
with the HIL playing the role of the semantic object language. The difference is that the output of elaboration
is a well-typed program in a self-contained type system.

An example of how elaboration is helpful is the problem of identifier lookup. In the HIL, the context
Γ consists of a sequence of variable declarations (decs) of the form var 1:class1, · · · , varn:classn, where the
class i’s are HIL classifiers. A reference to a variable is only valid if it appears in Γ. In SML, identifier lookup
is made more complicated by features like open and local declarations, which reveal and conceal names-
paces, respectively. The HS elaborator handles these features by adding a label—i.e., a non-alpha-variable
identifier—to each declaration in Γ (lab i.var i:class i), and the labels are used for a variety of elaboration
tricks. The set of elaborator labels includes the set of SML identifiers but also special identifiers that the SML
programmer cannot write. For instance, the appearance of the special expose label in a signature indicates
to the elaborator that the underlying module implements a datatype definition. Bindings under a local

declaration are kept hidden by placing them in a module bound to a dummy label that does not correspond
to any SML identifier. Opening a module’s namespace with open is implemented by binding the module to
a “starred” label, which tells the elaborator to look inside the module’s namespace during identifier lookup.
Although not based in type theory, the use of these special labels is relatively simple and provides a uniform
mechanism for dealing with namespace issues that do not seem to admit clean type-theoretic solutions.

1.2 Effective Type Theory for Modularity

The HS framework provides one with a flexible method of formalizing and extending a full-fledged program-
ming language like SML. The programming language designer can first attempt to account for language
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features at the level of the underlying HIL type theory, which is the ideal setting for language design. When
type inference or syntactic sugar is key to making a language feature palatable, the designer can then fall
back on elaboration techniques. Thus, HS allows one to develop an effective type theory, that is, a type
theory that scales—by means of elaboration—to an external language that is more pleasant to program in.

As suggested above, much of the power of the HS approach to language definition comes from the
consolidation of a variety of features under the concept of modularity. The module system of SML, which
is reflected in the underlying type theory, provides support for namespace management, type abstraction,
generic programming and separate compilation. In addition, HIL modules are used to interpret a variety of
“core” SML constructs such as polymorphic functions and datatype declarations.

In my thesis work I propose to study several ways of enhancing SML’s support for modular programming
even further, and to use the Harper-Stone framework as a basis for formalizing and implementing my language
extensions. In this proposal document I present my work thus far on the following two extensions to the
SML module system:

Higher-Order Modules and Modules as First-Class Values SML functors are first-order in the
sense that they can only be defined at top-level and cannot appear inside the arguments or bodies of other
functors. They are also generative, in the sense that functors whose result signatures contain abstract type
specifications generate fresh abstract types at each application. Lastly, SML modules are purely second-class,
meaning that they exist at a separate syntactic level from core-language terms, and the language of module
constructs is limited.

These characteristics of the SML module system define one point in the possible design space of modules.
Another viable point is the module system of Objective Caml, which supports higher-order modules and a
form of non-generative (or applicative) functors but, like SML, restricts modules to be second-class. Other
module systems have been proposed that support modules as first-class values but lack applicative functors.
In Section 2, I will show how all of these design points can potentially offer useful programming idioms, and
how all can be encompassed by a new type-theoretic approach to the problem. Specifically, I will describe a
type system for higher-order second-class modules that supports both generative and non-generative functors
and allows modules to be packaged as first-class values. This approach is novel in treating type abstraction
as an effect and distinguishing different kinds of such typing effects.

Recursive Modules Modules in SML are strictly hierarchical, meaning that there can be no cyclic de-
pendencies between modules. If one wants to write mutually recursive function or data type definitions that
belong conceptually in different program components, the hierarchical restriction inhibits natural modular-
ization of the program. Separating those definitions into different modules, however, would require support
for (mutually) recursive modules.

While several authors have proposed recursive module extensions to ML and Scheme [9, 11], few have
attempted a type system or even a Definition-style formalization for their extensions. Crary et al. [3]
have given a theoretical account of recursive modules, introducing the key ideas of fixed-point modules and
recursively dependent signatures. More recently, Russo [40] has developed an extension to the Moscow
ML compiler [33] that relaxes some of Crary et al.’s restrictions on the presence of computational effects in
recursive modules, but offers inadequate support for separate compilation of recursive modules. In Section 3, I
propose an approach to recursive modules that is capable of encoding Russo’s semantics, but which overcomes
its deficiencies by introducing an explicit type of lazy memoized modules. My proposal relies on a combination
of extensions to both the type theory and the elaborator.

In the process of writing this proposal, I discovered a theme running through my type-theoretic accounts
of hierarchical and recursive modules: namely, the interaction of modules and effects. Whereas the key to
the success of my type theory of higher-order modules is the tracking of type abstraction and generativity,
which I consider typing effects, the key to enabling separate compilation of recursive modules is the tracking
of term-level effects, such as I/O and operations on mutable state. (Hence, the title of my proposal is a
double entendre.) I am not sure at the moment what this connection signifies or how it might be exploited,
but I am very interested in pursuing it further.

Along with scaling my theoretical work to the level of full-fledged extensions to the HS framework, there
are several other issues less directly related to modular programming that I plan to examine as well. Discussed
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speculatively in Section 4, these include extending the way that SML supports pattern matching (with views)
and overloading (with type classes). Lastly, I plan to incorporate my extensions and revisions to SML into
the TILT compiler, which is an ideal testbed for implementation since the current front-end is based on the
HS framework. As one might expect, there are a number of aspects of the TILT elaborator that diverge or
extrapolate from the HS formalization for practical reasons. Unfortunately, they are largely undocumented
at present. I discuss some of these discrepancies briefly in Section 4.6, and I plan to re-examine them in
light of my extensions to the language. At a minimum, as part of my thesis work, I will fully document the
points of divergence and why I believe the elaborator to faithfully implement its (revised) formalization.

2 A Type System for Modules

Since the publication of the original Definition of Standard ML [27], there has been much research devoted to
understanding SML’s features better through the methodology of type theory. One result of this effort was
the development (by Harper and Lillibridge [14, 24] and Leroy [21], independently) of the translucent sums
(aka manifest types) formalism, which formed the basis of a major improvement to SML’s module system in
its Revised Definition of 1997 [28].

The motivation for translucent sums is rooted in the basic language design ideal that all the information
about a term that is known to the rest of the program should be expressible in its type. Thus, unlike in
SML ’90, signatures in SML ’97 are allowed to contain transparent type specifications (type t = τ), as
well as abstract ones (type t), so that the most-specific “type” of a module can be expressed as a fully
transparent signature that reveals the definitions of all its type components. Whereas the concept of type
sharing constraints between modules was difficult to account for in previous type theories for modules, it falls
naturally out of the translucent sums approach. In addition, the translucent sums type system allows the
programmer to ascribe a signature to a module opaquely, i.e., so that the type information available to clients
of the module is precisely what appears in the signature. The presence of both abstract and transparent
type specifications thus gives the programmer fine-grained component-wise control over the propagation of
type information.

2.1 The Design Space

In addition to the key advance of the translucent sum formalism, studying SML from the perspective of
type theory has shed light on limitations of its module system and suggested natural ways of extending and
improving it. In this section I will describe several interesting directions that researchers have explored in
the design space of module type systems.

2.1.1 Higher-Order Functors

It is common to view the SML module system as constituting its own λ-calculus and, viewing it as such, it
is a natural question why functors are restricted to first-order, i.e., why they may not take other functors
as arguments or return them as results, as permitted in typical λ-calculi. The issue, it turns out, is not that
allowing SML functors to be higher-order would create difficulties for typechecking, but that the generative
nature of SML functors is inappropriate for certain key programming idioms in the higher-order case.

SML functors are generative in the sense that, every time they are applied, they generate fresh abstract
types corresponding to the abstract type components in their result signatures. Consider the following
higher-order functor Apply, written in pseudo-ML syntax, which takes as arguments a functor F of signature
SIG->SIG and a structure X of signature SIG, and applies F to X:

signature SIG = sig type t val x : t end

functor Apply (F : SIG -> SIG, X : SIG) = F(X)

The result signature of F is abstract, so by functor generativity, the most-specific signature of F(X) is also
abstract. Thus, any application of Apply will produce an abstract module of signature SIG.

If the actual argument F to Apply is a functor with abstract result signature, then this is clearly the correct
semantics. However, suppose that the actual argument F is a functor with transparent result signature,
e.g., the identity functor Id of signature (X:SIG) -> SIG where type t = X.t, or a constant functor that
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signature SYMBOL TABLE =

sig

type symbol

val string to symbol : string -> symbol

val symbol to string : symbol -> string

val eq : symbol * symbol -> bool

end

functor SymbolTableFun () :> SYMBOL TABLE =

struct

type symbol = int

val table : string array =

(* allocate internal hash table *)

Array.array (initial size, NONE)

fun string to symbol x =

(* lookup (or insert) x *) ...

fun symbol to string n =

(case Array.sub (table, n) of

SOME x => x

| NONE => raise (Fail "bad symbol"))

fun eq (n1, n2) = (n1 = n2)

end

structure SymbolTable = SymbolTableFun ()

Figure 1: Generative Functor Example

always returns a module with type t = int. In those cases, the signature of F(X) is transparent, while the
signature of Apply(F,X) is not, signaling a loss of type propagation in the use of the higher-order functor.
The problem is that in order for Apply to be applicable to a range of instantiations for F whose result
signatures may differ, the signature of F needs to be kept abstract, which in SML is tantamount to being
generative.

MacQueen and Tofte [26] proposed one solution to this problem, namely to “re-elaborate” higher-order
functors at each point they are applied, in order to take advantage of type information regarding actual
functor arguments like F in the above example. For instance, Apply(Id,X) would force the re-elaboration
of Apply with Id substituted for F, resulting in a module whose type component t is transparently equal to
X.t. There are two main disadvantages of this approach. One is that it relies heavily on having access to the
code for the higher-order functor, which is not a valid assumption in the presence of separate compilation.
The other is that the MacQueen-Tofte formalism is not based on type theory, but on the operational style
of the original Definition of SML, which employed “stamps” to model generativity. It is thus not clear how
their approach would transfer to a type-theoretic setting.

2.1.2 Applicative vs. Generative Functors

An alternative to the MacQueen-Tofte proposal is to consider what functors could be if they were not
generative. The first to do this (in a language with abstract data types) was Leroy, in his work on applicative
(or non-generative) functors [23], which serves as the basis of the module system of Objective Caml [34]. In
Leroy’s system, every time a functor is applied to the same argument, the abstract type components in the
result are the same. This equivalence is made observable by allowing named functor applications to occur
in types. For instance, the body of the Apply functor (above) could, in an applicative setting, be given the
fully transparent signature SIG where type t = F(X).t. In the case that the actual argument F was the
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signature ORD =

sig

type elem

val compare : elem * elem -> order

end

signature SET = (* persistent sets *)

sig

type elem

type set

val empty : set

val insert : elem * set -> set

...

end

functor SetFun (Elem : ORD)

:: SET where type elem = Elem.elem =

struct

type elem = Elem.elem

type set = elem list

...

end

structure IntOrd = struct

type elem = int

val compare = Int.compare

end

structure IntSet1 = SetFun(IntOrd)

structure IntSet2 = SetFun(IntOrd)

Figure 2: Applicative Functor Example

identity, the signature of Apply would then yield the desired equivalence Apply(Id,X).t = Id(X).t = X.t.
Although motivated by the desire to give more expressive types to higher-order functors, applicative

functors pose an interesting alternative to generative functors even in the first-order case. The question of
which one is more appropriate depends on whether or not one is writing code in a purely functional style.

Figures 1 and 2 illustrate the distinction.2 In the first example in Figure 1, we define a functor that
implements a symbol table, containing an abstract type symbol, operations for interconverting symbols and
strings, and an equality test (presumably faster than that available for strings). The implementation creates
an internal (mutable) hash table and defines symbols to be indices into that internal table.

The intention of this implementation is that the Fail exception never be raised. This depends critically
on the generativity of the SymbolTableFun functor. If another instance, SymbolTable2, is created, and
the types SymbolTable.symbol and SymbolTable2.symbol are considered equal, then SymbolTable could
be asked to interpret indices into SymbolTable2’s table, thereby causing failure. Thus, it is essential that
SymbolTable.symbol and SymbolTable2.symbol be considered distinct.

The symbol table example demonstrates the importance of generative functors for encoding abstract
types in the presence of effects. In the absence of effects, however, Leroy [23] gives several examples to
motivate the adoption of applicative functors. For instance, one may wish to implement persistent sets using
ordered lists. Figure 2 exhibits a purely functional SetFun functor, which is parameterized over an ordered
element type, and whose implementation of the abstract set type is sealed. When SetFun is instantiated
multiple times—e.g., in different client modules—with the same element type, it is useful for the resulting
abstract set types to be seen as interchangeable.

2The careful reader will notice that I have distinguished the functors in the two examples by using :> to seal the body of the
generative functor and :: to seal the body of the applicative one. This notation is non-standard for expressing this distinction,
but will make sense in the context of the type theory I present in Sections 2.3 through 2.5.
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Given the usefulness of both applicative and generative functors, several researchers—in particular,
Russo [38] and Shao [42]—have proposed type systems that support both. As I will discuss in Section 2.2,
both of their approaches are interesting, but have complementary deficiencies. One of the main contributions
of my proposed type theory is that it gives a simultaneous account of applicative and generative functors
that overcomes the problems of previous work.

2.1.3 First-Class vs. Second-Class Modules

Modules in SML and Objective Caml are purely second-class, meaning that the language of modules is
separate from the core language of terms and is limited to the introduction and elimination forms for
structures and functors, plus signature ascription. One benefit of these limitations, first observed and
exploited by Harper, Mitchell and Moggi [16], is the principle of phase separation, stating that the type
components of a module cannot depend on any run-time computations, i.e., terms.

Phase separation is what makes the idea of applicative functors sound. The reason it is sensible to write
functor applications in types such as F(X).t is that the type component t of F(X) can only depend on
the (compile-time) type components of F and X, not their (run-time) term components, and thus it will be
the same every time we apply F to X. In fact, Leroy’s system does not utilize phase separation to its full
extent. Specifically, he requires functor applications appearing in types to be in “named form”, and only
admits equivalence of types projected from syntactically identical modules. This is unnecessarily restrictive:
F(X).t should equal F(Y).t so long as X and Y have equivalent type components, a notion that I call
static equivalence. However, even if Y is defined to be precisely X, the equality of F(X).t and F(Y).t is
not observable in Leroy’s system as it is not syntactic identity. In contrast, the more recent treatments of
applicative functors (by Russo and Shao), as well as the one I propose in Section 2.3, take full advantage of
phase separation.

At the same time, it is also desirable for modules to be usable as first-class values. This would make it
possible to choose at run time the most efficient implementation of a signature for a particular data set (for
example, sparse or dense representations of arrays). In his thesis [24], Lillibridge explored the properties
of the translucent sums formalism in a fully general first-class module system. One major problem in his
system is that typechecking is undecidable. Yet there are other, less ambitious ways to incorporate some
of the benefits of first-class modules into a second-class system, which avoid undecidability, as we discuss
in Section 2.6. A problem that is central, however, to the idea of a module-as-first-class-value is that the
type components of such a module may depend on run-time conditions, which breaks the principle of phase
separation. Thus, a type system that encompasses both modules-as-first-class-values and applicative functors
must have some way of distinguishing modules that obey phase separation from those that do not.

