String Edit Analysis for Merging Databases

J. Joanne Zhu and Lyle H. Ungar

Dept. of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

(215) 898-7449

jzhu@seas.upenn.edu, ungar@cis.upenn.edu

ABSTRACT

The first step prior to data mining is often to merge databases from different sources. Entries in these databases or descriptions retrieved using information extraction. may use significantly different vocabularies, so one often needs to determine whether similar descriptions refer to the same item or to different items (e.g., people or goods).  String edit distance is an elegant way of defining the degree of similarity between entries and can be efficiently computed using dynamic programming [5]. However, in order to achieve reasonable accuracy, most real problems require the use of extended sets of edit rules with associated costs that are tuned specifically to each data set.  We present a flexible approach to string edit distance, which can be automatically tuned to different data sets and can use synonym dictionaries.  Dynamic programming is used to calculate the edit distance between a pair of strings based on a set of string edit rules including a new edit rule that allows words and phrases to be deleted or substituted. A genetic algorithm is used to learn costs corresponding to each edit rule based on a small set of labeled training data.  Deleting content-less words like "method" and substituting synonyms such as "ibuprofen" for "Motrin" significantly increases the algorithm's accuracy (from 80% to 90% on a difficult sample medical data set), when costs are correctly tuned.  This string edit-based matching tool is easily adapted for a variety of different cases when one needs to recognize which text strings from different information sources refer to the same item  such as a person, address, medical procedure or product .

1 . INTRODUCTION

When different databases with the same type of information are merged, it is often necessary to determine which entries refer to the same item and which do not.  Items such as people, addresses, goods for sale and laboratory procedures in a hospital are described by different text strings in different databases.  Recognizing the identity of items based on different descriptions is also important when doing data mining on the results of information extraction.  Few descriptions of products extracted from the web contain unique identifiers such as ISBN numbers. Databases and other information sources are often combined, and generally contain tens of thousands of different items or more, so it is highly desirable to have an automated method of determining which entries are similar and can be combined.  We address this problem by using string edit distance to determine the degree of similarity between the text strings describing the database entries.  String edit distance is the total cost of transforming one string into another using a set of edit rules, each of which have an associated cost.  We show  how  these  costs can be learned for each problem domain using a small set of labeled examples of strings which refer to the same  items.

One version of this problem is referred to as the merge-purge, field matching, or record linkage problem [1-4] and occurs often.  For example, different mailing lists may represent one person's address in a number of ways or there may be many entries for different people in one household.  When mailing lists are sold or exchanged between different companies, they need to be merged, and the process is often a tedious task.  Bibliographic references are often represented differently, and need to be compared to determine if they refer to the same item [3].  On the World Wide Web, there are many different ways to the same product.  In order to compare prices for example, there must be a way to accurately determine which descriptions are for the same product.

This paper offers an effective method of determining if strings are similar by providing an algorithm to find the optimal costs of a set of string edit rules based on the characteristics of the databases to be merged.  The string edit distance is then used to determine if a pair of strings are sufficiently similar to merge the items they describe.  We use dynamic programming to compute edit distance and a genetic algorithm to learn their costs.

We add one key feature to string edit distance calculations: the use of extensive dictionaries of synonyms and of words which should simply be deleted ("context-specific stop words).  Consider, for example, the problem of merging mailing lists.  For example, "Apartment 390" and "APT 390" are the same location.  Word substitution is especially useful here if "Apartment" and "APT" are added to the substitution table.  .

We use data from two hospital databases to motivate and to test the algorithm.  In order to effectively analyze data across hospitals for data mining and analysis, medical databases that contain similar information require merging. Databases from different hospital do not contain identical descriptions for items such as procedures, drugs, or treatments. (Diagnoses are mostly standardized to ICD9 codes.)  Currently, a preliminary match of different  item names is made using crude similarity measures, which include using the UMLS as a synonym dictionary.  Proposed matches are then examined (at considerable expense) by physicians to determine true matches.  We use such hand-labeled data as training and testing sets.  A potentially more accurate way of doing matches is to compare text strings of the entries.  This, however, requires careful tuning of the string edit distances. (E.g., "Hep A" is more similar to "Hepatisis A" then to "Hep B", which would not be true for the obvious spelling correction edit rules.)  It also requires incorporation of synonym dictionaries of medical terms, and low cost of removal for domain-specific "stop words" such as "method" or "assay".  This paper provides a method for extending string edit distance to incorporate these features.

2 . METHOD AND RESULTS

Many different edit rules can be used. Table 1 lists the set that we use in the results section below.  String edit distance between a pair of strings is defined as the minimum total cost of transforming one string into the other one.  We follow Ristad and Yianilos [7] in using dynamic programming to find the permutation of edit operations with the minimum total edit cost for a pair of strings.
  Dynamic programming is much more efficient than alternative methods that involve evaluating the total edit cost for each permutation of edit rules.  It is easy  to add new rules to this set to improve  performance.

One key set of rules to add is word and phrase substitution and deletion.  These are particularly powerful for handling abbreviations and synonyms.  In our test runs, adding a simple  table of word and phrase deletion and substitution rules improves the accuracy of the program by approximately 10% with.

Table 1:  String Edit Rules and Costs Based on Sample Training Data
	Rule
	Cost

	Deletion:
	

	1. Delete a vowel
	0.73

	2. Delete a consonant
	0.62

	3. Delete a number
	1.13

	4. Delete white space
	0.62

	5. Delete a '.' (period)
	1.20

	6. Delete a '.' (decimal point)
	0.77

	7. Repeated deletion of characters
	0.05

	Substitution:
	

	8. Substitute characters of the same type
	1.53

	9. Substitute characters of different types
	1.08

	10. Substitute numbers
	1.61

	
	

	11. Substitute or delete a word or phrase
	0.73


String edit costs must be learned because fixed initial costs based on intuitive guessing lead to very low accuracy (approximately 40% for the data set below when we tried). The obvious learning approach is to use gradient descent in the total cost on a training set.   Unfortunately, rule costs interact strongly, with the consequence that the final costs derived by gradient descent are heavily dependent on initial values because there are several local maxima to which they can converge.  We use a modification of the genetic algorithm to avoid the convergence to local minima.  The algorithm uses a set of genes (20 in the example below), each of which represents an individual cost set including all of the edit rules.  First, each gene is initialized with some random set of costs.  Next, each gene's fitness is calculated.

Three sample sets of data, each consisting of 100 string pairs were used to test the code.  Fifty string pairs have been predetermined to be similar and 50 are not.  Learned costs for the sample training data was shown in Table 1.  In these sample data sets, words such as "measurement", "test", "assay", and "screen" appear often.  These words were added to the substitution table, and hence deleted at low cost. On average, over three data sets, the percentage accuracy increases when word deletion is added.  The method with word deletion starts out at 58% accuracy (based on guessed edit costs) whereas the method without word deletion starts at 40% accuracy.  After 150 generations of the genetic algorithm, the values converge to 90% and 80% accuracy respectively.

We have presented this work in the context of the merge/purge problem for databases.  The notion of flexible matching of strings is, however, much more widely applicable.  Often one has descriptions of items in free or semi-structured text: for example, product descriptions extracted  from the web or from databases. These descriptions contain many words that are either synonyms (e.g. "cost"  and  "price" or "Palm" and "Palm Pilot") or words that should probably  be deleted (e.g., "excellent" or "system").  Our enhanced string edit function can account for these differences.
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