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Abstract. State-of-the-art numerical solvers in Earth Sciences produce multi ter-
abyte datasets per execution. Operating on increasingly larger datasets becomes
challenging due to insufficient data bandwidth. Queries result in difficult to han-
dle I/O access patterns. BEMC is a new mechanism that allows querying and
processing wavefields in the compressed representation.
This approach combines well-known spatial-indexing techniques with novel com-
pressed representations, thus reducing I/O bandwidth requirements. A new com-
pression approach based on boundary integral representations exploits properties
of the simulated domain. Frequency domain representation further compresses
the data by eliminating temporal redundancy found in wave propagation data.
This representation enables the transformation of a large I/O workload into a
massively-parallel CPU-intensive computation. Queries to this representation re-
sult in largely sequential I/O accesses. Although, decompression places heavy de-
mands on the CPU, it exhibits parallelism well-suited for many-core processors.
We evaluate our approach in the context of data analysis for the Earth Sciences
datasets.

1 Introduction

Massive datasets representing multi-dimensional fields are common in many disciplines
of science [16]. Fields describe N-dimensional continuum spaces by assigning scalar
or vector quantities to each point in the space. Field datasets found in computational
sciences correspond to discrete representations of continuum fields. Advances in simu-
lation methodologies coupled with enabling technological trends, such as faster multi-
core processors and increased storage capacity, allow scientists and engineers to collect,
generate and store increasingly larger fields. As a result, we have become very good
at generating gigantic datasets. For example, computations running on current high-
performance computing platforms generate datasets with sizes in the order of tens of
terabytes (TB) and soon petabytes (PB) [3].

On the downside, we have outstripped our capacity for analyzing these datasets. The
main goal of high-resolution numerical simulation is to provide insight about physical
phenomena. As the resolution and dataset sizes increase, it becomes difficult to store
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these datasets at simulation time. Similarly, moving, querying, processing and analyzing
these datasets becomes extremely hard. To work around some of these challenges, often
a large portion of the data is discarded and instead just a few selected data points or
small regions are stored by the simulation for later analysis and publication.

We propose a new mechanism, named BEMC, for compactly representing, stor-
ing and querying large simulation-generated seismic wavefields. Wavefields are four
dimensional vector fields that describe wave propagation phenomena. BEMC is specif-
ically designed to support and enable new data analytic applications in Earth Sciences.
The aim is two-fold. First, reduce the I/O bandwidth and storage capacity requirements
at simulation time through a compact wavefield representation. Second, facilitate post-
simulation analysis through efficient queries and reconstructions of subsets of the wave-
field, especially for analytics performed in the frequency domain. Many analysis oper-
ations only require portions of a large wavefield at a time. A user might be interested in
studying a phenomenon confined to a region of interest. BEMC represents large wave-
fields as compressed data structures that support spatial queries. Only a relatively small
portion of the compressed dataset needs to be accessed and decompressed when ana-
lyzing a subset of the wavefield.

BEMC is a domain-specific compression scheme that takes advantage of spatial
redundancy present in many wavefields. BEMC uses a novel approach based on bound-
ary integral equations and their corresponding discretization into the boundary element
method (BEM) [9,24]. It is coupled with a frequency-based encoding method to further
push the limits of wavefield compression while keeping the ability to perform spatial
searches on the wavefield.

The basic idea behind BEMC is to only store the computed solution (wave dis-
placement values) for carefully chosen points in the wavefield. These points lie at the
boundary of various regions in the simulation input model. In a 3D domain, the region
boundaries are the 2D surfaces that wrap each of the 3D regions. At query time a BEM
microsolver performs a numerically intensive computation to reconstruct the data for
a query point from the solutions at the boundary of the region that contains the query
point.

The BEM microsolver computation is highly parallel and the compressed data is
laid out to exploit the sequential streaming bandwidth of storage systems. The result
of the combined approach is that I/O intensive analysis tasks become highly-parallel
compute-intensive tasks. With the advent of many-core processors, with hundreds of
processing elements per chip, we believe this compression approach will be extremely
useful in alleviating I/O bandwidth constraints.