2.2 Previous Work on Type Systems for Applicative and Generative Functors

Before presenting my type system, it is important to describe the work of Russo [38] and Shao [42], each
of whom has given a type system supporting both applicative and generative functors. Understanding the
weaknesses in their systems will illuminate the design choices in mine.

Russo’s thesis presents a more type-theoretic version of the Definition of SML that makes explicit the
correspondence (observed by Mitchell and Plotkin [30]) between abstract types and existential types. In his
framework, for example, a module sealed opaquely with an abstract signature (MOD:>SIG) would be assigned
a semantic object that hides the abstract type components of SIG with existentially-bound type names.

The distinction between applicative and generative functors is then viewed as a question of where the ab-
straction (via existential quantification) happens in functors with abstract result signatures. For a generative
functor, the result signature is an existential so that, every time the functor is applied, the types in the result
are hidden under an existential and thus held distinct from any other types. In contrast, applicative functors
hoist the existential quantification outside of the functor. In order for the abstract type components of the
result to be existentially quantified outside of the functor, they must be parameterized over the abstract
type components of the argument. For instance, consider the SetFun functor in Figure 2. Russo would treat
this functor as defining an abstract type constructor ’a setfun, resulting in the following signature:3

3My notation here is a morally accurate simplification of Russo’s using pseudo-ML syntax.
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∃ ’a setfun.

(Elem : ORD) -> sig

type elem = Elem.elem

type set = Elem.elem setfun

...

end

Applying SetFun to a module with elem defined as elem1 and a module with elem defined as elem2 will
produce results with set defined as elem1 setfun and elem2 setfun, respectively. Thus, although the
actual implementation of setfun is abstract, the functor respects static equivalence of its arguments.

The problem with Russo’s system, which is implemented in the Moscow ML compiler [33], is that it allows
any functor to be applicative or generative, the choice being one that the programmer makes at the definition
of the functor. In particular, the body of an applicative functor may contain a generative functor application.
First of all, this semantics severely diminishes the power of functor generativity. For example, the body of
the functor SymbolTableFun in Figure 1 relies on the invariant that it only has to interpret indices into
one symbol table. Suppose, however, that one defines an applicative functor AppSymTabFun that is merely
the eta-expansion of SymbolTableFun. Two instantiations of AppSymTabFun would have compatible symbol

types, thus breaking the implementation invariant. Since the main point of using a generative functor in the
first place was to preserve that invariant, it is unclear what purpose generative functors serve under Russo’s
semantics. As I will show in Section 2.6, his extension for modules-as-first-class-values is also fundamentally
limited by the weakness of his generative functors.

Moreover, I recently discovered that a variant of the eta-expansion example can be twisted into code that
reveals Moscow ML’s higher-order module extension to be unsound [4]. It is important to note that Russo’s
thesis is not unsound, because in his thesis he develops the languages of applicative and generative functors
only in isolation. That I only uncovered the unsoundness of Moscow ML during the writing of this proposal
is a testament to the subtlety of module type theory.

Shao defines a type system for modules based on the idea that applicative functors are fully transparent
functors that have had the definitions of some of their type components hidden after the fact. This semantics
is achieved in his type theory by assigning all functors a generative functor signature by default. A generative
functor signature may then be coerced to an applicative functor signature only if the signature is fully
transparent (or what Shao calls instantiated). Finally, type components in the result of an applicative functor
signature may be made abstract while preserving its applicativity. Otherwise, Shao’s applicative functors
have the same semantics as Russo’s, in particular they respect static equivalence of their arguments.

The problem with Shao’s system is precisely the reverse of the problem with Russo’s—as opposed to
admitting too many applicative functors, he admits too few. Specifically, one cannot write an applicative
functor in his system whose body has any opaque substructures. The best examples of why opaque sub-
structures are important are provided by the interpretation of ML datatypes as abstract types [19]. In both
SML and O’Caml, datatypes are opaque in the sense that their representation as recursive sum types is not
exposed. Thus, in Shao’s system, datatypes may not appear in the bodies of applicative functors, which
considerably limits the utility of his applicative functors and seems like an arbitrary prohibition. For exam-
ple, we would not be able to re-implement the SetFun functor with persistent splay trees, using a datatype

declaration to define the tree type, without making the functor generative. In short, Shao’s system is overly
restrictive because it does not distinguish type abstraction from type generativity.

2.3 A Type System for Fully Transparent Modules

The previous section has hopefully made it clear that the issues concerning the interplay of abstraction and
generativity are rather complex. The type theory I will now set forth is based on my work with Karl Crary
and Bob Harper described in Dreyer et al. [5]. To simplify matters, I will begin the presentation of my type
system for modules by omitting the constructs for abstraction and generativity, namely any form of sealing
(e.g., M :>σ). Thus, modules in this simplified system will be fully transparent and functors applicative (by
default, since generativity is not supported yet). It is a virtue of my type-theoretic approach to the problem
that the constructs for abstraction can be studied orthogonally from the rest of the language, and that in
fact they form conservative extensions of the simplified type system.
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types τ ::= TypM | Πs:σ.τ | τ1 × τ2

terms e ::= ValM | fun f(s:σ):τ.e | e M | 〈e1, e2〉 | πie | let s = M in (e : τ)
signatures σ ::= 1 | [[T ]] | [[τ ]] | Πs:σ1.σ2 | Σs:σ1.σ2 |

�
(M) | Top

modules M, N, F ::= s | 〈〉 | [τ ] | [e : τ ] | λs:σ.M | M1M2 |
〈s = M1, M2〉 | πiM | let s = M1 in (M2 : σ)

contexts Γ ::= ε | Γ, s:σ

Figure 3: Syntax of Fully Transparent Modules

2.3.1 Syntax

The syntax of my type system for fully transparent modules appears in Figure 3. Throughout the technical
development I will consider alpha-equivalent expressions to be identical, and write the capture-avoiding
substitution of module M for module variable s in a syntactic expression E as E[M/s].

The language is divided into a core language of types and terms, and a module language of signatures
and modules. First let us consider the atomic constructs. Modules consist of type and term components, so
the most basic modules are the module [τ ], containing a single type component τ , and the module [e : τ ],
containing a single term component e of type τ . (We will omit the type annotation on term modules when it
is clear from context.) The corresponding signatures are [[T ]], the signature of an atomic module containing
a type, and [[τ ]], the signature of an atomic module containing a term of type τ . The elimination forms for
these signatures are the core-language constructs TypM , which extracts the type from a module of signature
[[T ]], and ValM , which extracts the term from a module of signature [[τ ]].

As for the remainder of the core level, I only include function and product types, but this can and will
be extended in the actual HIL type system to include sums, recursive types, etc. The product type and
term constructs are entirely standard. Note, however, that the (recursive) function construct fun f(s:σ):τ.e
takes a module as its argument. (In the case that a function is not recursive—i.e., that f is not free in e—I
will write Λs:σ.e, and in the case that a function type is non-dependent, I will write σ → τ .) As modules
may contain both type and term components, this function construct may be used to encode an ordinary
function as one whose argument is an atomic term module, and a polymorphic abstraction as a function
whose argument is an atomic type module:

τ1 → τ2
def
= [[τ1]] → τ2 ∀α.τ

def
= Πs:[[T ]].τ [Typ s/α]

λx:τ.e
def
= Λs:[[τ ]].e[Val s/x] Λα.e

def
= Λs:[[T ]].e[Typ s/α]

e1e2
def
= e1[e2] e τ

def
= e[τ ]

More generally, we may encode higher-order polymorphism via a function whose argument is a functor
representing a type constructor, e.g., of signature [[T ]] → [[T ]], and polymorphic recursion via a recursive
function whose argument has a type component.

The module level contains its own functions and products, although the function construct λs:σ.M is
often called a functor and the product construct 〈s = M1, M2〉 is often called a structure. The variable s in
〈s = M1, M2〉 stands for the result of evaluating M1 and is bound in M2. Functors and structures have the
corresponding signatures Πs:σ1.σ2 and Σs:σ1.σ2, respectively. (When they are not dependent—i.e., when s
does not occur free in σ2—I will write σ1 → σ2 and σ1 × σ2.) Note that unlike SML structures, products
in this type system are restricted for simplicity to unlabeled pairs; the encoding of SML-style structures in
terms of unlabeled pairs is left to elaboration, which I describe in Section 2.7.2.

Included at both module and term levels is an annotated let construct for hiding a module binding. Also
included at the module level is a unit module 〈〉 of unit signature 1, as well as a Top signature, which is
a supertype of all signatures. More important is the singleton signature

�
(M), a subtype of the atomic

type signature [[T ]] that may be ascribed only to type modules whose type component is equivalent to
Typ M . In essence, the signatures [[T ]] and

�
(M) are the encodings of abstract (type t) and transparent

(type t = TypM) type specifications, respectively. That
�

(M) is a subtype of [[T ]] signifies that one may
forget the definition of a type component during signature matching.
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2.3.2 Static Module Equivalence

A key question in any type system, but particularly in one for modules, is: “When are two types τ1 and τ2

equivalent?” In the case that τ1 = TypM1 and τ2 = Typ M2, the question becomes: “When are two modules
M1 and M2 equivalent?” As suggested above in Section 2.1.3, in a second-class module system that obeys
the principle of phase separation, the most liberal notion of equivalence for modules is static equivalence,
i.e., equivalence of their type components. Furthermore, static equivalence is the right notion because the
only reason we care about equivalence of modules is to determine the equivalence of the types projected from
those modules.

Given the idea of static equivalence, the formal equivalence rules are much as one would expect. The
module equivalence judgment is written Γ ` M1

∼= M2 : σ and type equivalence judgment Γ ` τ1 ≡ τ2.
Atomic type modules are equivalent if their type components are equivalent, and atomic term modules of
the same signature are always (trivially) equivalent since they have no type components:

Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]

Γ ` M1 : [[τ ]] Γ ` M2 : [[τ ]]

Γ ` M1
∼= M2 : [[τ ]]

There are also rules for transferring module equivalence judgments to type equivalence judgments and re-
ducing redundant conversions between the type and module levels:

Γ ` [τ1] ∼= [τ2] : [[T ]]

Γ ` τ1 ≡ τ2

Γ ` M : [[T ]]

Γ ` [Typ M ] ∼= M : [[T ]]

The remainder of the equivalence rules follow the rules of Stone and Harper’s singleton kind system very
closely [45]. In particular, there is a rule that observes that if a module M1 has a singleton signature

�
(M2),

then M1 is equivalent to M2. Finally, there are a standard set of congruence rules, which ensure that pairs
of equivalent modules are equivalent, that applications of equivalent functors to equivalent arguments are
equivalent, etc., in addition to rules that ensure β- and η-equivalence for modules.4 Space considerations
preclude further discussion of the complexities of equivalence in the presence of singleton signatures, but
details are given in Dreyer et al. [6], and the full set of equivalence rules can be found in Appendix A.

2.3.3 Typing Rules

The typing rules for modules, written Γ ` M : σ, are mostly very straightforward. When eliminating
functors and structures with dependent signatures, care must be taken to perform the proper substitution
in the result signature. Specifically, the rules for functor application and second projection are as follows:

Γ ` F : Πs:σ1.σ2 Γ ` M : σ1

Γ ` FM : σ2[M/s]

Γ ` M : Σs:σ1.σ2

Γ ` π2M : σ2[π1M/s]

The only rules of interest are the so-called “selfification” rules that allow a module to be given a more
precise signature with singletons. The need for selfification dates back to Harper and Lillibridge’s “VALUE”
rules [14] and Leroy’s “signature strengthening” rules [21], which allow modules, or at least module variables,
to be assigned fully transparent signatures by specifying abstract type components to be transparently equal
to themselves. For example, a module X with signature sig type t end can be given the more precise
signature sig type t = X.t end. That way, if one defines another module Y to be precisely X, then Y will
be given X’s principal signature and the equivalence of Y.t and X.t will be apparent from Y’s signature.
Formally, for a module of atomic signature [[T ]], selfification takes the form of singleton introduction:

Γ ` M : [[T ]]

Γ ` M :
�

(M)

The other selfification rules allow singletons to propagate through the signatures of functors and structures:

Γ ` M : Πs:σ1.σ
′

2 Γ, s:σ1 ` Ms : σ2

Γ ` M : Πs:σ1.σ2

Γ ` π1M : σ1 Γ ` π2M : σ2

Γ ` M : σ1 × σ2

4In fact, following the system in Stone’s thesis [44], we use extensionality rules in lieu of η-equivalence rules, and we omit
β-equivalence rules because they can be shown admissible using singletons and extensionality.
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�
[[T ]](M)

def
=

�
(M)

�
[[τ ]](M)

def
= [[τ ]]

�
1(M)

def
= 1

�
Πs:σ1.σ2

(M)
def
= Πs:σ1.

�
σ2

(Ms)
�

Σs:σ1.σ2
(M)

def
=

�
σ1

(π1M) ×
�

σ2[π1M/s](π2M)
� �

(M ′)(M)
def
=

�
(M)

�
Top(M)

def
= Top

Figure 4: Singletons at Higher Signatures

For instance, the rule on the left combined with singleton introduction allows a functor F of signature
[[T ]] → [[T ]] to be given the fully transparent signature Πs:[[T ]].

�
(Fs).

Although my type system, following Stone and Harper, only provides primitive singletons at signature
[[T ]], singletons at higher signatures are definable in the language, and the selfification rules ensure that the
rules governing primitive singletons are admissible for higher-order singletons. Figure 4 gives the definition of
the higher-order singleton

�
σ(M), which is assignable to all modules that are equivalent to M at signature σ.

2.4 Abstraction as an Effect

The type system presented thus far allows any two modules to be compared for equivalence, and likewise
allows the type component to be extracted from any module with signature [[T ]]. Consider, however, what
happens if we add a construct M ::σ for opaquely sealing a module M with a signature σ. The intended
semantics of sealing is that all the information observable about M ::σ is what appears in σ.

Suppose that modules M1 and M2 are both defined to be [int] ::[[T ]], but M3 is defined to be [bool] ::[[T ]].
By reflexivity of module equivalence, M1 must be equivalent to M2 since they are syntactically identical,
but clearly M1 can never be equivalent to M3 since they do not have equivalent type components under the
sealing. This violates the semantics of sealing because the underlying implementation of M1 as [int], which
is not visible in its signature, has an effect on its (in-)equality with other sealed modules.

The solution I propose is to treat sealing as an effectful operation that renders a module’s type components
indeterminate. Formally, let’s say that a module that is free of sealing is pure, while a module that contains
sealing is impure. Only pure modules are eligible for comparison with other modules, and

�
(M) and TypM

are only valid if M is pure. (Since all modules in the type system of the previous section were pure, this
constitutes a conservative extension.) Thus, if a module contains sealing, the only way to refer to its type
components is to bind it to a variable, which may then appear in types because variables are pure.

