
15-745 Project Progress Report:
Implementing Dataflow Optimizations

for Pegasus in Datalog

Dan Licata

Carnegie Mellon University



Dataflow Analyses, Traditionally

• Lots of C++ code

• Same code over and over (e.g., iterate to fixed point)

• Hard to reason about directly

• Have to hand-tune for performance

1



Project Thesis

Using logic programming, you can easily easily
implement correct and fast dataflow analyses

for the Pegasus IR.

2



Logic Programming in Datalog

Finite data types:
NODE 1024

and relations on them:
edge (x:NODE, y:NODE)
reach (x:NODE, y:NODE)

3



Logic Programming in Datalog

Some relations are specified explicitly:
edge(0,1).
edge(2,3).
...

Others are defined by inference rules:
reach(x,y) :- edge(x,y).
reach(x,z) :- edge(x,y), reach(y,z).

Computation: saturate database with all true facts.

4



Reasoning about Logic Programs

reach(x,y) :- edge(x,y).
reach(x,z) :- edge(x,y), reach(y,z).

• Program has a logical meaning

• Can be used to prove correctness properties.
Example: if reach(x,y) then there exists a path
from x to y.

5



Fast Logic Programming in bddbddb

Whaley and Lam (Stanford) implemented Datalog using
Binary Decision Diagrams:

• Use BDDs to concisely represent relations

• Applied to pointer analyses, etc.

• One fast BDD implementation is shared by all
analyses.

6



Example: Liveness

Iterative database saturation models iterative dataflow
solving:
live(r, s) :- uses (s, r).
live(r, s1) :- succ(s1,s2),

live(r,s2), !assigns(s2, r).

where
uses(s:Stat, r:Reg) % s is r’ := op(r, _) ..
assigns(s:Stat, r:Reg) % s is r := ...
succ(s1:Stat, s2:Stat) % s2 after s1

7



So Far

• Got going with bddbddb

• Implemented some simple analyses for traditional
CFG IR: reachability (simplified ADCE), liveness, first
parts of PRE

• Prelim results: reachability on 100 nodes in 1s, 1000
nodes in 30s-2min

• Technique for intersection-analyses (more on this if
there’s time)

• Working on Pegasus analyses

8



Union Analyses

Inference rules implicitly existentially quantify over
variables in premises:
live(r, s1) :- [exists s2.]

succ(s1,s2),
live(r,s2), !assigns(s2, r).

Works for dataflow analyses that union over adj. nodes.

9



Intersection Analyses

E.g. globally anticipatable expressions (first part of PRE):
locAnt(b:Blk, e:Exp)
locTrans(b:Blk, e:Exp)
succ(b1:Blk, b2:Blk)

ant(b,e) :- locAnt(b,e).
ant(b1,e) :- locTrans(b1,e),

(all b2. succ(b1,b2)
-> ant(b2,e)).

Problem: Datalog does not allow all, -> in a premise.

10



Double-negation Encoding

Define the negation of the intersection analysis:
notant(b,e) :- !locAnt(b,e), !locTrans(b,e).
notant(b1,e) :- !locAnt(b1,e),

succ(b1,b2), notant(b2,e).

One more negation at the outside:
ant(b,e) :- !notant(b,e).

Works when the analysis uses intersections or unions
but not both—to guarantee saturation, a relation cannot
be defined in terms of its own negation.

11


	Dataflow Analyses, Traditionally
	Project Thesis
	Logic Programming in Datalog
	Logic Programming in Datalog
	Reasoning about Logic Programs
	Fast Logic Programming in �ddb 
	Example: Liveness
	So Far
	Union Analyses
	Intersection Analyses
	Double-negation Encoding

