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Dataflow Analyses, Traditionally

• Lots of C++ code

• Same code over and over (e.g., iterate to fixed point)

• Hard to reason about directly

• Have to hand-tune for performance
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Project Thesis

Using logic programming, you can easily easily
implement correct and fast dataflow analyses

for the Pegasus IR.
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Logic Programming in Datalog

Finite data types:
NODE 1024

and relations on them:
edge (x:NODE, y:NODE)
reach (x:NODE, y:NODE)
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Logic Programming in Datalog

Some relations are specified explicitly:
edge(0,1).
edge(2,3).
...

Others are defined by inference rules:
reach(x,y) :- edge(x,y).
reach(x,z) :- edge(x,y), reach(y,z).

Computation: saturate database with all true facts.
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Reasoning about Logic Programs

reach(x,y) :- edge(x,y).
reach(x,z) :- edge(x,y), reach(y,z).

• Program has a logical meaning

• Can be used to prove correctness properties.
Example: if reach(x,y) then there exists a path
from x to y.
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Fast Logic Programming in bddbddb

Whaley and Lam (Stanford) implemented Datalog using
Binary Decision Diagrams:

• Use BDDs to concisely represent relations

• Applied to pointer analyses, etc.

• One fast BDD implementation is shared by all
analyses.
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Example: Liveness

Iterative database saturation models iterative dataflow
solving:
live(r, s) :- uses (s, r).
live(r, s1) :- succ(s1,s2),

live(r,s2), !assigns(s2, r).

where
uses(s:Stat, r:Reg) % s is r’ := op(r, _) ..
assigns(s:Stat, r:Reg) % s is r := ...
succ(s1:Stat, s2:Stat) % s2 after s1
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So Far

• Got going with bddbddb

• Implemented some simple analyses for traditional
CFG IR: reachability (simplified ADCE), liveness, first
parts of PRE

• Prelim results: reachability on 100 nodes in 1s, 1000
nodes in 30s-2min

• Technique for intersection-analyses (more on this if
there’s time)

• Working on Pegasus analyses
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Union Analyses

Inference rules implicitly existentially quantify over
variables in premises:
live(r, s1) :- [exists s2.]

succ(s1,s2),
live(r,s2), !assigns(s2, r).

Works for dataflow analyses that union over adj. nodes.
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Intersection Analyses

E.g. globally anticipatable expressions (first part of PRE):
locAnt(b:Blk, e:Exp)
locTrans(b:Blk, e:Exp)
succ(b1:Blk, b2:Blk)

ant(b,e) :- locAnt(b,e).
ant(b1,e) :- locTrans(b1,e),

(all b2. succ(b1,b2)
-> ant(b2,e)).

Problem: Datalog does not allow all, -> in a premise.
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Double-negation Encoding

Define the negation of the intersection analysis:
notant(b,e) :- !locAnt(b,e), !locTrans(b,e).
notant(b1,e) :- !locAnt(b1,e),

succ(b1,b2), notant(b2,e).

One more negation at the outside:
ant(b,e) :- !notant(b,e).

Works when the analysis uses intersections or unions
but not both—to guarantee saturation, a relation cannot
be defined in terms of its own negation.
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