Tracking purity in the type system is very straightforward. We simply need to annotate the module
typing judgment with an indication of whether the module in question is known to be pure or not. The new
judgment is written Γ `κ M : σ, where the purity level κ is either P (for “Pure”) or I (for “Well-formed but
possibly impure”). The purity levels form a simple lattice of two elements with P at the bottom and I at
the top. Sealing introduces impurity, and purity can be forgotten by subsumption in the purity lattice:

Γ `κ M : σ

Γ `I (M ::σ) : σ

Γ `κ′ M : σ κ′ v κ

Γ `κ M : σ

Otherwise, modules are deemed to be just as pure as their submodules. The only interesting rules are
for function application and second projection:

Γ `κ F : Πs:σ1.σ2 Γ `P M : σ1

Γ `κ FM : σ2[M/s]

Γ `P M : Σs:σ1.σ2

Γ `P π2M : σ2[π1M/s]

In FM and π2M , the module M must be pure in order for the elimination construct to be even well-formed.
The reason is that, in both cases, a module containing M is substituted for a variable in the resulting
signature σ2. Since variables are pure, they may occur in types and singletons, so M must be pure in order
for the substitution to preserve the well-formedness of σ2.
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It is worth noting that functors in this system still behave applicatively, even if their bodies contain
sealing. To see this, consider that while a functor containing sealing is impure, once we bind it to a variable,
uses of that variable are pure. For instance, recalling the applicative functor example from Figure 2, the
functor application SetFun(IntOrd) is pure since SetFun and IntOrd are both variables. Therefore, it
can be selfified to the fully transparent signature whose set component is specified transparently to be
SetFun(IntOrd).set, and that selfified signature is what is assigned to both IntSet1 and IntSet2.

2.5 Generativity as a Dynamic Effect

My type system in its current form provides essentially the same semantics for modules as the higher-order
module system from Chapter 5 of Russo’s thesis. The next step, then, is to incorporate an account of type
generativity, which is often described as the generation of types at run time. This informal description gives
the proper intuition for how to extend the type system I have developed so far.

In a purely second-class module system, the principle of phase separation ensures that type components of
modules are not actually generated at run time. Therefore, modules containing generative type components
are pretending to violate phase separation. Nevertheless, to achieve the desired semantics, we will treat them
as if they really do violate phase separation.

In order to handle such generative modules soundly, we distinguish between two different kinds of effects:
static effects, which correspond to type abstraction via sealing, and dynamic effects, which correspond to
run-time type generation. The sealing construct I introduced in the previous section induces the purely static
effect of hiding type information. I will hereafter refer to M ::σ as weak sealing. To provide generative type
abstraction, I now add a construct M :>σ for strong sealing, which induces both a static and a dynamic
effect. Not only does strong sealing hide the definitions of type components specified opaquely in σ, but it
gives the impression (to the type system) that those definitions depend on run-time conditions. Given that
“impression”, it would be unsound for a strongly sealed module to appear inside an applicative functor, since
each instantiation of the functor could potentially produce different types based on information available at
run time.

Static (im-)purity is a syntactic condition determined by inspecting a module for sealing. In contrast,
dynamic (im-)purity is a property of computations. Dynamic effects are encapsulated by suspended com-
putations, i.e., functors, and released by their applications. Thus, we track these effects in the manner of
traditional effects systems—by introducing a new arrow type, or rather, a new functor signature represent-
ing functors whose bodies are dynamically impure. Such functors are better known, of course, as generative
functors, and so the new functor signature is written Πgens:σ1.σ2 (or σ1

gen

→ σ2 if non-dependent). For exam-
ple, the SymbolTableFun functor from Figure 1 would have to be assigned the signature 1

gen
→ SYMBOL TABLE

since its body is strongly sealed.
Formally, we extend the lattice of purity levels to form a diamond:

W

/ \
D S

\ /
P

P is for “Pure”, D is for “Dynamically pure, but possibly statically impure”, S is for “Statically pure, but
possibly dynamically impure”, and W is for “Well-formed, but possibly statically or dynamically impure”.
Modules assigned the purity level I in the previous section would now be assigned D since the language of
the previous section only dealt with static effects and thus all modules were dynamically pure. Modulo this
renaming of purity levels, the extension to handle dynamic effects and strong sealing is conservative.

Some key typing rules governing the propagation of static and dynamic effects are given in Figure 5.
Strongly sealed modules engender both a static and dynamic effect (rule 1). Weakly sealed modules contain
at least a static effect, rendering them at best dynamically pure (2). Applicative functors may be coerced by
subsumption to generative functors, thus forgetting that their bodies are dynamically pure (3). Applicative
functors must have dynamically pure bodies (4), while generative functors suspend any dynamic effects in
their bodies (5). Applications of applicative functors do not induce any effect (6), whereas applications of
generative functors unleash a dynamic effect (7).
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Γ `κ M : σ

Γ `W (M :>σ) : σ
(1)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(2)

Γ, s:σ1 ` σ2 sig

Γ ` Πs:σ1.σ2 ≤ Πgens:σ1.σ2
(3)

Γ, s:σ1 `κ M : σ2 κ v D

Γ `κ λs:σ1.M : Πs:σ1.σ2
(4)

Γ, s:σ1 `κ M : σ2

Γ `κu D λs:σ1.M : Πgens:σ1.σ2
(5)

Γ `κ M1 : Πs:σ1.σ2 Γ `P M2 : σ1

Γ `κ M1M2 : σ2[M2/s]
(6)

Γ `κ M1 : Πgens:σ1.σ2 Γ `P M2 : σ1

Γ `κt S M1M2 : σ2[M2/s]
(7)

Figure 5: Key Typing Rules for Tracking Dynamic and Static Effects

The type system is now powerful enough for us to encode most of Shao’s higher-order module calculus
as a subsystem. In particular, Shao’s system is like mine except that it only has strong sealing, not weak
sealing. The restriction to strong sealing has the effect that functors containing opaque substructures must
contain strong sealing and thus be generative, matching the semantics of Shao’s system as described in
Section 2.2. There is still one small corner of Shao’s semantics that we cannot account for, but we will leave
the discussion of that point until it becomes important in Section 3.3.5.

2.6 Packaging Modules as First-Class Values

As discussed in Section 2.1.3, the ability to treat modules as first-class values is a desirable feature. One
practical approach to modules as first-class values that does not run afoul of decidability was suggested
by Mitchell et al. [29], who propose that second-class modules automatically be wrapped as existential
packages [30] to obtain first-class values. A similar approach to modules as first-class values is described by
Russo and implemented in Moscow ML [39].

This existential-packaging approach to modules as first-class values is built into our language. We write
the type of a packaged module as 〈|σ|〉 and the packaging construct as pack M as 〈|σ|〉. Elimination of packaged
modules (as for existentials) is performed using a closed-scope unpacking construct. These may be defined
as follows:

〈|σ|〉
def
= ∀α.(σ → α) → α

pack M as 〈|σ|〉
def
= Λα.λf :(σ → α).f M

unpack e as s:σ in (e′ : τ)
def
= e τ (Λs:σ.e′)

(Compare the definition of 〈|σ|〉 with the standard encoding of the existential type ∃β.τ as ∀α.(∀β. τ→α)→α.)
The main limitation of existentially-packaged modules is the closed-scope elimination construct. It has

been observed repeatedly in the literature5 that this construct is too restrictive to be useful. For one, in
“unpack e as s:σ in (e′ : τ)”, the result type τ may not mention s. As a consequence, functions over packaged
modules may not be dependent; that is, the result type may not mention the argument. This deficiency is
mitigated in our language by the ability to write term-level functions over unpackaged, second-class modules,
which can be given the dependent type Πs:σ.τ instead of 〈|σ|〉 → τ .

Another problem with the closed-scope elimination construct is that a term of package type cannot be
unpacked into a stand-alone second-class module; it can only be unpacked inside an enclosing term. As each
unpacking of a packaged module creates an abstract type in a separate scope, packages must be unpacked at
a very early stage to ensure coherence among their clients, leading to “scope inversions” that are awkward
to manage in practice.

What we desire, therefore, is a new module construct of the form “unpack e as σ”, which coerces a first-
class package e of type 〈|σ|〉 back into a second-class module of signature σ. The following example illustrates
how adding such a construct carelessly can lead to unsoundness:

module F = λs:[[〈|σ|〉]].(unpack (Val s) as σ)
module X1 = F [pack M1 as 〈|σ|〉]
module X2 = F [pack M2 as 〈|σ|〉]

5Originally by MacQueen [25] and later by Cardelli and Leroy [2] and Lillibridge [24], among others.
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types τ ::= · · · | 〈|σ|〉
terms e ::= · · · | pack M as 〈|σ|〉
modules M ::= · · · | unpack e as σ

Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ

Figure 6: Packaged Module Extension

Note that the argument of the functor F is an atomic term module, so all arguments to F are statically
equivalent. If F is given an applicative signature, then X1 and X2 will be deemed equivalent, even if the
original modules M1 and M2 are not! Thus, F must be deemed generative, which in turn requires that the
unpack construct induce a dynamic effect.

Packaged modules that admit this improved unpacking construct are not definable in our core language,
but they constitute a simple, orthogonal extension to the type system that does not complicate type checking.
The syntax and typing rules for this extension are given in Figure 6. Note that the closed-scope unpacking
construct is definable under this extension as “let s = (unpack e as σ) in (e′ : τ)”.

Intuitively, unpacking is generative because the module being unpacked can be an arbitrary term, whose
type components may in fact depend on run-time conditions. In the type system of the previous section,
the generativity induced by strong sealing was merely a pro forma effect—the language, supporting only
second-class modules, provided no way for the type components of a module to be actually generated at run
time. The type system, however, treats dynamic effects as if they are all truly dynamic, and thus it scales
easily to handle the real run-time type generation enabled by the extension in Figure 6.

Nevertheless, the packaged module extension treads close enough to unsound waters to call for a formal
proof of soundness with respect to a suitable dynamic semantics. I have worked out proofs of progress and
preservation on paper and they are largely straightforward. The only real oddity is that in order to prove
soundness, we must first erase all uses of weak sealing from the language. For instance, if the variable F is
bound to an applicative functor with a weakly sealed body, then substituting the impure definition of F for
occurrences of F in the rest of the program will be ill-typed. To avoid this problem, it is reasonable to erase
uses of weak or strong sealing before evaluating a program, since sealing of any kind has no real run-time
significance anyway. The dynamic semantics for the language without weak sealing is given in Appendix B.

2.7 Typechecking and Elaboration

A critical feature of my type system for modules is that typechecking is decidable, due to the existence of
principal signatures. Formally, we can define a decidable algorithm Γ `κ M ⇒ σ that computes M ’s principal
signature σ and minimal purity level κ in context Γ. To determine whether Γ `κ′ M : σ′ for arbitrary σ′ and
κ′, we invoke the principal signature synthesis algorithm and then check whether Γ ` σ ≤ σ′ and κ v κ′. The
proof of decidability is described in full in Dreyer et al. [6] and, though rather involved, adheres closely to
the decidability proof for Stone and Harper’s singleton kind system [45]. The synthesis algorithm, however,
is relatively straightforward and is given in Appendix C.

2.7.1 The Avoidance Problem

The existence of principal signatures relies on some subtle choices made in the design of the type system.
The clearest example of such a choice is the module-level let construct, which requires that a signature
annotation be provided for the let body. Consider the principal signature synthesis rule for an impure let:

Γ `κ1
M1 ⇒ σ1 Γ, s:σ1 `κ2

M2 ⇒ σ2 Γ, s:σ1 ` σ2 ≤ σ Γ ` σ sig κ1 t κ2 6= P

Γ `κ1 tκ2
let s = M1 in (M2 : σ) ⇒ σ

Note that the signature annotation σ needs to be well-formed in the ambient context Γ, so that it can be
assigned to the let after the variable s is no longer in scope. If no annotation were provided, the synthesis
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algorithm would need to find such a signature on its own. In other words, it would have to come up with
the least supersignature of σ2 not mentioning s. If M1 is pure, then the solution is σ2[M1/s], but if M1 is
impure, this signature is not well-formed.

The avoidance problem [12, 24] is that, in general, a signature does not necessarily have a least supersig-
nature avoiding a particular variable. For example, consider the signature

σ = ([[T ]] →
�

(s)) ×
�
(s)

The most obvious supersignature of σ avoiding s is ([[T ]]→ [[T ]])× [[T ]]. However, for any type τ , the signature
στ = ΣF :([[T ]]→ [[T ]]).

�
(F [τ ]) is a more precise supersignature of σ, as it brings out the connection between

the first and second projections of a module of signature σ. Yet, since F is abstract, στ1
and στ2

are
incomparable iff τ1 is not equivalent to τ2, so none of the στ ’s is minimal.

The need to avoid the avoidance problem manifests itself in other constructs as well. In particular,
the typing rules for functor applications F (M) and second projections π2M require that M be pure. As
discussed in Section 2.3, this restriction is necessary for M to be substituted in the conclusions of those rules.
A similar approach is taken by Shao [42], but an alternative is to follow Harper and Lillibridge [14] and use
the following rules, which involve only non-dependent signatures:

Γ `κ F : σ1 → σ2 Γ `κ M : σ1

Γ `κ FM : σ2

Γ `κ M : σ1 × σ2

Γ `κ π2M : σ2

In the case that M is pure, the typing rules in my system can be shown admissible using these rules, e.g., in the
case of F (M), by promoting F with signature Πs:σ1.σ2 to the supersignature

�
σ1

(M)→σ2[M/s]. Otherwise,
however, we run into another instance of the avoidance problem, where we must find a supersignature of σ2

that does not mention s in order to apply the rule. By forcing M to be pure, my system circumvents this,
possibly at the cost of some expressiveness.

2.7.2 Elaboration

As I do not know how to relax these restrictions without sacrificing decidability of typechecking, I take the
approach outlined in Section 1 and handle the avoidance problem as part of an elaboration algorithm from
a more flexible external language to the more limited internal type system developed so far. The structure
of the elaborator is based on Harper and Stone’s elaborator for full SML [19], but for simplicity my external
language (EL) only extends the internal language (IL) in a few ways. A significant part of my thesis will
involve scaling this simplified EL to an extension of full SML, but it is useful to test out ideas first in a less
daunting setting. Hereafter, I will distinguish EL syntax by writing M̂ , σ̂, etc.

One way in which the EL is more flexible is that it supports un-annotated let’s, as well as unrestricted
functor applications and projections. Unannotated module-level let’s are already present in SML in the form
of local structure declarations and transparent signature ascription, and I employ an idealization of Harper
and Stone’s method of dealing with them. The idea is to introduce a form of existential signature ∃s:σ1.σ2 in
the language of the elaborator, which represents conceptually the least supersignature of σ2 not mentioning
s : σ1. Of course this signature does not actually exist in the IL; it is a purely elaboration-time notion, but
it allows us to give a principal signature to the unannotated let s = M̂1 in M̂2.

This idea of an elaborator signature is fundamental to the elaboration approach. However, since the
target of the elaborator is the IL, an elaborator signature σ must have a representation, or erasure6, into
the IL, written σ. The erasure of ∃s:σ1.σ2 is merely Σs:σ1.σ2, and correspondingly the elaboration of
let s = M̂1 in M̂2 is 〈s = M1, M2〉. In other words, let’s are translated as pairs. The distinction between
let’s and pairs lies in how the elaborator treats existentials versus products. In particular, whenever a
variable s with signature ∃s′:σ1.σ2 is used, the elaborator immediately projects out the second component
π2s with signature σ2[π1s/s′], which effectively renders the let-bound first component inaccessible. Functor
applications F̂ (M̂) are elaborated as if F̂ (M̂) were a derived form expanding to let sF = F̂ in let sM =
M̂ in sF (sM ).

