Barnacle:

An assembly algorithm for Clone-based Sequences of Whole Genomes

Martin Farach-Colton

Joint work with: Vicky Choi

Outline

- Introduction to Sequencing
- Human Genome Project & the Sequence Assembly Problem
- The Barnacle Algorithm
 - Details of the input
 - The basic idea
- Comparison with NCBI's public assembly
- Conclusion

DNA Sequencing

- Sequencing is the process of determining the sequence of nucleotides of a region of DNA.
- How do we find the sequence of a piece of DNA?

Basic Operations for Sequencing

- Direct Sequencing
- Directed Reads
- End Sequencing
- Clone-Probe Incidence

Direct Sequencing

- For short pieces (< 500bp)
 - We can determine complete sequence
 - Called Direct Sequencing
 - This is the workhorse of sequencing
 - Relatively fast & cheap
 - ~ 1% error rate

Greedy Assembly aka Shotgun Sequencing

- Make many copies of DNA
- Cut each piece in a different way
 - Now 500bp pieces have overlap
- Repeat until done:
 - Find sequences of maximal overlap
 - (must try reverse compliment)
 - Merge them, and add merged sequence to set
 - Assembled pieces need not form one piece
 - So they have gaps once assembled into contigs

Directed Reads

- Given a long sequence that only occurs once in the genome...
 - It can be extended by *Directed Reads*
 - These are 500bp at a time.
 - You can iterate.
 - Each iteration is slow and expensive.
- You can connect contigs with directed reads

Why aren't we done?

- Lab errors limit process.
 - Can get false matches or miss true matches
 - Can get more exotic errors (more later)
- Repeats
 - Human genome is repeat-rich
 - >50% repeats
 - 50-500kbp duplicated regions with >98% identity
 - 500bp fragments from different repeats can be merged.
 - How can we tell if we are merging from different repeats?
 - Repeats are the unsolved problem of sequencing!

Shotgun Sequencing History

1980s: 5 to 10 Kbp1990: 40 Kbp

1995: 1.8Mbp (*H. Influenzae*)2000: 120 Mbp (*Drosophila*)

» Except for repeated regions

Shotgun Sequencing Limitation

We noted that you can have false merges.

Directed reads aren't going to help merge false contigs!

Shotgun Sequencing Limitation

- We noted that you can have false merges.
- Once we've made a few bad choices, errors accumulate.
- This limits the length of DNA that can be reliably sequenced by this method.
- How can we shotgun longer sequences?

Medium Length DNA

- To scale methods up, we need operations to limit error propagation in longer pieces of DNA.
- The specific operations we care about depend on DNA length.
- Name of DNA pieces depend on how they are copied
 - Plasmid, Cosmids = a few Kbp
 - BACs, YACs = tens to a few hundred Kbp.

End-Sequencing

- You can sequence 500 bp at each end of DNA.
 - They can be used to:
 - Keep fragment merging on track, because if two fragments are known to be e.g. 2000 bp apart and your merging doesn't give that, you've got an error.
 - Tell the relative orientation of the pieces.
 - If it's too long, the information derived is too sparse.
 - Plasmids are the right length (∼c x 10³ bp)

Celera's Shotgun Sequence

- Get lots of plasmid information.
- This constrains which pairs can be merged in shotgun sequence.
 - You merge bogus pairs with lower probability.
 - So you can merge longer stretches more reliably.
 - Or at least, that's the idea.
- They claim to have complete human genome.
 - Once again, repeat regions are not yet sequenced.
 - Plasmids can easily fit within some repeats!

Probe-Clone Incidence

- You can tell if a piece of DNA (clone) has some particular substring (probe).
- If clone too short, unlikely to have the probe.
- If clone too long, too likely to have the probe.
- BACs are right length (\sim c x 10^4 or c x 10^5 bp)
- Used to tell if two BACs overlap.