BEMC yields up to 3:1 data size reduction when applied to wavefields based on
unstructured octree meshes. Combining BEMC with a frequency-based wave compres-
sion results in up to 10:1 factors on these datasets. The location of boundary points is
known prior to the simulation. This results in a 66% reductions in the I/O bandwidth
requirements at simulation time, since the simulation needs to output values for bound-
ary points only. A post-simulation step transforms the boundary values to a frequency-
domain compressed representation to achieve the final 10X compression ratio.

BEMC is independent of the simulation method used in the generation of the syn-
thetic wavefield. It can be used to represent wavefields produced by simulation ap-



proaches such as Finite Differences Methods (FD) [25], octree-based Finite Element
Methods (FEM) [3], unstructured tetrahedral FEM [7] and Boundary Element Methods
(BEM) [24]. BEMC can be applied to other wave propagation problems, and in general
to other domains where the problem can be formulated in terms of boundary integral
equations. For explanation purpose and without loss of generality, we present BEMC in
the context of wavefields generated by octree-based FEM numerical solver.

2 Seismic Wavefield Analysis

The goal of large-scale ground-motion simulations is to enhance our understanding of
how the ground shakes during strong earthquakes. Simulating physical processes, such
as seismic wave propagation during strong earthquakes, involves computing the solu-
tion to a set of governing equations. Non-trivial scenarios have no closed-form solution
and the solution is obtained through numerical methods such as FD [25] and FEM [6].
These simulations take as input a model of the ground (material model), construct a
discrete simulation mesh from the material model and solve a set of partial differen-
tial equations on the mesh (See Fig. 1). The simulation produces a large 4-dimensional
wavefields and a corresponding mesh. Wavefields are spatio-temporal datasets that de-
scribe wave propagation processes by assigning a quantity to each point in space. In the
context of ground-motion simulations, a seismic wavefield describes ground proper-
ties such as displacement, velocity and acceleration of points in the ground at different
moments in time during an earthquake [3]. The analysis of these wavefields has great
value for scientists and the community in general. Data analysis produce derived data
for applications such as: verification and validation of the simulation process; analysis
of interaction with buildings and other man-made structures; real-time damage estima-
tion; material model inversion; and, visualization. Efficient access to these wavefields
is key for such analysis applications. The mechanisms presented here help alleviate the
I/O requirements needed to store the wavefield (Dataset 3 in Fig. 1) at simulation time
and provide a searchable representation for the data analysis tasks.

Material
Model (1)

Numerical
Simulation (2)

Wavefield (3)

Mesh (4)

Data
Analysis (5)

Fig. 1: Physical simulation process. A material model (1) is the input to a numerical simulation
process (2), which produces an output wavefield (3) and a corresponding simulation mesh (4).
The produced datasets (3) and (4) are used for post-simulation data analysis (5).



3 Compactly Storing Wavefields

Many datasets from various domains in computational sciences exhibit spatial coher-
ence. The values represented by the field vary in a smooth manner across points in space
and time. This is certainly the case for simulation-generated ground-motion wavefields
where displacement values vary smoothly in a volume of the wavefield. Despite their
spatial coherence, wavefields generated by FEM numerical simulations are difficult to
compress since they contain floating point (FP) values associated with the nodes of
an irregular mesh. Compressing FP values is challenging because small differences in
absolute value yield large changes in the FP bit representation. Moreover, unstructured
meshes used in FEM simulations adapt to variations in the properties of the input model
parameters, thus greatly eliminating spatial redundancy in the corresponding output
wavefield. FEM octree-based meshes and corresponding output wavefields commonly
require 1/8 of the space needed to represent a FD mesh for the same problem. It is
hard to use image compression techniques in this case due to the irregular nature of
the meshes used to generate the wavefields, as many image compression approaches
operate on regularly spaced grids. The question is then: How can spatio-temporal co-
herence be exploited to compress massive wavefields? BEMC exploits wavefield spatial
coherence through domain-specific formulation based on Boundary Integral Equations
and Green’s functions. This approach can be used to compress datasets generated using
FEM, FDs or other method. The main idea is to make use of a property of the input
material model (Dataset 1 in Fig. 1) to compress the output wavefield (Dataset 3). This
is based on the observation that the input material models used in simulation (Dataset
1) have large homogeneous regions. Then, for any point inside a homogeneous region
in the input (Dataset 1), we can compute the corresponding output displacement values
(in Dataset 3) in terms of the (output) displacement values of the points that lie on the
region boundary.