6To stem proliferation of signature modifiers, I implicitly extend the syntax of σ, M , Γ, etc. occurring in elaboration rules to
include these elaborator signatures. However, when elaboration rules refer to IL judgments, all signatures are implicitly erased
to IL signatures.
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module elaboration Γ `κ M̂ ; M : σ
signature elaboration Γ ` σ̂ ; σ
type elaboration Γ ` τ̂ ; τ
term elaboration Γ ` ê ; e : τ
coercive signature matching Γ ` M : σ � σ′

; M ′

signature matching right rules Γ ` M : σ �R σ′
; M ′

signature matching left rules M : σ
peel
=⇒ M ′ : σ′

(aka “peeling”)

label lookup M : σ ` `
look
=⇒ M ′ : σ′

Figure 7: Elaborator Judgments

Another way in which the EL is more flexible is that it supports SML-style structures with labeled
components that can be dropped or reordered during signature matching. Formally, EL structures have the
form 〈B̂〉, where B̂ is a list of submodule bindings with the syntax

B̂ ::= ε | ` . s = M̂, B̂

Here, ε represents the empty list, and ` . s = M̂ binds M̂ to variable s, with label `. The distinction between
label and variable [14] allows M̂ to be externally accessible by the unchangeable `, while its internal name
s (whose scope is B̂) remains alpha-variable. Analogously, the EL signatures of these structures have the
form 〈D̂〉, where D̂ is a list of submodule declarations with the syntax

D̂ ::= ε | ` . s : σ̂, D̂

When the elaborator is scaled to full SML, labels and variables can be coalesced at the EL level into
“identifiers” as they are in the Harper-Stone EL. I maintain the distinction in this idealized EL so as not to
require a complex mechanism for identifier lookup.

As one would expect, EL structures are elaborated as products; specifically, 〈` . s = M̂, B̂〉 is translated
as 〈s = M, B〉, where M is the translation of M̂ and B is the translation of B̂. In addition, a new elaborator
signature 〈` . s :σ, D〉 is needed to keep track of labels for signature matching. The IL erasure of this signature
naturally just drops the labels to become Σs:σ.D.

The judgments defining the elaboration algorithm are listed in Figure 7. The form of the main transla-
tion judgments (the first four) is completely straightforward. The next three implement coercive signature
matching, which is needed during elaboration of constructs like functor application or sealing. (IL subtyping
alone is not sufficient because it does not account for existentials or the dropping or reordering of labeled
structure components.) The main matching judgment matches a module M of signature σ against target
signature σ′, resulting in a coercion module M ′ with the target signature. Note that these are all elaborator-
level modules and signatures, not EL code. The actual work of coercion is divided between two auxiliary
judgments via the following single rule defining coercion:

M : σ
peel
=⇒ M ′′ : σ′′ Γ ` M ′′ : σ′′ �R σ′

; M ′

Γ ` M : σ � σ′
; M ′

The left premise peels off the outermost existentials of σ, in essence ignoring the outermost hidden module
components of M . This peeling judgment is useful in its own right, e.g., when we need to coerce a signature
into the form of a Π signature, but we do not have a specific target in mind. The right premise, which
does most of the work, may then assume that the output signature of the peeling judgment, σ′′, is not an
existential. Lastly, the label lookup judgment checks whether module M with signature σ provides a label
` and, if so, constructs the appropriate sequence of projections to extract the ` component from M .

Figure 8 displays several illustrative elaboration rules, all of which are fairly self-explanatory, if noticeably
hairier than the IL typing rules. Rules 8 and 9 illustrate the elaboration of let’s and module projections
M̂.`, rules 10 and 11 the coercion right rules for functors and structures, rules 12 and 13 the peeling rules,
and rules 14 and 15 the label lookup rules. The complete set of elaboration rules appears in Appendix D.
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Γ `κ1
M̂1 ; M1 : σ1 Γ, s:σ1 `κ2

M̂2 ; M2 : σ2

Γ `κ1 tκ2
let s = M̂1 in M̂2 ; 〈s = M1, M2〉 : ∃s:σ1.σ2

(8)

Γ `κ M̂ ; M : σM s :
�

σM
(s)

peel
=⇒ M ′ : σ′ M ′ :σ′ ` `

look
=⇒ N : σ

Γ `κ M̂.` ; 〈s = M, N〉 : ∃s:σM .σ
(9)

Γ, s:σ′

1 ` s : σ′

1 � σ1 ; M Γ, s:σ′

1, t:σ2[M/s] ` t : σ2[M/s] � σ′

2 ; N (δ, δ′) 6= (gen, ε)

Γ ` F : Πδs:σ1.σ2 �R Πδ′

s:σ′

1.σ
′

2 ; λs:σ′

1. let t = FM in (N : σ′

2)
(10)

M :σ ` `
look
=⇒ M ′ : σ′ Γ ` M ′ : σ′ � σ` ; N Γ, s:

�
σ`

(N) ` M : σ �R 〈D〉 ; 〈B〉

Γ ` M : σ �R 〈` . s : σ`, D〉 ; 〈` . s =N, B〉
(11)

π2M : σ2[π1M/s]
peel
=⇒ M ′ : σ′

M : ∃s:σ1.σ2
peel
=⇒ M ′ : σ′

(12)
No other peeling rule applies.

M : σ
peel
=⇒ M : σ

(13)

M : 〈` . s : σ, D〉 ` `
look
=⇒ π1M : σ

(14)
` 6= `′ π2M : 〈D[π1M/s]〉 ` `′

look
=⇒ M ′ : σ′

M : 〈` . s :σ, D〉 ` `′
look
=⇒ M ′ : σ′

(15)

Figure 8: Illustrative Elaboration Rules

A disadvantage of employing an elaborator is that it is difficult to argue rigorously about whether it
is correct. Unlike the IL, which is defined by a declarative type system and proven decidable by a sound
and complete typechecking algorithm, the EL has no declarative definition but is defined directly via the
elaborator, so there is no reference system against which to compare it. Nevertheless, we can still state
and prove some important invariants about elaboration, as enumerated in the theorem below. In particular,
the module and signature that are output by module elaboration are well-formed in the IL and, moreover,
the signature is principal. In addition, as the rules in Figure 8 indicate, the coercion, peeling and lookup
judgments only handle pure modules.

Theorem 2.1 (Elaborator Invariants)
Suppose Γ ` ok. Then:

1. If Γ `κ M̂ ; M : σ, then Γ `κ M ⇒ σ (and hence Γ `κ M : σ).

2. If Γ ` σ̂ ; σ, then Γ ` σ sig.

3. If Γ ` τ̂ ; τ , then Γ ` τ type.

4. If Γ ` ê ; e : τ , then Γ ` e ⇒ τ (and hence Γ ` e : τ).

5. If Γ ` M : σ � σ′
; M ′ and Γ `P M : σ and Γ ` σ′ sig, then Γ `P M ′ : σ′.

6. If Γ ` M : σ �R σ′
; M ′ and Γ `P M : σ and Γ ` σ′ sig, then Γ `P M ′ : σ′.

7. If M : σ
peel
=⇒ M ′ : σ′ and Γ `P M ⇒ σ (or Γ `P M : σ),

then Γ `P M ′ ⇒ σ′ (or Γ `P M ′ : σ′).

8. If M : σ ` `
look
=⇒ M ′ : σ′ and Γ `P M ⇒ σ (or Γ `P M : σ),

then Γ `P M ′ ⇒ σ′ (or Γ `P M ′ : σ′).

Proof: By straightforward induction on the elaboration algorithm. �
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3 Recursive Modules

Recursive modules are one of the most frequently requested extensions to SML. Intuitively, just as structures
combine the product constructs at the type and term levels, and functors combine the function constructs at
the type and term levels, it seems there should be a way to combine the constructs for recursive definitions at
the type level (i.e., datatype’s) and at the term level (i.e., recursive functions) to form a recursive construct
at the module level. Indeed, it would undoubtedly be straightforward to design a recursive module extension
if one were to restrict recursive modules to contain only datatype and fun declarations.

Problems arise, however, if one wants to be less ad hoc about it and allow recursive modules to contain
arbitrary code. It is easy to foresee the problems by first considering what would happen if we were to

• allow arbitrary recursive definitions at the type level like type rec t = int * t, instead of restricting
recursion to datatype declarations

• allow arbitrary recursive definitions at the term level like val rec x = 1::y and y = 2::x, instead
of restricting recursion to fun declarations

First, the kind of recursive type needed to implement transparently recursive type definitions such as
t = int * t is different from the kind used—by the Harper-Stone interpretation, for instance—to implement
SML datatype’s. To encode the transparent kind, we need so-called equi-recursive types, which admit
equivalence between themselves and their recursive expansions. Formally, a recursive type µα.τ is equi-
recursive if one may observe the equivalence µα.τ ≡ τ [µα.τ/α]. In contrast, iso-recursive types require
the use of explicit fold and unfold coercions to mediate between the recursive type and its expansion.
Iso-recursive types, whose equational theory is much simpler than that of equi-recursive types, are enough
to represent SML datatype’s because datatype’s are abstract—the fold’s and unfold’s are performed in a
canonical way at constructor applications and during pattern matching, respectively, and those are the only
places they can occur.

Likewise, the kind of recursive term-level construct needed to implement fixed-points over arbitrary
expressions is beyond what is required for SML. In particular, the only recursive construct in the Harper-
Stone HIL is a fixed-point over a set of mutually recursive function bindings. On the other end of the
spectrum, Haskell supports recursive bindings of arbitrary expressions, but all terms in Haskell are lazy,
memoized computations. The laziness is important: When lazily evaluated, the example recursive binding
above produces an infinite stream of alternating 1’s and 2’s; when eagerly evaluated, the definition enters an
infinite loop. There are, however, intermediate possibilities between the SML and Haskell forms of recursive
definition as well. In short, the point is not that recursive modules are prohibitively difficult to implement,
but rather that they may imply extensions to the power of the core language, so we must consider the design
space carefully.

3.1 The Design Space

In this section I will examine several key axes in the design space of recursive modules from the perspective of
type theory. The concepts and terminology that I present here are based to a large extent on the foundational
work of Crary et al. [3]. I will discuss their type theory for recursive modules in more detail in Section 3.2.
For now, I will use a loose combination of their formalism and mine to sketch out the terrain of recursive
modules.

3.1.1 Fixed-Point Modules

The traditional type-theoretic model of recursion is the fixed-point, so a natural way to encode recursive
modules is using a module-level fixed-point. In the context of my higher-order module type system of
Section 2, consider adding the module construct fix(s : σ. M), where s is the recursive variable by which the
module M may refer to itself, and σ is the signature of s. In a sense, s : σ can be thought of as a forward
declaration of M , somewhat like a header file in C. With this construct, mutually recursive modules can be
encoded as substructures of M that refer to one another via projections from s. The topic of how to compile
mutually recursive modules separately will be dealt with in Section 3.1.4.
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The most obvious typing rule for fixed-point modules would require the body M to have the same
signature as its forward declaration:

Γ, s:σ ` M : σ

Γ ` fix(s : σ. M) : σ

Given this rule, the question arises how a fixed-point module should be evaluated. As SML is a strict
functional language, the natural way to evaluate fix(s : σ. M) as an extension of SML is to eagerly evaluate M ;
once M is evaluated to a value V , fix(s : σ. V ) steps to V [fix(s : σ. V )/s]. What happens, however, if the
evaluation of M involves the evaluation of s (e.g., trivially, in the case that M is simply s)? The problem is
that evaluating M means evaluating a module with free variables.7

There are at least two solutions to this problem. One is to leave the above typing rule as it is, but
instrument the dynamic semantics so that every occurrence of s inside M incurs a well-definedness check.
More formally, the idea is to treat a recursive module as a memoized computation. During the evaluation
of M , s refers to the undefined computation ⊥; attempts to evaluate s raise an exception. Then, once M
evaluates to V , s can be memoized to V , and fix(s :σ. M) can step to V as well.

Another solution is to leave the dynamic semantics alone but modify the static semantics in order to
prohibit the evaluation of M from ever encountering s. One easy way of accomplishing this is to restrict M
to be a value. A less restrictive approach is to only require M to be valuable, where by “valuable” I mean
that M is pure and terminating. While in general valuability is undecidable, Harper and Stone [18] employ
a conservative approximation of valuability in their HIL, written Γ ` M ↓ σ, in order to correctly interpret
SML’s value restriction. In the case of fixed-point modules, it is necessary for the valuability judgment to
distinguish between ordinary module variables, which correspond to values at run time, and the recursive
module variable, which is undefined at run time. For instance, if m is a module variable bound with σ in
the context Γ, then fix(s : σ. m) should be well-formed in Γ, but fix(s : σ. s) should not. Formally, we add a
new kind of context entry s ↑σ, indicating that s has σ and is non-valuable. The typing rule for fixed-point
modules then becomes:

Γ, s ↑σ ` M ↓ σ

Γ ` fix(s : σ. M) : σ

Although I have phrased these two approaches as solutions to a problem regarding fixed-point modules,
the same problem arises and the same solutions apply when considering term-level fixed-points fix(x : τ. e),
where e is an arbitrary term. This makes perfect sense, since the dynamic part of a recursive module is just
a recursive term. In essence, as alluded to in the introduction above, the problem is that recursive modules
implicitly extend the power of the term language and there is more than one way to extend it. While the
latter solution—requiring the body of a fixed-point module to be valuable—would appear to banish side
effects from recursive modules, I will explain in Section 3.3.3 how in fact it can subsume the flexibility of the
memoizing approach, if we allow memoization to be encoded explicitly via a separate construct.

3.1.2 Recursively Dependent Signatures

Having added a recursive construct to the module level, it is natural to consider whether there is a need for
a recursive construct at the signature level. Indeed, the signatures for strictly hierarchical modules that I
gave in Section 2.3 are insufficient for recursive module programming, as the following example illustrates.

Suppose we wish to write a fixed-point module with two mutually recursive substructures Exp and Dec,
which implement interpreters for “expressions” and “declarations”, respectively, in the abstract syntax of
some language. Each substructure exports an abstract data type representing its respective syntactic class,
exp or dec, along with some functions for constructing and deconstructing elements of the abstract data type
and a function exec that executes a program expression or declaration for side effects and, for simplicity,
returns unit. If we attempt to write out the forward declaration for this fixed-point module (Figure 9), we
immediately run into difficulties. The problem is that the type of the Exp.makeLetExp function refers to the

7In the dynamic semantics of pure λ-calculi with fix, it is common for a term-level fixed-point fix(x. e) to step to e[fix(x. e)/x],
in which case the evaluation of fix(x. x) would not be ill-defined, but would enter an infinite loop. In an impure language, however,
this semantics is inappropriate, as the evaluation of e may have side effects that ought not be repeated at every occurrence of
x in e.
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signature EXPDEC = sig

structure Exp : sig

type exp

(* makeLetExp(d,e) constructs "let d in e" *)

val makeLetExp : Dec.dec * exp -> exp

(* matchLetExp(e) returns SOME(d,e1) if e is of the form "let d in e1" *)

val matchLetExp : exp -> ( Dec.dec * exp) option

...

val exec : exp -> unit

end

structure Dec : sig

type dec

(* makeValDec(v,e) constructs "val v = e" *)

val makeValDec : var * Exp.exp -> dec

(* matchValDec(d) returns SOME(v,e) if d is of the form "val v = e" *)

val matchValDec : dec -> (var * Exp.exp) option

...

val exec : dec -> unit

end

end

Figure 9: Problematic Forward Declaration of Exp and Dec

abstract type Dec.dec (shown boxed above), but Dec is not in scope yet at that point. Switching the order
of Exp and Dec does not help, since the type of Dec.makeValDec refers to Exp as well.