Clone-Probes & Physical Maps

- Given a set of BACs from a Chromosome
 - A *Physical Map* is the approximate location of each BAC
- Clone-Probe incidence matrices can be used to construct physical maps of BACs through
 - Interval Graph techniques

Interval Graphs

- Suppose you have intervals on a line
 - Make a graph with:
 - A node for each interval
 - An edge between overlapping intervals
- Suppose you have a graph so generated
 - Coming up with a set of matching intervals is called *Interval Realization*
 - A particular graph can have many different Interval Realizations

Hierarchical Shotgun Sequencing

Hierarchical Shotgun Sequencing

Hierarchical Shotgun Sequencing

Hierarchical Shotgun Sequencing

Hierarchical Shotgun Sequencing

- 1. Copy target DNA
- 2. Make BAC library
- 3. Physically map all BACs
- 4. Find a subset of BACs that cover target DNA
- 5. Shotgun sequence only BACs in cover
- 6. Fill in gaps between BACs
- 7. Merge into consensus sequence

Hierarchical Shotgun Sequencing

- Sequencing each BAC lets you
 - Localize merging mistake to one BAC
- Physical map lets you get *covering* of genome by BACs, so you end up doing less sequencing.
 - If sequencing were expensive & physical mapping cheap, this would be a good idea.

Outline

- Biological Background
- Human Genome Project
- The Barnacle Algorithm
 - Details of the input
 - The basic idea
- Comparison with NCBI's public assembly
- Conclusion

Human Genome Project (HGP)

• 1988: "Mapping and Sequencing the Human Genome"

• 1990: HGP started in US

• 2001: A "working draft" version

• 2003: Completed

Sequencing Approaches of HGP

- Hierarchical Shotgun Sequencing.
- The physical map was scheduled to take 5 years.
- Genome centers had two choices:
 - Start sequencing before physical map was done.
 - Twiddle thumbs.

Clone-based Sequencing

or Making a Virtue of Necessity

- Perhaps trading sequencing for physical mapping isn't such a good idea.
- New Idea
 - Sequence every BAC, not just BAC in cover.
 - Release draft BAC as you have it.
 - Recall: getting BAC sequence in 1 piece is hard, so release sequences before directed reads.
 - Release finished BAC as you have it.
 - Release parts of physical map as you have them.

Clone-based Sequencing Target BACS

Clone-based Sequencing The Input

- Clone-based sequencing wasn't so much planned as what's available
- Input is a mixed bag

Input: Sequence Information

 Recall: A BAC is a contiguous stretch of DNA from a chromosome. Each comes as a set of fragments.

Accession	Est. Length	Phase	Chrm	# frags
AC002092.1	95456	1	17	4

- Phase 1,2 = Draft
- Phase 3 = Finished

Frag acc.	length
AC002092.1~1	888
AC002092.1~2	45312
AC002092.1~3	38725
AC002092.1~4.1	10245

Input: Chromosome Assignment

- The chromosome of a BAC is assigned according to some additional info
 - E.g. STS markers
- For some BACs, chromosome is marked **Unknown**
- Definition: Two BACs are *compatible* if they share a chromosome assignment or at least one is Unknown

Input: Pair-wise local alignments

- NCBI's algorithm (and ours) need to know about shared sequences between fragments.
- NCBI preprocessing:
 - A local alignment between every pair of fragments with an compatible chromosome assignment.
 - This is slow.

Alignments are overlaps Dovetail Overlap match Complete Containment Invalid Overlap

We care about overlaps if...

- They are valid -- dovetail or containment.
- They have high sequence identity: 97%
- They have low end-allowed-error:
 - 350bp for phase 3
 - Min(15%,1500) for phase 1, 2.
- These thresholds give a *very conservative* measure of overlapping fragments
 - Lots of false negatives

Input: Plasmid Info

- Some labs produce plasmid (&mRNAs&...) with End Sequencing
- This lets us find orientation of some fragments.
 - This is different than Celera's merging constraints (though they also use plasmids for orientation)

Input: A Mixed Bag

Computed,

not measured

- BAC info.
 - Estimated Length
 - Chromosome Assignment
 - Fragment sequences
- Compatible Fragment Overlaps
- Plasmids
- Misc:
 - Genome Centers are also doing physical maps of BAC, so they report those.

NCBI Approach

- Simulate physical map & Reduce to Hierarchical Shotgun Sequencing Assembly
- Find "probe" sequences that are shared by sequences in different BACs.
 - Use these as probes to create a Clone-Probe Incidence Matrix.
 - Give them weights: the longer the shared match, the less likely it's due to chance, so give it a bigger weight.
 - Create Physical Map using known techniques.
 - Assemble using Physical Map.