3.1 Model Homogeneity

Material models used for simulations comprise large homogeneous regions. This is de-
picted in Fig. 2 (a), where 5 homogeneous regions (different shades of gray) make up a
simulation domain. Simulating physical phenomena in complex structures requires the
use of full-domain methods such as FEM and FD. Meshes for these methods divide the
domain into small discrete mesh elements depicted by dotted squares in the figure. The
element corners are referred to as mesh nodal points or simply nodes. Homogeneous re-
gions in the input model are also divided into small mesh elements to satisfy numerical
stability requirements for the simulation. Finer resolution meshes increase simulation
accuracy. For example, simulating higher wave frequencies requires finer meshes. As a
mesh becomes finer, more elements are needed to fill up the same homogeneous region.
In the simulation output wavefield (Dataset 3 in Fig. 1), the wave displacement values
at mesh nodal points inside homogeneous regions vary relatively smoothly within each
region. Although the values have small differences from node to node, the variations
are significant enough and thus need to be explicitly stored.

BEMC reduces wavefield storage requirements by exclusively keeping values for
nodes located on region boundaries, i.e., lying on the thick lines in Fig. 2 (a). A discrete



representation of region boundaries is made up of 2D boundary elements (BE) embed-
ded in a 3D space. In the 2D illustration in Fig. 2 (a), the BEs correspond to the thick
lines between two mesh points at the boundary of the regions.

(Homogeneous region)

(Boundary point)

(a) Material model homogeneity.
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Fig. 2: (a) Material model homogeneity. This 2D sketch shows the composition of a hypothetical
material model for ground-motion simulation. This corresponds to Dataset 1 in Fig. 1. It contains
various homogeneous regions (different shades of gray), separated by boundaries (thick lines).
The size and properties of these regions can vary by various orders of magnitude.
(b) Node Count Ratio. This is the achievable compression for regions of different sizes and aspect
ratios. The X axis is the number of boundary elements needed to wrap the segment. The Y axis
shows the reduction in the number of mesh nodes compared to a regular volume mesh with the
same resolution as the boundary mesh.

A boundary mesh representation only requires nodes at the boundary. Values for
nodes inside a region can be safely discarded. Figure 2 (b) shows the storage reduction
obtained by only storing boundary node values. The X axis is the boundary mesh size
in number of elements. The Y axis shows the ratio of boundary node count to volume
node count for a boundary mesh of the given size. Different lines show the ratio for
hexahedral regions for various 3D aspect ratios — 1:1:1, 1:1:2, etc. Compression ratios
below 0.3 are possible for regions with more than 1500 boundary elements.

3.2 Compression Steps

The BEMC comprises the steps shown in Figure 3: Model Segmentation (6), Boundary
mesh generation (7) and Wavefield data extraction (8). These steps are explained below.
The inputs for BEMC are: the full domain wavefield to be compressed (3), the input
material model used to generate the wavefield (1) and the full 3D domain simulation
mesh (4). The BEMC process produces a compact output representation comprised of a
segment index (9), a boundary mesh (10) and the wave data associated with nodes along
the boundaries of homogeneous regions (11). The segment index and boundary mesh
are used to support spatial range queries. The segment index is used as a spatial index,
and the boundary mesh provides the mapping from the segment boundary to wave data
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Fig. 3: Steps for the BEMC compression phase. Its inputs are a wavefield (3), the correspond-
ing unstructured mesh (4) and the material model (1) for the region covered by the wavefield.
This phase consists of the following processes: Segmentation (6), Boundary Mesh Generation (7)
and Boundary Data Extraction (8). They produce a compressed boundary wavefield with three
components: a segment index (9), a boundary mesh (10) and associated wave data (11).

associated with points along the boundary for the segments. At query time, the data
for a query point inside a segment is reconstructed from the data associated with the
boundary nodes.

Model Segmentation. The goal of this step is to find a set of homogeneous regions
or segments in the input model and produce a spatially-indexed segment set. A region
is considered to be homogeneous if all of its material properties remain constant in its
volume. Extracting homogeneous regions becomes challenging due to the large model
sizes, currently in the order of tens to hundreds of gigabytes. Segmentation is an active
area of research with applications to medical imaging and computer vision [31]. Most
readily available implementations of algorithms for image segmentation target the case
where the image fits in main-memory [13]. Researchers in the area of scientific visual-
ization have proposed methods for iso-surface extraction [11], model simplification [12]
and near real-time rendering [18] of large spatial datasets.