What is needed, then, is a means to express recursive dependencies between substructure specifications
in a forward declaration signature. A simple way of supporting this is to add a new recursively dependent
signature ρs. σ, in which specifications in σ may refer recursively to one another through the module vari-
able s. For example, the definition of the EXPDEC signature can now be made sensible by prefacing it with
“ρ X.” and replacing the references to Dec (in the specification of Exp) with references to X.Dec. As for
the semantics of recursively dependent signatures, or rds ’s, there are three main questions: 1) when can a
module be given an rds, 2) when is an rds well-formed, and 3) how are rds’s implemented?

First, observe that the variable s in ρs. σ is essentially a stand-in for whatever module the rds is classifying.
Thus, for a module M to be given the rds ρs. σ, it is necessary for M to have the signature σ under the
substitution of M for s. Conversely, there is the question of how to use a module whose signature is an rds.
The answer is simple: if M has ρs. σ, we can eliminate the rds by replacing the references to s in σ with M .
Formally, the introduction and elimination rules for rds’s are as follows:

Γ `P M : σ[M/s]

Γ `P M : ρs. σ

Γ `P M : ρs. σ

Γ `P M : σ[M/s]

Note that M is required to be pure in order for the signature σ[M/s] to be valid. Adding these rules directly
to my type system for higher-order modules would be ill-advised, as it would severely complicate the proof
of decidability. I offer them here more as properties that ought to hold for any type system involving rds’s.

The answers to the second and third questions are intertwined, since the implementation of rds’s hinges
on what sort of recursive dependencies are permitted in an rds. Obviously, all recursive dependencies in an
rds are references to type components. Additionally, in the EXPDEC example, the references to the recursive
variable X are all from value component specifications. I will call such dependencies dynamic-on-static, as
opposed to static-on-static dependencies, which correspond to recursive references from transparent type
specifications to other type components.

If we restrict rds’s to contain only dynamic-on-static dependencies, then there is a straightforward way
to implement rds’s in terms of strictly hierarchical signatures. The idea is to hoist all the type specifications
to the top of the signature; after hoisting, references from value components to type components are no
longer recursive. For instance, the EXPDEC rds could be encoded by the hierarchical signature in Figure 10.
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sig

structure X : sig

structure Exp : sig type exp end

structure Dec : sig type dec end

end

structure Exp : sig

type exp = X.Exp.exp

(* reference to X.Dec.dec no longer recursive *)

val makeLetExp : X.Dec.dec * exp -> exp

...

end

structure Dec : sig

type dec = X.Dec.dec

...

end

end

Figure 10: Hierarchical Encoding of EXPDEC

This hoisting is only possible if the hoisted signature, consisting solely of the type specifications, is purely
hierarchical, i.e., if there are no static-on-static dependencies.

Static-on-static dependencies place stronger requirements on the underlying type system. Consider, for
example, the rds σ = ρs.

�
([int× Typ s]), which would correspond to the following pseudocode signature:

ρ X. sig type t = int * X.t end

By the rds elimination rule, any module M with this signature can be given the signature
�

([int× Typ M ]).
By straightforward singleton reasoning, this leads to the type equivalence Typ M ≡ int× Typ M . The only
way to account for this sort of equivalence is by using equi-recursive types, as I discussed at the beginning
of Section 3. With equi-recursive types, σ can be viewed as equivalent to the signature

�
([µα.int× α]). In

fact, Crary et al. [3] show that in order to handle fully general rds’s with static-on-static dependencies, the
type theory must support equi-recursive type constructors of higher kind. The behavior of singletons in the
presence of equi-recursive type constructors appears to be rather complex, and it is not known whether type
equivalence in such a theory is decidable.

It is therefore desirable to avoid static-on-static dependencies if possible. At first glance, however, they
appear necessary in order to write mutually recursive datatype specifications in separate substructures
of an rds, which was one of the main motivations for recursive modules in the first place! Fortunately,
they are not necessary, precisely because SML datatype’s are abstract. In particular, according to the HS
interpretation, a datatype specification is translated as an abstract type spec together with its constructor
and destructor functions, much like the signatures of Exp and Dec in the EXPDEC rds. Thus, what one might
call “datatype-on-static” dependencies are revealed to be merely dynamic-on-static references emanating
from the specifications of the datatype’s constructor and destructor functions, not from the type spec itself.

3.1.3 Opaque vs. Transparent Forward Declarations

The typing rules for fixed-point modules given in Section 3.1.1 do not make any restrictions on the form of
the forward declaration signature. It turns out, surprisingly, that allowing an arbitrary signature to serve as
a forward declaration raises several major problems.

The first, rather serious, problem is that simple recursive modules written in a completely straightforward
manner fail to typecheck! Consider, for example, an attempted implementation of the ExpDec module, whose
forward declaration signature EXPDEC motivated the development of recursively dependent signatures in the
previous section. Figure 11 displays only a few lines of ExpDec, enough to illustrate the type error. Let us
refer to the body of ExpDec as M . Then, by the rds introduction rule, in order for M to match EXPDEC,
the function M.Exp.makeLetExp must have type M.Dec.dec * M.Exp.exp -> M.Exp.exp. The type
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structure ExpDec = fix (X : EXPDEC. struct

structure Exp = struct

datatype exp = ... | LetExp of X.Dec.dec * exp | ...

...

fun makeLetExp (d:X.Dec.dec, e:exp) = LetExp(d,e)

...

fun exec (e:exp) =

... case X.Dec.matchValDec(d) of

SOME(v:var, e1:X.Exp.exp) => ...

end

structure Dec = struct

datatype dec = ... | ValDec of var * Exp.exp | ...

...

end

end)

Figure 11: Problematic Implementation of Exp and Dec

of M.Exp.makeLetExp, however, is X.Dec.dec * M.Exp.exp -> M.Exp.exp, which does not match the
specification because X.Dec.dec is not equivalent to M.Dec.dec. The error arises because, at the point
where makeLetExp is defined, there is only one way to refer to the type Dec.dec, namely through the
recursive module variable X. Thus, there is no way to make ExpDec typecheck under the fixed-point typing
rule given so far. While Dreyer et al. [8] show how to overcome this first problem by generalizing the typing
rule for fixed-point modules, the generalized rule is quite baroque and depends heavily on the use of an
explicit phase-distinction formalism in the style of Harper et al. [16].

Another related, if less severe, problem is illustrated by the snippet of the Exp.exec function shown
in Figure 11. Somewhere inside the function, a call is made to X.Dec.matchValDec which, if the match
succeeds, returns a variable v and an expression e1 of type X.Exp.exp, not M.Exp.exp. What can the
implementation of Exp do with an X.Exp.exp? The only way it can deconstruct a value of type X.Exp.exp

is through a call to X.Exp.matchLetExp or some other forward-declared function. This is grossly inefficient
compared to the cost of deconstructing a value of type M.Exp.exp, whose implementation is known in the
body of Exp. The source of both this problem and the previous problem is the opacity of exp and dec in
the forward declaration EXPDEC, which leaves no way to connect X.exp and X.dec to M.exp and M.dec.

A third problem arises when we consider how fixed-point modules are implemented. For the sake of
brevity, consider the fixed-point module

fix(s : Σt:[[T ]].[[unit→ Typ t]]. 〈t = [int× π1s], [λ().(3, (π2s)())]〉)

corresponding to the pseudocode signature:

fix (S : sig type t val f : unit -> t end. struct

type t = int * S.t

val f = fn () => (3, S.f())

end)

Unlike ExpDec, this module is perfectly well-typed, if useless. When compiled, the module needs to be
phase-split into a type part and a term part. For some definition of the type part t, the term part will
clearly be the recursive function fix(f : unit -> t. fn () => (3, f())). Observe, however, that the
body of this fixed-point term has the type unit -> int × t. Thus, in order for the term to be well-typed,
we must define t to be the equi-recursive type µα.int×α, so that t ≡ int × t. In general, Crary et al. [3]
have shown that, as for rds’s with static-on-static dependencies, fixed-point modules with opaque forward
declarations require the underlying type theory to support equi-recursive type constructors of higher kind.

In summary, opacity in forward declarations makes fixed-point modules hard to write, hard to compile and
hard to typecheck! The simple panacea is to require all forward declarations to be fully transparent. First, this
restriction eliminates the distinction between forward-declared type components and their definitions in the
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module body, since those definitions must now be specified up front in the forward declaration. By the same
token, it is easy to show that fully transparent fixed-point modules can be implemented straightforwardly
without equi-recursive types (see Dreyer et al. [8] for details).

The downside of the transparency restriction is that it prevents datatype specifications from appearing
in forward declarations since, according to SML semantics, datatype’s are abstract. In addition, it does not
provide a way for the definitions of type components in mutually recursive substructures of a fixed-point
module to be hidden from one another. The datatype problem is important and difficult to solve in a
clean type-theoretic way; I will defer further discussion of it until Section 4.2. As for setting up abstraction
boundaries between mutually recursive modules, one way to achieve this is by separately compiling each
module, given only an abstract interface for the other modules. Separate compilation, in turn, introduces
its own problems.

3.1.4 Separate Compilation of Mutually Recursive Modules

Suppose we have a fixed-point module with two substructures A and B that we would like to compile sepa-
rately, defined as follows:

fix (X : σ. struct

structure A = struct fun f(n) = X.B.g(n-1) end

structure B = struct fun g(n) = X.A.f(n-1) end

end)

The standard way of encoding separate compilation in SML is through functors. In the case of this example,
A and B could each be parameterized over X:

functor FunA (X : σ) = struct fun f(n) = X.B.g(n-1) end

functor FunB (X : σ) = struct fun g(n) = X.A.f(n-1) end

Linking the separately compiled modules is performed correspondingly by functor application:

fix (X : σ. struct

structure A = FunA(X)

structure B = FunB(X)

end)

Note that, while the forward declaration σ of the linking fixed-point is required to be fully transparent,
the argument signatures of FunA and FunB are not. Specifically, the argument signature of FunA may hold
the type specifications in the B substructure abstract, and vice versa, allowing for a form of client-side
abstraction.8

The problem with this approach is that the semantics of fixed-point modules will cause the linking module
to raise an error, either at compile time or run time, depending on which fixed-point typing rule is used. If
the valuability-checking rule is used, the linking module will not typecheck—SML’s call-by-value semantics
evaluates the non-valuable variable X at each functor application, so the body of the linking module will not
be deemed valuable. If the less restrictive typing rule is used in conjunction with a memoizing semantics,
then the linking module will typecheck, but the references to X will raise an “undefined” exception when the
module is evaluated at run time. One of the main contributions of the type-theoretic approach to recursive
modules that I propose in Section 3.3 is that it offers a clean, simple solution to this dilemma.

3.2 Previous Work on Type Systems for Recursive Modules

Crary et al. [3] and Russo [40] have both given accounts of recursive SML-style modules. Crary et al.
were the first to offer a foundational type-theoretic analysis of the problem and to identify many of the
recursive module issues I described in the previous section. In contrast, Russo presents a formalization of
the recursive module extension that he implemented in the Moscow ML compiler [33]. Although rather ad
hoc, his extension provides an important practical perspective. In this section I will describe how both these
accounts fit in to the design space I have laid out so far.

8In this particular example, abstraction/transparency is not an issue as σ has no type components.
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Crary et al.’s type system for recursive modules employs an explicit phase-distinction formalism in the
style of Harper et al. [16]. Such a formalism exposes, through the equivalence judgments of the type system,
the implementation of module constructs in terms of more primitive term- and constructor-level constructs.
In particular, every signature in their system is equivalent to a phase-split signature of the form [[α:κ.τ ]],
where κ is a kind, and every module is equivalent to a phase-split module of the form [α = c, e], where c
is a type constructor. Thus, for instance, rds’s with static-on-static dependencies are seen as equivalent to
phase-split signatures that involve equi-recursive constructors. There is not a major difference between the
explicitly phase-split approach and the approach of my higher-order module type system, which exploits phase
separation implicitly in the static module equivalence judgment. However, signature equivalence/subtyping
is somewhat more complex in the explicitly phase-split approach, as it is not syntax-directed.

Of the two typing rules for fixed-point modules that I presented in Section 3.1.1, Crary et al. use the rule
that requires the body of a fixed-point module to be valuable. They point out the problem with opacity in
forward declarations and suggest fully transparent fixed-point modules as the solution, although the order
in which they motivate the ideas is somewhat different from my presentation above. Specifically, they use
the problem with opacity to motivate rds’s with static-on-static dependencies, which they in turn argue
must be fully transparent in order to be phase-split properly. As I discussed in Section 3.1.2, rds’s are a
useful construct in their own right, independent of the opacity problem, and in the absence of static-on-static
dependencies they do not need to be fully transparent. Lastly, Crary et al. propose the use of functors for
separate compilation. In fact, their proposal does not work, for the example they give is very similar to the
one I gave in Section 3.1.4 and thus does not typecheck. Their system therefore does not support separate
compilation of recursive modules.

Russo formalizes a recursive module extension to SML in the style of his thesis [38], which in turn is
a variation on the style of the Definition [28]. Russo’s approach is not really a type system so much as a
description of typechecking that employs a semantic object language to express types and signatures that
cannot be written down in SML itself. His formalization depends heavily on the complex definition of
signature matching given in his thesis, which corresponds to the notion of coercive signature matching that
is handled in my framework by the elaborator. It is therefore difficult to translate his typing rules directly
into my system, but I will attempt a close verbal approximation.

Russo extends SML with both a fixed-point and rds construct. The rds construct is fairly similar to
rds’s as I have described them, restricted to dynamic-on-static dependencies. In fact, Russo’s are slightly
more permissive, allowing static-on-static dependencies so long as they are ultimately acyclic and hence do
not introduce equi-recursive type equivalences. His rds construct has the form ρs:σ1.σ2, where σ1 serves as
the forward declaration of s during the typechecking of σ2. The typing rule also checks that σ2 (coercively)
matches σ1, as σ2 must contain at least the components it expects itself to contain.

Russo employs the memoizing semantics for fixed-point modules that I sketched in Section 3.1.1. His
typing rule for fixed-points, though, is different from either of the ones I described. While he does not require
the body M of a fixed-point fix(s : σ. M) to be valuable, he does require that the signature of M match the
signature

�
σ(s). Like requiring σ to be fully transparent, this restriction forces the type components in

the forward declaration σ to coincide with their definitions in M , circumventing the problems I enumerated
in Section 3.1.3. The only benefit of Russo’s rule over the full transparency requirement is that it allows
datatype specs to appear in a forward declaration, so long as they are copied into the body using SML’s
datatype copying primitive. (I will discuss the problem of datatype’s further in Section 4.2, along with
an explanation of why Russo’s solution is infeasible under the Harper-Stone interpretation of datatype’s.)
Aside from datatype’s, however, abstract type specifications in σ are useless: if s.t is abstract, then M.t

must be defined to be s.t, in which case t never gets to be defined!
A more significant benefit of Russo’s fixed-point construct is that, while the body M of fix(s : σ. M) must

match the fully transparent signature
�

σ(s), the signature of the fixed-point is not σ but rather the principal
signature of M . In other words, σ serves as a forward declaration of components that M must provide at a
minimum, but M may export other components as well, including abstract type components.