Problems with NCBI Approach

- Clone order is determined early on by physical map.
 - The Clone-Probe to Physical Map problem is noisy and error prone.
 - Any error is propagated badly in final answer.
- There are errors in the underlying data that confuse the physical map process badly.
- Clone-Probe incidence doesn't preserve information about *where* two clones overlap.

Physical Mapping Error Model

- Entire BAC sequence not available
 - Result: lots of false negatives in probe-clone matrix

- Physical map construction has to be insensitive to false negatives.
 - · False positives lead to very long BACs

NCBI's Strength

- The Genome Centers report partial physical map information from time to time.
 - The good news: This can be incorporated directly into their algorithm by a very high scoring clone-probe pair.
 - The bad news: Their information is sometimes wrong!
 - And each wrong such piece of info causes lots of long BACs

NCBI Summary

- Use clone-clone overlaps to compute cloneprobe matrix
 - Reduces problem to known physical map problem
- Use physical map to align clones
- Produce Consensus Sequence
- Top-Down approach that first fixes BAC positions, then goes to sequence level

Outline

- Biological Background
- Human Genome Project & the Sequence Assembly Problem
- The Barnacle Algorithm
 - Details of the input
 - The basic idea
- Comparison with NCBI's public assembly
- Conclusion

Our approach

- Bottom-Ur
 - Sequence Data is most reliable
 - We can boost reliability by consistency conditions
- Use Sequence Overlap to Determine BAC Overlaps
 - Similar to NCBI, but only uses reliable overlaps
- Filter out inconsistencies in BAC overlap graph
 - Each error in BAC graph comes from some error in the underlying data
 - We can detect and report the likely errors

Sequence Overlap Errors

- Why would we find errors in sequence overlap?
 - False positives (FP): due to repeats

False Positive Overlaps: Repeats Observed Overlap Case 1: True Overlap Case 2: Repeat-induced Overlap

Sequence Overlap Errors

- Why would we find errors in sequence overlap?
 - False positives (FP): due to repeats
 - False negatives (FN): polymorphism, draft quality

Sequence Overlap Errors

- Why would we find errors in sequence overlap?
 - False positives (FP): due to repeats
 - False negatives (FN): polymorphism, draft quality
 - Chimeric BAC (CB)
 - A chimeric BAC is a pair of BACs that get glued together

Barnacle

1. Filter out inconsistent fragment overlaps

Remove Inconsistent Overlaps

- If two fragments overlap *the same end of another fragment*
 - They must overlap with each other!
 - Eliminate any overlaps that aren't consistent.
 - · Using this and related considerations.

Remove Inconsistent Overlaps

- If two fragments overlap *the same end of another fragment*
 - They must overlap with each other!
 - Eliminate any overlaps that aren't consistent.
 - · Using this and related considerations.

Barnacle

- 1. Filter out inconsistent fragment overlaps
- 2. Form BAC overlap graph

BAC Graph from Overlaps Consistent Overlaps of Fragments Resulting BAC graph

Barnacle

- 1. Filter out inconsistent fragment overlaps
- 2. Form BAC overlap graph
- 3. Find Interval Realization of BAC Graph

We Still Have Errors

- The true BAC overlap graph is interval
- We only have the computed BAC overlap graph.
 - We've been very conservative in assembling it.
 - So we hope for not too many errors.
 - But the BAC graph we have might not be interval.
- We have to find places that keep BAC graph from being interval and decide what to do.

Interval Graph Recognition

- There are lots of algorithms for recognizing an interval graph, e.g. using PQ-trees
- We use 5-sweep LBFS interval graph recognition algorithm (Corneil, Olariu & Stewart 2000)
 - LBFS = Lexicographic Breadth First Search

Forbidden Subgraphs

• Theorem: A graph is interval iff it does not contain one of the (induced) subgraphs below:

Forbidden Subgraph: Example

Errors Make BAC graph non-interval Chimeric Removing Single node fixes graph

Critical Nodes

- A node whose removal fixes non-interval subgraph is called *critical*
- The Interval Graph algorithm we use produces critical nodes
- Each one comes from some type of error FP, FN, CB

Error Detection

- When we detect a critical node:
 - We find the most likely type of error that produced it.
 - We fix the graph by some local change in the edges or by removing the node.
 - If we remove a node, it's because we have detected a Reportable Error
- Ours is the only algorithm available that does Error Detection on the genome center data.