In order to deal with large 3D material models, we developed a simplified out-of-
core segmentation procedure [19] that leverages the internal representation of material
models and octree meshes used in FEM ground-motion simulation [3,27]. The gen-
eral idea is to use an octree FEM mesh as a segmentation template, and check the
mesh against the material model to eliminate any over-segmentation –whenever possi-
ble coarsen the mesh where it is too fine. These octree-based meshes are stored on disk
as indexed linearized octrees using the CMU etree library [26]. The mesh elements
are cubes that correspond to nodes of the octree. The order for the elements’ on-disk
representation corresponds to a pre-order traversal of the corresponding octree. The
segmentation process performs a pre-order traversal of the octree mesh elements and
checks the homogeneity of a set of 8 sibling octants elements by querying to the ma-
terial model. If the octants are homogeneous they are coalesced into a single parent
octant. If the octants cannot be coalesced, they are output as individual segments.

This algorithm has complexity O(n) and requires little in-memory state. This ap-
proach requires a single pass over the mesh elements. It uses the streaming bandwidth



of storage devices very efficiently, as the pre-order traversal of the octree structure re-
sults in sequential I/O accesses. The implementation has a very small footprint. It only
requires state for eight siblings octree nodes3 in the path from the tree root to the current
leaf node. The state size has an upper bound of 8×tree depth. The octree depth for
commonly used seismic meshes varies between 12 and 20 [19].

The resulting segments are constrained to simple shapes, simplifying the generation
of the corresponding boundary mesh. However, this approach does not fully take ad-
vantage of model homogeneity as it does not coalesce homogeneous segments that do
not align properly across octree boundaries, i.e., when they are not children of the same
parent octant.
Boundary Mesh Generation. This stage reads the material segment set and the full-
domain mesh in order to generate discrete boundary meshes (BM) for the homogeneous
regions. The resulting BMs discretize the segment boundaries such that they can be later
used to reconstruct any point inside using a numerical computation. A BM comprises a
set of 2D boundary elements (BE) embedded in a 3D space. The corresponding element
corners are the boundary mesh nodes (BN).

This procedure reads each segment and subdivides each segment face into smaller
rectangular boundary elements according to the material properties of the segments on
both sides of the face. The size of the BE is chosen such that it satisfies the numerical
requirements for the numerical computation in the reconstruction process. Whenever
possible, the BE size is the same as the size of the faces of the elements in the unstruc-
tured mesh. Matching the BE size to the one of the FEM elements can be done based
on two simulation parameters (points per wavelength and maximum wave frequency),
thus access to the complete unstructured FEM mesh is not needed. Boundary mesh
nodes are generated in a second pass over the generated boundary mesh elements. This
is an involved process that assigns two identifiers to each node: a segment-local id and
a mesh global id. The corresponding mapping is stored as part of the boundary mesh
output. The global node identifiers are used for laying out and addressing the wave data
associated with boundary nodes.
Wavefield Data Extraction. This process extracts the actual wave data associated with
boundary nodes. It accounts for the bulk of the data size reduction. The first step is
to build an auxiliary structure for mapping between boundary mesh node ids and full-
domain mesh node ids. If the BM generation above produces meshes with BEs that are
aligned with the FEM elements, then there is a one-to-one mapping between boundary
mesh nodes and nodes in the full domain mesh. Additional interpolation operations on
the associated boundary data are avoided when the boundary mesh nodes are aligned
with full domain mesh nodes. This process iterates over the boundary nodes and uses
the node mapping structure to locate and extract the corresponding data from the 4D
wavefield.

The wave data is transposed from the space domain to the time domain. Popular
ground-motion solvers produce wave data one time step at a time and store it in a space
domain representation (space× time), where the dataset is a collection of volumes each
corresponding to a snapshot in time [3,21]. Given a time step t, values for all the mesh
nodes are adjacently stored, then all the values for time step t +1, and so on. To further

3 Child nodes with the same common parent.



compress the data and facilitate its reconstruction at query time, the wave data is stored
in a time domain representation (time× space). In the time domain, the data is stored as
a sequence of time series. The extracted wave data is transposed with an efficient out-of-
core scheme optimized for matrices with extremely large aspect ratios, e.g., 1000:1 [19].