Finally, with regard to separate compilation, Russo recognizes precisely the problem that I have described.
In the case that all the value components of the forward declaration are functions, he suggests that the linking
module can first define a substructure that defines eta-expansions of all the forward-declared functions, and
then use that structure in place of the recursive module variable. Given the limited applicability of this
trick, as well as its inherent distastefulness, I do not consider it to be a solution.
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3.3 A Type-Theoretic Account of Recursive Modules

In this section I will present my proposal for how to incorporate recursive modules into the type-theoretic
framework for modules that I developed in Section 2. (Note that, unlike the formal development in that
section, the extensions I present in this section have not been fully worked out yet, and I have only sketched
out their implications in the meta-theory.) My proposal can be viewed as an attempt to account for some of
the practical design decisions of Russo’s recursive module extension in a more hygienic way. In the process,
I expose the fact that separate compilation of recursive modules is not a problem.

3.3.1 Recursively Dependent Signatures

I propose to handle recursively dependent signatures purely through mechanisms of elaboration. In other
words, I will extend the external language to contain an rds construct, and I will extend the elaborator in
order to interpret external rds’s correctly, but I will not add any rds construct to the HIL. My extensions to
the elaborator are nevertheless based closely on the rds introduction and elimination rules. Russo provides
some precedent for my approach—he defines his recursive module extension without any extensions to the
language of semantic objects, which correspond roughly to HIL types and signatures in my framework.

First let us introduce a new external language signature ρs:σ̂1.σ̂2, which elaborates to the corresponding
elaborator-level signature ρs:σ1.σ2. Note that I am using a Russo-style rds construct in which the signature
of s is made explicit. The elaborator rds ρs:σ1.σ2 is represented in the HIL simply as Σs:σ1.σ2. I described
in Section 3.1.2 how dynamic-on-static rds’s could be encoded in terms of ordinary hierarchical signatures.
For example, EXPDEC, which had the form ρ X. σ, was encoded hierarchically in Figure 10 as Σ X:σ1.σ2, where
σ1 specified the type components Exp.exp and Dec.dec that were recursively referenced in σ, and σ2 was
merely σ with its Exp.exp and Dec.dec components defined to equal the corresponding components in X.
To understand my elaborator rds’s, the essential observation to make is that by forcing the programmer to
write the forward declaration σ1 in an rds, we are already forcing them to write rds’s hierarchically. For
example, the programmer would write EXPDEC in my system directly as ρ X:σ1.σ2.

The elaboration rule for rds’s is fairly straightforward:

Γ ` σ̂1 ; σ1 Γ, s:σ1 ` σ̂2 ; σ2 Γ, s:σ1, t:σ2 ` t : σ2 �
�

σ1
(s) ; M

Γ ` ρs:σ̂1.σ̂2 ; ρs:σ1.σ2

The interesting part is the third premise, which forces any type components that are forward-declared in σ1

to coincide with the corresponding components in σ2. This rules out true static-on-static dependencies. For
instance, suppose the t component in σ2 were specified as type t = int × s.t. Since t is required to equal
its forward declaration s.t, the latter would have to be specified in σ1 in such a way that s.t = int × s.t,
which is not possible in ML, i.e., in the absence of equi-recursive types.

As rds’s do not have explicit introduction and elimination constructs, the introduction and elimination
rules for elaborator rds’s take the form of signature coercion rules. The elimination rule for rds’s peels off the
rds’s forward declaration, in a manner identical to the elimination rule for existentials. This is not surprising
considering that rds’s and existentials have the same underlying HIL representation.

π2M : σ2[π1M/s]
peel
=⇒ M ′ : σ′

M : ρs:σ1.σ2
peel
=⇒ M ′ : σ′

Note that we unpeel ρs:σ1.σ2 to σ2[π1M/s], not σ2[M/s] as the rds elimination rule of Section 3.1.2 dictates,
because it is π1M that contains the forward-declared type components. Adding this rule means that the
signature coercion right rules can expect, when coercing σA to σB , that σA is not an rds.

The introduction rule for rds’s takes the form of a signature coercion right rule:

Γ ` M : σ �R σ1 ; N1 Γ ` M : σ �R σ2[N1/s] ; N2

Γ ` M : σ �R ρs:σ1.σ2 ; 〈N1, N2〉

To match M against ρs:σ1.σ2, the rule requires that M match σ2[N1/s], where N1 is just M coerced into
the right shape, i.e., σ1. This rule is morally the same as the rds introduction rule of Section 3.1.2, modulo
the added complications of signature matching.
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There are several reasons for handling rds’s in the way I have. First, as a practical matter, it is much
simpler to use a Russo-style rds construct of the form ρs:σ1.σ2, where the forward declaration σ1 is made
explicit. The reader may have noticed that I avoided giving a well-formedness rule for rds’s of the form
ρs. σ when I first discussed them in Section 3.1.2. The reason was that the well-formedness rule given by
Crary et al. is rather complex, depends heavily on the explicitly phase-split formalism, and essentially forces
the typechecker to nondeterministically guess the right signature to assign s when typechecking σ. It may
be possible for the elaborator to guess that signature as part of type inference, but I will not study that
possibility further in this proposal.

Unfortunately, the Russo-style rds does not have the desired semantics when added to the HIL type
theory. In particular, for the rds ρs:σ1.σ2 to be well-formed, the signature σ2 should coercively match σ1,
so that σ1 only needs to specify the type components of s that σ2 refers to. Coercive signature matching,
however, is provided only by the elaborator, not by the HIL type system. One could argue that this is not
a problem. For instance, suppose that the HIL rds rule required that σ2 non-coercively match σ1, i.e., that
σ2 ≤ σ1. The elaborator might transform an external rds ρs:σ1.σ2 into a valid HIL rds by “filling in” σ1

structurally with dummy components (of signature Top), in order to make it a supersignature of σ2. While
this might work, it introduces an elaboration hack that is much less straightforward than the interpretation
of rds’s I have proposed.

Another pragmatic argument is that it is not clear how the introduction and elimination rules for rds’s
that I gave in Section 3.1.2 interact with the HIL typechecking algorithm, since they are non-syntax-directed
retyping rules. The rds rules turn out to be admissible in the explicitly phase-split formalism but, as I have
mentioned, that formalism introduces other complexities. In short, while the rds rules express intuitively the
semantics of rds’s, they would constitute an awkward and possibly ill-behaved extension to the type theory.

3.3.2 Fixed-Point Modules

I propose to extend my type theory with fixed-point modules, with the goal of encompassing as many points
in the design space as possible. My fixed-point typing rule is as follows:

Γ ` σ ≡
�

σ′(M ′) Γ, s ↑σ `κ M ↓ σM Γ ` σM ≤ σ

Γ `κ fix(s : σ. M) ↓ σM

The first premise checks that the forward declaration signature σ is equivalent to some singleton signa-
ture, i.e., that it is fully transparent. As I have pointed out already, this restriction seems to be unavoidable,
although in Section 4.2 I will discuss possible ways to incorporate datatype specs into the forward declara-
tion.

The second premise checks that the body M is valuable in a context where the recursive module variable
s is not. Thus, I have chosen to employ the valuability semantics for fixed-points. Although I will not flesh
out the definition of valuability in this proposal, I expect it to be similar to the definition of valuability
that is already present in the Harper-Stone HIL to model the SML value restriction. As for the alternative
memoizing semantics of fixed-point modules, I will show shortly how it can be encoded as a stylized use of
the present rule in conjunction with a new type of lazy modules.

The third premise checks that the signature σM of M is a subtype of the forward declaration signature
σ. The stronger signature σM is then returned as the signature of the fixed-point itself, with the intention
that σM may export more components than are forward-declared in σ, including abstract type components.
At first it may not be obvious how σM can contain abstract type components, since the type components
of its supertype σ are all transparent. The trick is to use the Top signature.9 For instance, suppose that
σ = Top × σ2 and σM = σ′

1 × σ′

2. While σ′

2 must be a subtype of σ2, σ′

1 can be anything, and in particular
may specify abstract types. Note that it is fine for Top to appear in σ because Top is trivially transparent,
i.e., Top =

�
Top(M) for any M .

One aspect of my fixed-point typing rule in particular may give cause for alarm, namely that the signature
of the fixed-point body may not contain references to the recursive module variable. Thus, to synthesize the
principal signature of a fixed-point, one must synthesize the principal signature σM of the body, and then find
the least supersignature of σM avoiding the recursive module variable s. This would appear to incur precisely
the avoidance problem! Fortunately, I believe this to be a solvable instance of the avoidance problem. Since

9In the interest of full disclosure, this is the reason I included the Top signature in my type system in the first place.
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Γ `κ M : σ κ v D

Γ `κ delay(M) ↓ comp(σ)
(16)

Γ `κ M : comp(σ)

Γ `κ force(M) : σ
(17)

Γ `κ M ↓ σ

Γ `κ M : σ
(18)

Γ ` σ1 ≤ σ2

Γ ` comp(σ1) ≤ comp(σ2)
(19)

Γ `P force(M) : σ

Γ `P M : comp(σ)
(20)

Γ ` force(M1) ∼= force(M2) : σ

Γ ` M1
∼= M2 : comp(σ)

(21)

Γ ` M1
∼= M2 : σ

Γ ` delay(M1) ∼= delay(M2) : comp(σ)
(22)

Γ ` M1
∼= M2 : comp(σ)

Γ ` force(M1) ∼= force(M2) : σ
(23)

Figure 12: Typing Rules for Lazy Memoized Modules

the avoided variable in question is assigned a fully transparent signature, it should be possible to substitute
any references to the type components of s in σM with their definitions in the forward declaration signature.
Moreover, the resulting signature should be equivalent to σM .

3.3.3 Lazy Memoized Modules

By restricting the body to be valuable, my fixed-point construct does not provide any way to write recursive
modules with term-level effects. By term-level effects I mean effects such as I/O, references and exceptions,
rather than the typing effects of abstraction and generativity.

Russo accounts for term-level effects by employing a memoizing semantics, as I described in Section 3.1.1.
Inspired by Russo’s approach, I propose to incorporate term-level effects into my type theory of recursive
modules by adding a new kind of module: a lazy memoized module. The signature of a lazy module is
comp(σ), which stands for the “computation of a module of signature σ”. The introduction form for comp(σ)
is delay(M), which suspends the computation of M (of signature σ). The elimination form for comp(σ)
is force(M), which evaluates M to a value V and then checks whether V is a computation that has been
evaluated and memoized yet. If so, it returns the memoized value of type σ; if not, it evaluates the suspended
computation and memoizes it.

The point of introducing lazy modules is that we can now encode the Russo-style fixed-point construct
(denoted russofix(s : σ. M)) as a regular fixed-point whose body is a lazy memoized module. Formally,
russofix(s : σ. M) can be defined as follows:

russofix(s : σ. M)
def
= force(fix(s′ : comp(σ). delay(M [force(s′)/s])))

Under this encoding, M may have arbitrary term-level effects, as any such effects are captured by the delay

and only unleashed by the force outside of the fixed-point. In order to make this work, delay(M) must be
considered valuable regardless of what M is.

The typing rules for lazy modules are given in Figure 12. Rule 16 requires the module M in delay(M) to
be dynamically pure, i.e., non-generative. The reason for this restriction is that if M has dynamic typing
effects, then delay(M) suspends those effects, just as it suspends term-level effects. If the suspension is
subsequently forced, the dynamic effects will be released. However, there is nothing about the signature
comp(σ) that indicates whether forcing a module of that signature should induce a dynamic effect, and in
general we do not want it to. In particular, the encoding of russofix relies on the ability to substitute force(s′)
for s, which is only sensible if force(s′) is pure.

The restriction of Rule 16 has serious implications if we wish to be able to write recursive modules whose
bodies contain dynamic effects, such as generative functor applications. I will defer the remedy to this
restriction until Section 3.3.5, as it raises other interesting problems. The remaining rules in Figure 12 are
completely straightforward, with the exception perhaps of Rules 20 and 21, which provide selfification and
extensionality, respectively, at comp signatures. Correspondingly, the higher-order singleton

�
comp(σ)(M) is

defined to be comp(
�

σ(force(M))).
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3.3.4 Handling Separate Compilation With Lazy Modules

An important benefit of separating fixed-point modules from lazy memoized modules is that it solves the
problem of separate compilation. Recall the example from Section 3.1.4, in which we wanted to separately
compile the two substructures of the module

fix (X : σ. struct

structure A = struct fun f(n) = X.B.g(n-1) end

structure B = struct fun g(n) = X.A.f(n-1) end

end)

First, let us rewrite the module as if it were a Russo-style fixed-point, encoded in terms of lazy modules:

force(fix (X : comp(σ). delay(struct

structure A = struct fun f(n) = force(X).B.g(n-1) end

structure B = struct fun g(n) = force(X).A.f(n-1) end

end)))

Now, when we functorize A and B over X, we get:

functor FunA (X : comp(σ)) = struct fun f(n) = force(X).B.g(n-1) end

functor FunB (X : comp(σ)) = struct fun g(n) = force(X).A.f(n-1) end

The linking module is written essentially as it was before:

force(fix (X : comp(σ). delay(struct

structure A = FunA(X)

structure B = FunB(X)

end)))

The difference here is that the body of the linking module is suspended, so the fixed-point evaluates to a
module value V right away. Then, when V is promptly forced, the references to X in FunA(X) and FunB(X)

do not raise an undefined exception because, after the fixed-point is unrolled, they are merely references
to V , which is a value! Moreover, FunA(V ) and FunB(V ) evaluate without incident because they do not
attempt to force V during the forcing of V .

Note that the comp signatures play a critical role here. If the functors FunA and FunB did not specify
their arguments to be computations, the invocations of those functors would have had to force X to obtain a
module of signature σ, resulting in the same divergent behavior as we saw in Section 3.1.4. In essence, the
key idea that makes separate compilation work is that the separately compiled functors treat references to
the recursive module variable the same way such references are treated inside the fixed-point: namely, as
references to a memoized computation.

3.3.5 Recursive Modules With Dynamic Effects

Allowing dynamic effects in a lazy module is in fact not difficult. Suppose we forget about memoization and
think of comp(σ) as essentially the thunk signature 1→ σ. Then, delay(M) is essentially the functor λ〈〉.M .
Consequently, if M has dynamic effects, then delay(M) is a generative functor of signature 1

gen

→ σ.
Thus, an analogous way to deal with dynamic effects is to add a new signature compgen(σ) classifying

lazy modules with dynamic effects, with the following introduction and elimination rules:

Γ `κ M : σ

Γ `κu D delay(M) ↓ compgen(σ)

Γ `κ M : compgen(σ)

Γ `κt S force(M) : σ

(I should point out that I only discovered the need for compgen(σ) when I attempted to prove that an earlier
version of the typing rules for comp(σ) was sound, and discovered a subtle counterexample to soundness
instead. While I believe the generative distinction eliminates any potential for unsoundness, this needs to
be proven by extending the dynamic semantics and type safety proof to account for recursive modules.)

A subtle problem arises, though, if we try to use a compgen(σ) in conjunction with the russofix encoding. In
particular, if the body M of russofix(s : σ. M) contains dynamic effects, then the encoding is not well-typed
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because the body delay(M [force(s′)/s]) has signature compgen(σ), which is not a subtype of the forward
declaration signature comp(σ). On the other hand, we cannot change the forward declaration signature
to compgen(σ), because then force(s′) would become impure and delay(M [force(s′)/s]) invalid. What is
particularly frustrating about this problem is that, although M may have dynamic effects internally, when
viewed at the fully transparent signature σ they are invisible. In essence, who cares whether a module
generates abstract types at run time if it does not export any of them?