Barnacle

- 1. Filter out inconsistent fragment overlaps
- 2. Form BAC overlap graph
- 3. Find Interval Realization of BAC Graph
 - 1. Resolve Critical Nodes if possible

Non-fixable Graphs

- Sometimes a graph can't be fixed by critical node resolution.
 - We need a more global solution.
- We then break BAC graph into pieces at articulation points (graph theoretic mumbojumbo)
 - We fix each piece.
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$

Barnacle

- 1. Filter out inconsistent fragment overlaps
- 2. Form BAC overlap graph
- 3. Find *Interval Realization* of BAC Graph
 - 1. Resolve Critical Nodes if possible
 - 2. Divide-n-Conquer at articulation nodes when needed

Once we have Interval BAC Graph

- We can produce interval realization of BAC graph.
 - But a single interval graph might have lots of interval realizations.
- Use plasmids to do final ordering and orientation
 - To disambiguate the BAC graph.

Our Output: Errors in Data

- Suspected Chimeras & Repeats
- Chromosome Mis-assignment

Outline

- Biological Background
- Human Genome Project & the Sequence Assembly Problem
- The Barnacle Algorithm
 - Details of the input
 - The basic idea
- Experimental Results
- Conclusion

Statistics about Input (Dec 2001)

phase	BACs	frags	Total length in Gbp	Ave. number of frags
1	15298	246424	2.55	16.11
2	2154	8161	0.33	3.79
3	17624	17624	2.04	1
Total	35076	272209	4.992	7.76

Overlap Information: 403,466 fragment pairs Orientation Information: 321,751 fragment pairs

31543 by STS; 2450 by Genbank; 1083 unknown

Comparison Metrics

- BACs/Fragments deleted
 - We delete BACs and Fragments when we put them in our error list.
 - NCBI also deletes BACs/Fragments

Fragments Used

Barnacle	BACs	Frags Used/ Frags	Contigs	Length (Gbp)
Singletons	1215	9967/9967	1215	0.142
Non- Singletons	33722	251041/259230	2443	2.708
	34937	261008/269197	3658	2.850
NCBI	BACs	Frags Used/ Frags	Contigs	Length (Gbp)
Singletons	836	9074/9074	836	0.112
Non- Singletons	32902	222391/251928	2292	2.745
	33738	231465/261002	3128	2.857

Comparison Metrics

- BACs/Fragments deleted
 - We delete BACs and Fragments when we put them in our error list.
 - NCBI also deletes BACs/Fragments
- Warp
 - Recall that each BAC has estimated length
 - It has a length in the final answer alignment.
 - Ratio of length/estimated length = WARP

Warp Statistics

Warp	Barnacle	NCBI
≤ 1.5	33474	29647
1.5 - 1.8	753	725
1.8 - 2.0	278	371
2.0 - 5.0	421	1813
5.0 - 10.0	10	612
> 10.0	1	570

Warp Statistics

(Warp > 1.5)

Assembled BAC Length	Barnacle	NCBI
250K-300K	434	461
300K-500K	549	1328
500K-800K	33	798
800K-1M	0	248
1M-2M	0	496
2M-3M	0	129
3M-10M	0	259
10M-20M	0	67
Total	1016	3786

Errors Detected

- 59 BACs probable chimeras
 - Many have been removed from the public database
- 59 BACs other potential chimeras
- None of these have been shown to be correct.

Errors Detected

- 147 Chromosome Mis-assignments
 - 78 Verified; None shown false
 - Thank goodness that some BACs had unknown chromosomes!
 - BACs labeled unknown get compared against everyone.
 - They can provide evidence (by transitivity) or chromosome mis-assignment.

Conclusion

- Error modeling & detection is essential
 - We need to use data from Genome Center without loosing our skepticism
- Barnacle is a good step, but not last word
 - We need better tools for dealing with repeats
- The Human Genome Project is a success
 - Not because the human genome has been "sequenced"
 - But because sequencing is so much cheaper than before