Simulation-generated seismic wavefields often are band-limited, i.e., they contain
useful wave data in a limited frequency range. In particular, the numerical solver pro-
duces wave data up to a specified maximum frequency for the simulation. This offers
an opportunity to achieve higher compression. We developed a frequency-based com-
pression scheme named effective-zero encoding. First, the wave data is transformed to
the frequency domain using an available FFT implementation. Then, an effective zero
value is independently computed for each node wave spectrum [19]. In the frequency
spectrum, a wave number has an effective-zero value if its magnitude is below a user
defined threshold relative to the cummulative energy of the spectrum. Only non-zero
values are stored in the frequency spectrum for a boundary node.

4 Wavefield Reconstruction

Wavefield reconstruction is formulated as queries for a point q in the wavefield. The
query set can include arbitrary points in the domain–it is not limited to points in the
original full-domain mesh. Spatial range queries are possible due to the chosen storage
representation and can be satisfied by reading only the portion of the dataset covered
by the query range. The first step involves looking up q in the segment index to find the
homogeneous region containing q (See Fig. 4). Reconstructing the data for q is achieved
through one of the following methods:

1. If q coincides with a boundary mesh node, then return the data associated with the
mesh node.

2. When q is on or near the boundary, interpolate from the data associated with the
corners of the closest boundary element.

3. When q is far from the boundary, execute a microsolver to compute the wave data
from the values at the region boundary.

A query point is near the boundary if its distance to the closest BE is less than a user
specified parameter, which by default is 1/4 of the BE edge length. In all the cases
above, satisfying the query only requires access to small subsets of the compressed
wavefield, thus reducing I/O bandwidth usage and computation. The compressed layout
is such that it induces sequential I/O accesses.

4.1 Microsolver Computation

For cases where q is far from the region boundary, the answer is computed by applying
the Boundary Element Method (BEM) [9,24]. A microsolver carries out the required
numerical computation using as input the compressed boundary wavefield. This process
is divided into two steps: Phi computation (13) and Wave data computation (14). The
BEM mathematical formulation and the corresponding steps are explained below.
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Fig. 4: BEM decompression phase. At query time, the data for query points is reconstructed
from the boundary wavefield representation. The computation involves three steps: Spatial Index
Lookup (12), Phi Computation (13) and Query Wave Data Computation (14).

BEM Formulation. Without loss of generality, assume we have a query point q ∈
Ω,Ω ⊂ ℜ3, where Ω is a homogeneous 3D region with a boundary S (See Fig. 5 for
an illustration in two dimensions). Reconstructing the displacement values for a point
inside Ω involves numerically computing the boundary integral shown in Eq. 1.

u(q) =
Z

S
φ(ξ)G(q,ξ)dSξ (1)

The discrete approximation is shown in Equation 2. This is roughly equivalent to divid-
ing the boundary S into discrete boundary elements ξi and summing the contributions
of all boundary elements ξi along the boundary S as shown in Fig. 5.

u(q) =
n−1

∑
k=0

φ(ξk)G(q,ξk)×A(ξk) (2)

Here, u(q) is a vector containing the displacement in the frequency domain for a point
q, φ(ξk) weights the contribution to u(q) from ξ relative to other points (or BEs) on the
surface S. A(ξk) is the area of the BE ξk. G(q,ξk) is the Green’s function [5] between q
and a boundary element ξk. G(q,ξk) can be analytically computed based on the material
properties of the region Ω and the coordinates of q and ξ. See Appendix A for details.

Phi Computation. The phi values φ(ξ) in equations 1 and 2 are initially unknown. The
first phase of the microsolver computes the φ(ξ) terms for the Ω region. The computed
φ(ξ) depend exclusively on the region material properties and boundary displacement
values. Once the phi values are computed, they can be reused across other query points
in the same region.