This dilemma points out a small but apparently important failing of my type theory of modules, namely
that an impure module with a fully transparent signature is still irrevocably deemed impure. Indeed, this
issue is the one point regarding which Shao’s type system for higher-order modules [42], which I described in
Section 2.2, has the upper hand. In his type system transparency is purity, and opacity is generativity. In
the context of higher-order modules, it doesn’t seem particularly important, for instance, whether a module
sealed with a fully transparent signature is seen as pure or not. The module’s signature reveals all there is
to know about it regardless, so purity does not seem to achieve anything.

To allow dynamic effects in recursive modules, however, we appear to need a way of observing that a fully
transparent module can only have benign effects, so it is for all intents and purposes pure. If the type system
were to observe this fact automatically, the purity of a module would depend on the signature at which
it is viewed. For example, every module would be considered pure at signature Top, which would falsify
the claim that the signature synthesis algorithm outputs the minimal purity level of a module. Instead, I
propose to introduce a new module construct purifyσ(M), which coerces M to purity at the fully transparent
signature σ:

Γ ` σ ≡
�

σ′(M ′) Γ `κ M : σ

Γ `P purifyσ(M) : σ

The encoding of russofix(s : σ. M) can now be mended to handle a dynamically effectful M by purifying M
at the forward declaration signature:

russofix2(s : σ. M)
def
= force(fix(s′ : comp(σ). delay(purifyσ(M [force(s′)/s]))))

3.3.6 Elaboration of Recursive Modules

While clean and concise, the revised russofix2 encoding of the previous section is a bit oversimplistic. In
particular, by purifying M at the forward declaration signature, we lose the ability to export other, possibly
abstract, components of M . Moreover, the russofix2 encoding does not utilize the new compgen signature. In
this section I illustrate how elaboration techniques and the compgen signature can be used to encode a more
complete account of Russo’s memoizing semantics in the form of an external language construct rec(s : σ̂. M̂).

The following elaboration rule recovers the ability to export abstract types from a recursive module by
translating rec(s : σ̂. M̂) to a fixed-point over a pair of modules. The first module contains the translation
M of M̂ , which we wish to export but not forward-declare as it may contain abstract types. The second
module is a coercion from M to the translation σ of σ̂, which we wish to forward-declare but not export.
We avoid forward declaration of the first component by forward-declaring it with Top, as I suggested doing
in Section 3.3.2. We avoid exporting the second component by only projecting out the first component of
the fixed-point in the end.

Γ ` σ̂ ; σ Γ ` σ ≡
�

σ′(M ′) Γ, s:σ `κ M̂ ; M : σM

Γ, s:σ ` σM ≡ σ′

M Γ ` σ′

M sig Γ, u:σ′

M ` u : σ′

M � σ ; N

Γ `κ rec(s : σ̂. M̂) ;

let s = fix(r : Top× comp(σ).
〈t = delay(M [force(π2r)/s]),
delay(purifyσ(let u = force(t) in (N : σ)))〉)

in (force(π1s) : σ′

M ) : σ′

M

Note that the compgen signature is needed in order to classify the first component of the pair, in the case
that M has dynamic effects. Also note that the fourth and fifth premises magically invent a signature σ ′

M

that is equivalent to σM but does not mention s. As I argued in Section 3.3.2, I believe this to be a solvable
instance of the avoidance problem because s’s signature σ is fully transparent.
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In order to allow the programmer to separately compile recursive modules using the technique from
Section 3.3.4, the external language must also be extended with lazy signatures comp(σ̂), whose elaboration
rule is extremely simple:

Γ ` σ̂ ; σ
Γ ` comp(σ̂) ; comp(σ)

The next question is obviously whether or not to include delay and force in the external language as well. For
the purpose of separate compilation of recursive modules, it is not necessary to include them, since they are
used in a highly idiomatic way that the elaborator can infer. In particular, as with rds’s, the introduction
and elimination of comp signatures can be performed as part of signature coercion. Whenever a lazy module
is referred to, it is immediately forced; whenever a module is coerced to a lazy signature, it is suspended.

Γ ` M : σ �R σ′
; M ′

Γ ` M : σ �R comp(σ′) ; delay(M ′)

force(M) : σ
peel
=⇒ M ′ : σ′

M : comp(σ)
peel
=⇒ M ′ : σ′

The running separate compilation example can now be written in the external language as follows:

functor FunA (X : comp(σ)) = struct fun f(n) = X.B.g(n-1) end

functor FunB (X : comp(σ)) = struct fun g(n) = X.A.f(n-1) end

structure Linker = rec (X : σ. struct

structure A = FunA(X)

structure B = FunB(X)

end)

The peeling rule for comp(σ) elaborates the references to X in the bodies of FunA and FunB to force(X). The
signature coercion right rule has the dual behavior, elaborating the references to X in the functor applications
of the linking module to delay(X). Finally, the elaboration rule for recursive modules changes the forward
declaration of the linking fixed-point to comp(σ) and substitutes force(X) for X in the body. So in the end,
the occurrences of X in the linking module elaborate to delay(force(X)), which is just the eta-expansion of
X. Thus, elaboration is capable of producing extensionally the same code as the hand-coded version from
Section 3.3.4, and in practice eta-redices like delay(force(X)) can likely be eliminated as an optimization.

4 Directions for Thesis Work

The type-theoretic approach to modules that I have presented in Sections 2 and 3 will form the foundation
of my thesis. The bulk of my thesis work will involve scaling my extensions to the level of the full SML
language and implementing them. This final section is devoted to enumerating several related directions I
intend to explore as well. Sections 4.1 through 4.3 discuss extensions and revisions to my type theory of
modules. Sections 4.4 and 4.5 discuss the language features of views and type classes, both of which are
relevant to modularity, and what may be involved in adding them to SML. Finally, Section 4.6 discusses
some of the problems with the SML language and the TILT elaborator that I would like to resolve during
the design and implementation of my language extensions.

4.1 A Monadic Approach to Generativity

In Section 2.5 I described generativity as a computational effect, encapsulated by functors and released
upon their applications. My type system for modules tracks this computational effect by using different
signatures (Π and Πgen) to distinguish between functors with pure and impure bodies. This approach
illustrates a beautiful connection between the applicative/generative distinction and the way effects are
tracked in traditional effect systems [13, 46].

An alternative approach, originally proposed by Moggi [31], is to use monadic types to classify effectful
computations. In the context of the module type theory, this would correspond to the addition of a new sig-
nature gen(σ), classifying dynamically effectful modules of signature σ. One could give this new generativity
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monad the following introduction and elimination rules:

Γ `κ M : σ

Γ `P gen(M) : gen(σ)

Γ `κ M : gen(σ)

Γ `κt S ungen(M) : σ

An impure module M may be packaged as a pure module gen(M) with a monadic signature. In order to use
a module M of monadic signature, however, M must be ungen’d, unleashing a dynamic effect.

By providing a way for a dynamically effectful module to be packaged as a pure module, the monadic ap-
proach eliminates the need for generative functor signatures. In particular, the generative functor signature
Πgens:σ1.σ2 can be encoded as the (applicative) functor signature Πs:σ1.gen(σ2). Correspondingly, a gen-
erative functor λs:σ.M , i.e., where M is impure, can be encoded as the (applicative) functor λs:σ.gen(M),
and the application FM , where F is generative, can be encoded as ungen(FM). To preserve the functor
subtyping of my original system, it is also necessary to add the following two subtyping rules for monadic
signatures:

Γ ` σ1 ≤ σ2

Γ ` gen(σ1) ≤ gen(σ2)

Γ ` σ sig

Γ ` σ ≤ gen(σ)

There is a strong connection between the generative monadic signature gen(σ) and the package type 〈|σ|〉.
Monads and packages, however, offer complementary benefits. While packages allow modules to be passed
as first-class values, monadic signatures support subtyping, which is only available at the module level.

The monadic approach has several advantages over the effect-system approach in the context of modules.
First, functors are not forced to be completely applicative or generative. Rather, some type components in
the result signature of a functor may be specified as generative by wrapping them in monadic signatures,
while others may remain applicative. This is potentially useful from a programming perspective, as it allows
for fine-grained control over type generativity.

The monadic approach also turns out to simplify the module type theory by obviating the point S in the
purity lattice. Recall that S corresponds to the classification of a module as statically pure but dynamically
effectful. Since static effects correspond to type abstraction, and dynamic effects to generativity, it seems
very strange to classify a module as generative but not abstract. In truth, the sole reason for including S

is in order to allow generative functors with no sealing to be deemed pure, which in turn is important in
order to preserve the invariants of elaboration. Specifically, in the case of the elaboration rule for coercion
of functor signatures (Rule 10 in Figure 8), the invariants require that the output of the coercion rule,
λs:σ′

1. let t = FM in (N : σ′

2), is always pure, since the output of coercion rules may be fed back in as input.
However, if F has a generative signature, then for the output to be pure, it is necessary to classify FM as
S, not W.

With monads, this niggling excuse for the S classification falls by the wayside. In particular, any functor
F with a generative signature, which under the monadic encoding means Πs:σ1.gen(σ2), can be eta-expanded
into a pure functor λs:σ1.gen(ungen(F s)). Thus, the result of generative functor coercions can always be
eta-expanded into a pure functor in the monadic system without needing S. The upshot, then, is that monads
allow us to simplify the purity lattice to the more intuitive and catchy

G

|
A

|
P

where A stands for “non-generative, but possibly Abstract” and G stands for “possibly Generative”. In such
a lattice, type generativity clearly implies type abstraction.

Lastly, just as the monadic approach eliminates the need for the Πgen signature, the distinction between
comp(σ) and compgen(σ) in the recursive module calculus should be rendered unnecessary as well, under the
encoding of compgen(σ) as comp(gen(σ)). Moreover, it is worth noting that the signature comp(σ) is a form
of monadic signature itself as well, capturing the type of computations that may involve term-level effects.
Monads and effects thus seem to be important concepts in the type theory of modules. I chose not to employ
the monadic approach earlier in this proposal, as I have not yet worked out the full monadic type system
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and its meta-theory, and I have not decided to what extent the generativity monad should be incorporated
into the external language design.

4.2 Forward Declarations of Datatypes

A deficiency of my proposal for recursive modules is that it does not allow datatype’s to be specified in
the forward declaration of a fixed-point. As I mentioned in Section 3.2, Russo’s Moscow ML extension
allows datatype specs in forward declarations, so long as they are copied into the recursive module body
using the SML datatype copying primitive. From the perspective of the Harper-Stone framework, it is not
clear how to implement Russo’s semantics because those datatype’s specified in the forward declaration
of a recursive module never actually get defined anywhere. The reason this is not a problem for Russo
is that his Definition-based formalism only synthesizes semantic objects (i.e., internal-language types) for
external-language modules—it elaborates for the purpose of typechecking, but does not produce any HIL
code as HS does. Nevertheless, the uselessness of forward-declaring any other kind of opaque type but a
datatype indicates that the ability to forward-declare datatype’s is little more than a special-case loophole
in otherwise fully transparent forward declarations. Still, it is an important loophole.

One way to translate Russo’s loophole to our setting might be to view the datatype’s specified in
a forward declaration as being defined before the fixed-point itself and subsequently copied into the for-
ward declaration. For instance, to simulate datatype t = <rhs> in a forward declaration, first define
datatype prefix t = <rhs>[prefix t/t], and then replace the specification of t in the forward decla-
ration with datatype t = datatype prefix t. This has the effect of rendering the forward declaration
transparent again, as required by my proposed fixed-point construct of Section 3.3.2.

The details of this encoding clearly need to be worked out, especially with regard to separate compilation.
However, it should be noted that the principle behind the encoding is applicable not just to datatype specs,
but to any canonically implemented specs. In other words, it is reasonable to specify types opaquely in a
forward declaration if the elaborator knows a canonical way to define them outside of the recursive module
and copy them into the forward declaration. It so happens that the only such canonically implemented
specifications in SML are datatype specs.

4.3 Valuability vs. Evaluability

The purpose of the valuability restriction on fixed-point module bodies is to ensure that the recursive module
variable is never accessed during the evaluation of the body. Valuability is sufficient, but it is not necessary.
In particular, it prohibits side effects in the body that may have nothing to do with accessing the recursive
module variable. For example, there should be nothing wrong with defining a mutable “flag” component
of a recursive module to be ref true, but valuability disallows it. The flag is permitted under the Russo-
style semantics of fixed-points, but at the expense of a memoization check at each reference to the recursive
module variable.

A more appropriate restriction for fixed-point module bodies would be what I call evaluability, whose only
purpose is to ensure that undefined (or non-evaluable) variables never get accessed during the evaluation of
the module body. I expect the judgment for evaluability to be axiomatized similarly to valuability, save the
allowance for side-effecting primitive operations like ref, but again the details must be worked out.

If we only wish to provide the Russo-style fixed-point in the external language, then it is somewhat moot
whether we choose valuability or evaluability as the internal restriction on fixed-points. If, however, we want
to allow the programmer to use the more efficient internal fixed-point construct directly, evaluability would
provide considerably greater flexibility. In addition, it is worth noting that while my encoding of Russo-
style recursive modules relies on memoized suspensions being considered valuable, they really are not. The
evaluation of delay(M) allocates a new memoized cell, thus producing distinct values each time delay(M)
is evaluated. Although I believe it is perfectly sound (for purposes of type safety) to consider delay(M)
valuable, evaluability is the more appropriate notion.
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4.4 Views

While an SML datatype declaration generates an abstract type, its underlying implementation is known to
be isomorphic to a particular recursive sum type. The “concrete” nature of datatype’s has the advantage
that constructing values of a datatype and pattern matching against them can be compiled efficiently.10

On the other hand, the programming convenience benefits of pattern matching are tied to the datatype

construct, with the consequence that one cannot pattern match against a value of an arbitrary abstract type.
To remedy this, Wadler [49] proposed the idea of views, which allow the programmer to write a non-

standard implementation of a datatype. A view consists of two transformation functions: one from the
datatype to the actual implementation type, which is called at applications of the datatype’s constructors,
and one in the other direction, which is called during pattern matching. By allowing one to take advantage of
pattern matching while preserving data abstraction, views are closely tied to my thesis’ theme of modularity.

Okasaki [35] later described, as an extension to SML, a variant of Wadler’s views in which only the latter
transformation is required. His simplification is motivated by the observation that the constructors that are
appropriate for constructing values of an arbitrary type are not necessarily the same ones appropriate for
destructing it. Okasaki also proposes ways to deal with the interaction of view transformations and effects.
Essentially he suggests that, in order to avoid problems with redundant or nonexhaustive pattern matches,
a view transformation should only be applied once during a pattern match and the result memoized.

Okasaki’s extension is specified somewhat informally and treats views as derived forms. As part of my
thesis work I propose to adapt his approach to the Harper-Stone framework, in the process exposing views
to be special kinds of user-definable modules whose interfaces are recognized by the pattern compiler.

4.5 Type Classes

Polymorphism in SML is parametric, in that a polymorphic function has the same behavior for all instan-
tiations of its type variables. In contrast, SML provides very little support for ad hoc polymorphism (or
overloading), which refers to the ability to define a function at multiple types, with different implementa-
tions at different types. The only instances of overloading in SML are some of the arithmetic operators,
which are applicable to both int and real arguments, and the equality function, =, which is defined only
for so-called equality types.