Equation 1 also holds for boundary points as shown in Fig. 6. Thus, computing the
phi values is achieved by using Eq. 2 with points at the boundary, by letting q = ξi. In
this case, u(ξi) are known values stored in the boundary wavefield (Dataset 11 in Fig. 4)
and G(ξi,ξ j) can be analytically computed. This enables setting up a system of N linear
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Fig. 5: Query point computation. Comput-
ing values associated with a query point q,
in a homogeneous region Ω, from the φ(ξi)
values associated with boundary elements
ξi ∈ S (outer line).

Ω

ϕ(ξi)

u(ξj)
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Fig. 6: Phi computation. The φ(ξi) values
are unknown. They are computed from the
known displacement values at the boundary
u(ξ j) by solving a system of linear equa-
tions.

ξi︷ ︸︸ ︷

G(ξ0ξ0) · · · G(ξ0ξi) · · · G(ξ0ξn−1)
G(ξ1ξ0) · · · G(ξ1ξi) · · · G(ξ1ξn−1)

...
...

...
G(ξ jξ0) · · · G(ξ jξi) · · · G(ξ jξn−1)

...
...

...
G(ξn−1ξ0) · · · G(ξn−1ξi) · · · G(ξn−1ξn−1)


×

φ︷︸︸︷

φξ0

φξ1
...

φξi
...

φξn−1


=

u︷ ︸︸ ︷
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

Fig. 7: Matrices representing the linear system of equations corresponding to the Gω×Φω = Uω

equation. This system is solved to obtain the unknown φ values for a frequency ω. Gω contains
the (known) coefficients of the Green’s tensors, Φω is the vector of unknown variables and Uω is
the vector of known displacement values obtained from the simulation wavefield.

equations with N unknown φ(ξi) values, where N is the number of boundary elements.4

Figure 7 shows the matrix system resulting from these equations. The discretization de-
tails can be found elsewhere [19,24]. Equation 1 is undefined for the entries along the
matrix diagonal, more precisely G(ξi,ξi) is undefined. These singularities are resolved
through numerical integration using quadratures of odd order [22]. All these computa-
tions are carried out in the frequency domain. A system of equations needs to be solved
for each frequency (wave number) that has a non-zero u(ξ) value. The last step in the
compression phase eliminates frequencies with effective zero values. This also reduces
the number of systems of equations that need to be resolved at query time.

Query Value Computation. After computing the phi values, the data for q is obtained
from Eq. 2. The data for q is the sum of the products between the φ(ξi) and the corre-
sponding Green’s tensor G(q,ξ j). Figure 5 illustrates the process.

4 More precisely, the number of equations and unknowns is 3N once u(ξi), φ(ξi) and G(ξi,ξ j)
are expanded into their individual 3D components.



5 Evaluation

The goal of this evaluation is to answer the following questions: (1) What level of com-
pression can be achieved with BEMC? and (2) What is the computational cost of re-
constructing a query point with the BEM microsolver? These questions are answered
below.

5.1 Quake Unstructured Wavefields

Table 1 shows the characteristics of the wavefields used in the experiments. These are
seismic wavefields generated using a state-of-the-art numerical solver for seismic wave
propagation problems. They cover a 100km×100km×37.5km region in Southern Cal-
ifornia that includes Los Angeles and San Fernando basins. The first table column con-
tains the dataset name, which corresponds to the maximum resolved wave frequency.
The second and third columns respectively show the number of mesh elements and
nodes. The fourth column displays the wavefield size in Gigabytes.

Table 1: Unstructured 4D Wavefields.

Wavefield Mesh Size
Name Elements Nodes (GB)

LA 0.50 Hz 8,026,868 8,634,452 116
LA 0.70 Hz 17,970,403 19,372,567 260
LA 1.00 Hz 64,128,816 66,548,707 893

Table 2: BEMC Compression Ratio.

Wavefield BEMC BEMC
+ freq.

LA 0.50 Hz 0.71 0.14
LA 0.70 Hz 0.51 0.13
LA 1.00 Hz 0.27 0.07

5.2 BEMC Compression

In order to find out the effectiveness of BEMC, we applied the method on the wavefields
shown in Table 1. We constructed boundary meshes for these wavefields and compared
the number of mesh nodal points versus the number of nodes in the FEM hexahedral
mesh for the same wavefield. The boundary mesh is constructed using the approach
described in Section 3. Remember that this approach might not capture all the homo-
geneity of the model, thus not allowing the BEMC compression to take advantage of all
the spatial redundancy.

The compression ratio (output size / input size) for the different wavefields is
shown in Table 2. Column 2 contains the compression ratio achieved exclusively from
the dimensionality reduction –storing only values at the boundary. As the wavefield
simulation frequency increases, BEMC produces better compression. This is expected
as an FEM mesh needs to subdivide a homogeneous region with higher resolution as
the maximum simulation frequency increases. Compressing the LA-0.5Hz wavefield
with BEMC produces only 30% storage savings, however for the LA-1.0Hz the sav-
ings are 73%, this is a 3.7:1 compression factor. The implication is that the number of
boundary elements per region is larger for the LA-1Hz wavefield, which has an effect
on computation performed by the BEM microsolver at query time.



The third column in Table 2 shows the compression ratio obtained when apply-
ing the frequency-based encoding technique (described in Section 3.2) to the boundary
wavefields. The combined scheme achieves a compression ratio of 0.07 (14.3:1 factor)
in the best case on the LA-1Hz wavefield, and a 0.14 ratio (7:1 factor) in the worst case
for the LA-0.5Hz wavefield.

Combining these two approaches, not only reduces storage requirements, but also
computation requirements. At query time, the BEM microsolver only needs to compute
values for frequencies that are non-zero. This represents a 5X reduction of computation
for the best case (LA-0.5Hz) and a 4X reduction for the worst case (LA-0.7Hz).

5.3 BEM Microsolver Computation Cost

The following micro-benchmark was used to determine the computational cost of the
BEM microsolver. For regions of different sizes (measured in the number of elements
along the boundary), we measured the time needed to compute the data for a query
point inside the region. The boundary mesh and wave data were already in memory,
allowing to measure the actual compute cost. The microsolver is implemented as a
library of C++ classes. In the phi computation phase, the system of linear equations is
solved by calling LAPACK [4] functions with low-level BLAS [8] routines provided
by ATLAS [29]. Theses experiments were carried out on dual SMP machines with 3.6
GHz x86 64 processors, 2 MB L2 cache per processor and 8 GB of memory running
version 2.6.15 of the LinuxTMkernel. The numerical libraries were configured to use
2-processors. The system setup and query phases are done sequentially on a single
processor.

Figure 8 shows the microsolver compute time per frequency. The X axis indicates
the region size in number of boundary elements, the Y axis contains the elapsed time in
seconds. Each bar is divided into the following BEM microsolver phases: Setup, Solve,
and Query computation. The table in Fig 8 shows the corresponding values in seconds.
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BE count Setup Solve Query Total
24 0.13 0.12 0.002 0.25
96 0.20 0.40 0.005 0.60

384 0.30 1.19 0.008 1.50
600 0.66 2.61 0.011 3.29
864 1.19 6.61 0.014 7.81

1176 2.19 15.29 0.019 17.50
1536 3.67 32.51 0.024 36.20

Fig. 8: BEMC microsolver compute time in seconds.



Not surprisingly, the query time grows linearly with the region size, setup time is
O(n2) and solving time is O(n3). This puts a practical limit on the achievable compres-
sion ratio, in the sense that homogeneous regions cannot grow too large, otherwise the
query computation time becomes too high.

A typical homogeneous region contains in the order of a 100 wave numbers in its
frequency spectrum. Thus the total required computation is about 100X larger. How-
ever, with the increase in the number of available processor cores, the solving time for
the system of equations can be reduced. Moreover, the computation for different fre-
quencies (wave numbers) can proceed independently in parallel in separate chips or
compute nodes. The setup and compute phases are performed once per region, intro-
ducing a one-time cost. Subsequent query points for the same region can be computed
from the already obtained solution in linear time, thus amortizing the setup and solving
costs.

We can trade off the achieved compression ratio to reduce the query latency by
pre-computing the phi values and storing them on disk. The raw size of the phi set is
2X the size of the compressed displacement field for the boundary points. However,
both additional storage size and computational reductions can be obtained by devising
a multi-resolution scheme for storing the phi set, such that the representation for lower
frequencies has a coarser boundary element mesh (i.e., fewer phi values) and higher
frequencies have finer-resolution boundary meshes.