As a way of generalizing SML’s equality types to something less ad hoc, Wadler and Blott [50] proposed
the idea of type classes. A type class defines a set of functions that must be implemented at any type
belonging to the class. For example, the type class Eq could be defined to contain types t for which the
function = of type t * t -> bool is implemented. Continuing the example, a function that uses the equality
function on its input argument, but does not otherwise place any restrictions on the type of that argument,
will be given a polymorphic type where the type variable classifying the input argument is required to
belong to the Eq class. In addition to enhancing the flexibility of polymorphism, type classes provide a form
of extensibility. One may declare a new type to be an instance of an old class by providing implementations
of the overloaded functions associated with that class at the new type. Polymorphic code that makes use of
those overloaded functions can then be instantiated at the new type and reused without modification.

Type classes are one of the most notable and successful features of the language Haskell [1]. In Haskell,
whose module system is restricted to namespace management, type classes provide some of the reusability
benefits of functors. The notion of context reduction in type class systems corresponds to automatic applica-
tions of functors with the default arguments supplied by instance declarations. While the default instantia-
tion of functors (aka dictionary passing) implicit in the implementation of type classes allows for convenient
programming idioms, it lacks the flexibility of SML functors. Recognizing this, Kahl and Scheffczyk [20]
have recently proposed extending Haskell with named instances of type classes, so that one may explicitly
indicate the instance to be used when satisfying the type class constraints of a polymorphic type variable.

While well-intentioned, Kahl and Scheffczyk are essentially backpatching a limited form of functors onto
Haskell, which is I think approaching the problem from the wrong direction. Rather, I believe the more
systematic approach would be to start with a full-featured module system and build type classes on top of
it as an extension of type inference. From this perspective, a type class is a special form of signature, and

10Although doing so in a type-directed compiler without breaking the abstraction of the datatype requires some additional
type-theoretic machinery [48].
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an instance is a special form of module. The numerous variations and extensions of type classes, such as
constructor classes and multi-parameter type classes [37], can then be viewed as other, less restricted forms
of modules and signatures.

I have uncovered no prior work, however, on adding type classes to a language with a rich module system
like SML. A major problem is that it is not clear how to define the scope of class and instance declarations. If
we think of type classes as signatures, then class declarations should, like signature definitions, be permitted
only at top level. As for instance declarations, however, Haskell skirts the issue by implicitly exporting all
class instances declared in a module, and by prohibiting overlapping instances of the same type belonging
to the same class. Such a solution would not carry over to SML modules, though. Module hierarchies
in SML frequently contain several copies of a module as substructures of other modules, so it is not clear
what to do if such a module exports instance declarations. One approach might be to allow overlapping
instance declarations, accepting that type inference might resolve instance conflicts non-deterministically
or according to an essentially ad hoc algorithm. As part of my thesis work, I propose to investigate these
questions further: at a minimum to clearly formalize what the problems are, and ideally to incorporate some
form of type class mechanism into SML as well.

4.6 Revising SML and the TILT Elaborator

My experience with the TILT elaborator so far suggests that implementing my language extensions will
point out flaws and omissions in their design and/or formalization. In addition, it will raise issues that are
not apparent when designing the semantics, such as time and space efficiency concerns. From working on
the TILT elaborator, I am already aware of several problematic points in the design and implementation of
SML itself that I plan to resolve as part of my thesis work:

Compilation Units Although most implementations of SML support some form of separate or incremental
compilation, neither the Definition of SML nor Harper-Stone specifies what a compilation unit is. The TILT
developers have found that the semantics of compilation units is rather subtle, and it is difficult to pin down
the fine points without a more formal definition of compilation management. I expect formalization to be
even more important in the presence of recursive modules and, potentially, recursive units.

Structure Sharing In the original Definition of SML [27], structure sharing constraints guaranteed the
property that two substructures were copies of the same original module. Transitioning away from the
stamp-based semantics of SML ’90, the Revised Definition of SML ’97 [28] redefined the structure sharing
constraint sharing A = B to be syntactic sugar for a set of type sharing constraints between all the type
components of the same name in A and B. Unfortunately, the way structure sharing is defined in the latter
Definition renders the feature all but useless: sharing A = B will only be a valid constraint if all of the type
components of the same name in A and B are abstract, which is rarely the case in practice.

In a note to the SML Implementers mailing list [7], I drafted a more sensible definition of structure
sharing that we the TILT developers devised. However, the implementation of structure sharing in TILT has
proven troublesome as well. In particular, structure sharing constraints cause the size of signatures to blow
up. As a stopgap solution, the current implementation makes use of a signature construct SIGNAT OF(A),
which refers to the principal signature of A. The SIGNAT OF construct is poorly understood, though, and may
not be type-theoretically valid. In addition to finding a sound solution to the practical problems with SML
’97 structure sharing, I plan to re-incorporate an SML ’90-style structure sharing construct, which would
allow one to enforce stronger program coherence properties. It is folklore that the stamp-based semantics
for structure sharing can be simulated type-theoretically by including a “hidden” abstract type in every
structure definition, but the details of this idea must be worked out.

Signature Bindings Signature bindings in SML are only allowed at top level, and Harper-Stone assumes
they are eliminated via a compiler pre-pass. However, from a programmer’s point of view, the ability to bind
signatures to variables, as well as specialize components of signatures using where type, is a critical feature
of SML, and enables a form of interface inheritance. In addition, extending SML with the ability to write
local signature bindings inside structures or signatures may offer a solution to the problems with signature
blow-up in the elaboration of structure sharing constraints. Therefore, I intend to give serious thought to
the semantics of signature variables and bindings in the process of revising and extending Harper-Stone.
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Notes on Appendices

The following appendices flesh out the type theory and elaborator for higher-order modules presented in
Section 2. Appendices A and B define the static and dynamic semantics, respectively, of the underlying type
theory. Appendix C gives the principal signature synthesis algorithm (modulo deciding type equivalence)
for the static semantics of Appendix A. Appendix D defines the elaboration algorithm from the external
language into the type theory.
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A Static Semantics for Higher-Order Modules

To reduce the number of freshness side-conditions, we adopt the convention that a context may not bind the
same variable more than once.

Well-formed contexts: Γ ` ok

ε ` ok
(1)

Γ ` σ sig

Γ, s:σ ` ok
(2)

Well-formed types: Γ ` τ type

Γ `P M : [[T ]]

Γ ` Typ M type
(3)

Γ, s:σ ` τ type

Γ ` Πs:σ.τ type
(4)

Γ ` τ ′ type Γ ` τ ′′ type

Γ ` τ ′ × τ ′′ type
(5)

Γ ` σ sig

Γ ` 〈|σ|〉 type
(6)

Type equivalence: Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]

Γ ` τ1 ≡ τ2
(7)

Γ ` σ1 ≡ σ2 Γ, s:σ1 ` τ1 ≡ τ2

Γ ` Πs:σ1.τ1 ≡ Πs:σ2.τ2
(8)

Γ ` τ ′

1 ≡ τ ′

2 Γ ` τ ′′

1 ≡ τ ′′

2

Γ ` τ ′

1 × τ ′′

1 ≡ τ ′

2 × τ ′′

2

(9)
Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉
(10)

Well-formed terms: Γ ` e : τ

Γ ` e : τ ′ Γ ` τ ′ ≡ τ
Γ ` e : τ

(11)
Γ `κ M : [[τ ]]

Γ ` Val M : τ
(12)

Γ `κ M : σ Γ, s:σ ` e : τ Γ ` τ type

Γ ` let s = M in (e : τ) : τ
(13)

Γ, f :[Πs:σ.τ ], s:σ ` e : τ

Γ ` fun f(s:σ):τ.e : Πs:σ.τ
(14)

Γ ` e : Πs:σ.τ Γ `P M : σ

Γ ` e M : τ [M/s]
(15) Γ ` e′ : τ ′ Γ ` e′′ : τ ′′

Γ ` 〈e′, e′′〉 : τ ′ × τ ′′
(16)

Γ ` e : τ ′ × τ ′′

Γ ` π1e : τ ′
(17)

Γ ` e : τ ′ × τ ′′

Γ ` π2e : τ ′′
(18)

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉
(19)

Well-formed signatures: Γ ` σ sig

Γ ` ok
Γ ` 1 sig

(20)
Γ ` ok

Γ ` [[T ]] sig
(21)

Γ ` τ type

Γ ` [[τ ]] sig
(22) Γ ` ok

Γ ` Top sig
(23)

Γ `P M : [[T ]]

Γ `
�
(M) sig

(24)
Γ, s:σ′ ` σ′′ sig

Γ ` Πδs:σ′.σ′′ sig
(25)

Γ, s:σ′ ` σ′′ sig

Γ ` Σs:σ′.σ′′ sig
(26)

Signature equivalence: Γ ` σ1 ≡ σ2

Γ ` ok
Γ ` 1 ≡ 1

(27)
Γ ` ok

Γ ` [[T ]] ≡ [[T ]]
(28)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≡ [[τ2]]
(29) Γ ` ok

Γ ` Top ≡ Top
(30)

Γ ` M1
∼= M2 : [[T ]]

Γ `
�
(M1) ≡

�
(M2)

(31)
Γ ` σ′

2 ≡ σ′

1 Γ, s:σ′

2 ` σ′′

1 ≡ σ′′

2

Γ ` Πδs:σ′

1.σ
′′

1 ≡ Πδs:σ′

2.σ
′′

2

(32)
Γ ` σ′

1 ≡ σ′

2 Γ, s:σ′

1 ` σ′′

1 ≡ σ′′

2

Γ ` Σs:σ′

1.σ
′′

1 ≡ Σs:σ′

2.σ
′′

2

(33)

Signature subtyping: Γ ` σ1 ≤ σ2

Γ ` ok
Γ ` 1 ≤ 1

(34)
Γ ` ok

Γ ` [[T ]] ≤ [[T ]]
(35)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≤ [[τ2]]
(36)

Γ ` σ sig

Γ ` σ ≤ Top
(37)
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Γ ` σ′

2 ≤ σ′

1 Γ, s:σ′

2 ` σ′′

1 ≤ σ′′

2 Γ, s:σ′

1 ` σ′′

1 sig δ1 v δ2

Γ ` Πδ1s:σ′

1.σ
′′

1 ≤ Πδ2s:σ′

2.σ
′′

2

(38)

Γ ` σ′

1 ≤ σ′

2 Γ, s:σ′

1 ` σ′′

1 ≤ σ′′

2 Γ, s:σ′

2 ` σ′′

2 sig

Γ ` Σs:σ′

1.σ
′′

1 ≤ Σs:σ′

2.σ
′′

2

(39)

Γ `P M : [[T ]]

Γ `
�

(M) ≤ [[T ]]
(40)

Γ ` M1
∼= M2 : [[T ]]

Γ `
�

(M1) ≤
�

(M2)
(41)

Well-formed modules: Γ `κ M : σ

Γ ` ok
Γ `P s : Γ(s)

(42) Γ ` ok
Γ `P 〈〉 : 1

(43)
Γ ` τ type

Γ `P [τ ] : [[T ]]
(44)

Γ ` e : τ Γ ` τ type

Γ `P [e : τ ] : [[τ ]]
(45)

Γ, s:σ′ `κ M : σ′′ κ v D

Γ `κ λs:σ′.M : Πs:σ′.σ′′
(46)

Γ, s:σ′ `κ M : σ′′ Γ, s:σ′ ` σ′′ sig

Γ `κu D λs:σ′.M : Πgens:σ′.σ′′
(47)

Γ `κ F : Πs:σ′.σ′′ Γ `P M : σ′

Γ `κ FM : σ′′[M/s]
(48)

Γ `κ F : Πgens:σ′.σ′′ Γ `P M : σ′

Γ `κt S FM : σ′′[M/s]
(49)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ′′

Γ `κ 〈s = M ′, M ′′〉 : Σs:σ′.σ′′
(50)

Γ `κ M : Σs:σ′.σ′′

Γ `κ π1M : σ′
(51)

Γ `P M : Σs:σ′.σ′′

Γ `P π2M : σ′′[π1M/s]
(52)

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ
(53)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(54)

Γ `κ M : σ

Γ `W (M :>σ) : σ
(55)

Γ `P M : [[T ]]

Γ `P M :
�
(M)

(56)
Γ, s:σ′ `P Ms : σ′′ Γ `P M : Πs:σ′.ρ

Γ `P M : Πs:σ′.σ′′
(57)

Γ `P π1M : σ′ Γ `P π2M : σ′′

Γ `P M : σ′ × σ′′
(58)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ Γ ` σ sig

Γ `κ let s = M ′ in (M ′′ : σ) : σ
(59)

Γ `κ′ M : σ′ Γ ` σ′ ≤ σ κ′ v κ

Γ `κ M : σ
(60)

Module equivalence: Γ ` M1
∼= M2 : σ

Γ `P M : σ

Γ ` M ∼= M : σ
(61)

Γ ` M2
∼= M1 : σ

Γ ` M1
∼= M2 : σ

(62)
Γ ` M1

∼= M2 : σ Γ ` M2
∼= M3 : σ

Γ ` M1
∼= M3 : σ

(63)

Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]
(64)

Γ `P M : [[T ]]

Γ ` [Typ M ] ∼= M : [[T ]]
(65)

Γ `P M1 : σ Γ `P M2 : σ σ is of the form 1, [[τ ]], Top, or Πgens:σ1.σ2

Γ ` M1
∼= M2 : σ

(66)

Γ ` σ′

1 ≡ σ′

2 Γ, s:σ′

1 ` M1
∼= M2 : σ′′

Γ ` λs:σ′

1.M1
∼= λs:σ′

2.M2 : Πs:σ′

1.σ
′′

(67)
Γ ` F1

∼= F2 : Πs:σ′.σ′′ Γ ` M1
∼= M2 : σ′

Γ ` F1M1
∼= F2M2 : σ′′[M1/s]

(68)
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Γ ` M ′

1
∼= M ′

2 : σ′ Γ, s:σ′ ` M ′′

1
∼= M ′′

2 : σ′′

Γ ` 〈s = M ′

1, M
′′

1 〉
∼= 〈s = M ′

2, M
′′

2 〉 : Σs:σ′.σ′′
(69)

Γ ` M1
∼= M2 : Σs:σ′.σ′′

Γ ` π1M1
∼= π1M2 : σ′

(70)
Γ ` M1

∼= M2 : Σs:σ′.σ′′

Γ ` π2M1
∼= π2M2 : σ′′[π1M1/s]

(71)

Γ, s:σ′ ` M1s ∼= M2s : σ′′ Γ `P M1 : Πs:σ′.ρ1 Γ `P M2 : Πs:σ′.ρ2

Γ ` M1
∼= M2 : Πs:σ′.σ′′

(72)

Γ ` π1M1
∼= π1M2 : σ′ Γ ` π2M1

∼= π2M2 : σ′′

Γ ` M1
∼= M2 : σ′ × σ′′

(73)

Γ `P M ′ : σ′ Γ, s:σ′ `P M ′′ : σ Γ ` σ sig

Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] : σ
(74)

Γ `P M1 :
�
(M2)

Γ ` M1
∼= M2 :

�
(M2)

(75)
Γ ` M1

∼= M2 : σ′ Γ ` σ′ ≤ σ

Γ ` M1
∼= M2 : σ

(76)
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