6 Related Work

The goal of data compression is to reduce the number of bits needed to represent the
data. Compression techniques exploit data features such as redundancy. Clever encod-
ing schemes reduce the number of bits required to represent a data symbol. Such tech-
niques include arithmetic coding, Huffman coding, Golomb-Rice codes among others
[1]. Lelewer and Hirschberg present a good survey of these and other techniques [17].
Run-length encoding (RLE) is commonly used in many applications, including the com-
pression of non-photographic images, that is, diagrams produced using drawing tools.
BEMC employs a form of implicit RLE encoding to avoid storing the effective zero
values of a frequency spectrum.

There are various approaches that exploit data features commonly found in text files.
These include Lempel-Ziv-Welch (LZ and LZW) and the Burrows-Wheeler transform
(BWT) [10]. The LZW and BWT methods are respectively used in the popular gzip
and bzip2 compression tools. These approaches work well on text data and binary
executable programs.

Lossy compression schemes achieve higher compression factors at the cost of some
information loss. Upon decompression, the output is an approximation of the input.
Image formats such as JPEG [28] use lossy compression methods based on a discrete
cosine transform [2]. JPEG compression takes advantage of the fact that photographic
images have smooth variations from one pixel to the next one. Audio compression
techniques exploit the fact that the stream of data to compress corresponds to sound
waves [20,30]. Approaches for compressing floating-point values have been recently
developed [14,15,23]. These approaches are complementary to BEMC, as they could



be used as a post-processing pass to effectively encode the residual floating point data
for points at the boundary.

7 Conclusion

Generating, querying and otherwise analyzing simulation-generated wavefield datasets
becomes difficult as their data size increases. We presented BEMC, a novel approach
for compactly representing large seismic wavefields. A key feature of BEMC is that
it enables spatial range queries in the compressed domain, only a small portion of the
data needs to be retrieved from storage at query time. BEMC uses a domain-specific
approach based on the boundary element method (BEM) to reconstruct the wave data.
A query-time microsolver is used to carry out the BEM numerical computation. We
believe that this approach can be generalized and applied to other wave propagation
problems and in general to other domains that can be formulated in terms of boundary
integral equations.

Our evaluation shows that dimensionality reduction alone offers up to a 3.7X com-
pression factor when applied to large seismic wavefields. The combined BEMC ap-
proach yields compression factors up to 14X. The frequency-based encoding used in
BEMC contributes to the reduction of both storage and query-time computational re-
quirements.

A Boundary Integral Equations

ui(p) =
Z

S

2

∑
j=0

φ j(ξ)Gi j(p,ξ)dSξ (3)

Gi j(x,ξ) = [ f2δi j +( f1− f2)γiγ j]/4πµr (4)

The following is the corresponding expansion for the terms in the Green’s function
(Gi j(x,ξ)). The parameters involved in the equations are shown as well.
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γ j = (p j−ξ j)/r

r2 = (p0−ξ0)2 +(p1−ξ1)2 +(p2−ξ2)2

µ = ρβ
2

q = ω/α = P-wave number
k = ω/β = S-wave number

δi j = 1 if i = j;0 otherwise

Description
p Point (3D coordinates)

u(p) 3D displacement at p
φ(ξ) Phi vector for BE ξ

δi j Kronecker’s delta
q P-wave number
α P-wave velocity
k S-wave number
β S-wave velocity
ρ Region’s mass density
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27. Tu, T., O’Hallaron, D., López, J.: Etree – a database-oriented method for generating large
octree meshes. In: Proc. 11th Int. Meshing Roundtable. pp. 127– 138. Ithaca, NY (Sep 2002)

28. Wallace, G.K.: The JPEG still picture compression standard. Communications of the ACM
(CACM) 34(4), 30–44 (Apr 1991)

29. Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software (ATLAS). In:
Ninth SIAM Conference on Parallel Processing for Scientific Computing (1999)

30. Yang, D., Moriya, T., Liebchen, T.: A lossless audio compression scheme with random access
property. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP’04).
vol. 3, pp. iii– 1016–1019. IEEE (May 2004)

31. Yoo, T.S. (ed.): Insight into Images: Principles and Practice for Segmentation, Registration,
and Image Analysis. AK Peters, Ltd (July 2004), iSBN:1568812175


	BEMC: A Searchable, Compressed Representation for Large Seismic Wavefields 



