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Abstract. We study properties of multidomain proteins from a graph
theoretical perspective. In particular, we demonstrate connections be-
tween properties of the domain overlap graph and certain variants of
Dollo parsimony models. We apply our graph theoretical results to ad-
dress several interrelated questions: do proteins acquire new domains
infrequently, or often enough that the same combinations of domains
will be created repeatedly through independent events? Once domain
architectures are created, do they persist? In other words, is the exis-
tence of ancestral proteins with domain compositions not observed in
contemporary proteins unlikely? Our experimental results indicate that
independent merges of domain pairs are not uncommon in large super-
families.

1 Introduction

Protein domains are elementary units of protein structure and evolution. About
two thirds of proteins in prokaryotes and eighty percent in eukaryotes are mul-
tidomain proteins [1]. On average, a protein has two to three domains, but there
are proteins for which the domain count exceeds one hundred [15,31].

There is no agreement on a precise definition of protein domain. The defi-
nition adopted in this work assumes that domains are conserved evolutionary
units that are (1) assumed to fold independently, (2) observed in different pro-
teins in the context of different neighboring domains, and are (3) minimal units
satisfying (1) and (2).

Multidomain proteins pose a challenge in the analysis of protein families. Tra-
ditional approaches for studying the evolution of sequences were not designed
with multidomain proteins in mind. For example, gene family evolution is typ-
ically modeled as a tree built from multiple sequence alignment. However, it is
not clear how to construct such an alignment for a family with heterogeneous
domain composition. Another challenge arises in graph theoretical approaches
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to protein family classification [19, 22, 34]. This approach typically models the
protein universe as a similarity graph, G = (V,E), where V is the set of all
amino acid sequences and two vertices are connected by an edge if the associ-
ated sequences have significant similarity. The idea is first to identify all pairs of
homologous proteins and then apply a clustering technique to construct protein
families. In an ideal world, protein families would appear as cliques in such a
graph, where every member of the family is related to all other members and
to no other protein. However, relationships in this graph are not always transi-
tive. First, it may be impossible to detect sequence homology between related
but highly diverged sequences. In addition, lack of transitivity can result from
domain chaining in multidomain proteins. A protein containing domain A is a
neighbor of a protein containing domains A and B, which in turn is connected
to a protein containing only domain B, but there would be no direct relationship
between the proteins containing only A and only B, respectively. Consequently,
in the presence of multidomain proteins, protein families identified by graph
clustering methods may contain completely unrelated proteins. More methods
that deal explicitly with multidomain proteins are needed.

In order to focus on the properties of multidomain proteins and the rela-
tionships between them, we introduce the protein overlap graph and its dual,
the domain overlap graph. In the protein overlap graph, the vertices are pro-
teins represented by their domain architectures, where domains are represented
by probabilistic models of multiple sequence alignments, such as PSSMs [14]
or HMMs [5, 24]. Two vertices are connected by an edge if the corresponding
proteins share a domain. In the domain overlap graph, the vertices are protein
domains and two domains are connected by an edge if there is a protein that
contains both domains. These abstractions allow us to focus on domain archi-
tectures.

In the current work, we study the structure of domain overlap graphs to gain
insight into evolution of multidomain architectures. Multidomain proteins can
be formed by gene fusion [20, 23, 32], domain shuffling [1, 4, 25, 27] and retro-
transposition of exons [26]. We abstract these biological mechanisms into two
operations: domain merge and domain deletion. We use the term domain merge
to refer to any process that unites two or more previously separate domains in a
single protein. Domain deletion refers to any process in which a protein loses one
or more domains. We represent a domain architecture by the set of its domains.
Obviously, this abstraction neglects the fact that multidomain proteins are also
subject to domain rearrangement, tandem duplication, and sequence divergence.
However in the case of domain pairs it has been observed that only about 2% of
such pairs occur in both possible orders [4]. Nevertheless, we must keep in mind
our simplifying assumptions while interpreting the results.

We apply the graph theoretic tools developed in this paper to genomic data
to consider two questions: First, is domain merging a rare event or is it common
for the same pair of domains to arise repeatedly through independent events?
Second, once domain architectures are created do they persist? In other words,
do the majority of ancestral architectures occur as subsets of some contemporary
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protein architectures? It has been argued that the vertex degree for domain over-
laps graphs can be reasonably approximated by power law [2,33]. The most pop-
ular method of modeling such distribution is using the preferential attachment
model [3]. Can this model be applied to multidomain proteins? We investigate
these questions using the following approach:

1. We define two parsimony models for multidomain family evolution based on
the concept of Dollo parsimony, which we call conservative and static Dollo
parsimony. The existence of a conservative Dollo parsimony for a protein
family is consistent with a history in which every instance of a domain pair
observed in contemporary members of the family arose from a single merge
event. The existence of a static Dollo parsimony is consistent with a history in
which no ancestor contains a domain combination not seen in a contemporary
taxon.

2. We establish a relationship between these parsimony models and particular
structures in the domain overlap graph, namely chordality and the Helly
property. (Rigorous definitions of these concepts are given in the body of
the paper.)

3. We adapt fast algorithms for testing chordality and the Helly property pre-
viously developed by other authors to obtain fast existence tests for con-
servative and static Dollo parsimony and reconstruction of corresponding
trees.

4. Using a result from random graph theory, we design a method for selecting
a statistically informative test set. We also test the agreement of preferential
attachment model with the data.

5. We apply these tests to genomic data and determine the percentage of pro-
tein families that can be explained by static or conservative Dollo parsimony.

The paper is organized as follows. First, we review the relevant phylogenetic
models and introduce our restrictions on the Dollo parsimony in Section 2. In
Section 3, we introduce the graph theoretical concepts used in the paper and
show how they apply to the domain overlap graph. We also provide an elegant
link between these concepts and parsimony models introduced in Section 2. The
application of the theoretical results to genomic data is presented in Section 4.
Finally, we provide conclusions and directions for future research.

2 Tree models

Gene family evolution is traditionally modeled by phylogenetic trees, where
leaves are sequences and internal nodes are either speciation or duplication
events. Gene trees are traditionally built from multiple sequence alignments
(MSAs). However, it is not clear how to construct an MSA for a family with
heterogeneous domain composition. One approach is to use the MSA of one do-
main only (see for example [17, 30]). There is no guarantee, however, that the
resulting tree will capture large scale changes in domain composition. Therefore,
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in this work we will consider parsimony models, where the primary evolutionary
events are domain insertion and deletions.

In general, parsimony methods assume that each taxon is characterized by a
set of characters or attributes. Each character can assume a finite set of possible
states and can change state in the course of evolution. The maximum parsimony

tree is a tree with leaves labeled with character states associated with the input
taxa, and internal nodes labeled with the inferred character states of ancestral
taxa, such that the total number of character changes along its branches is mini-
mized. Additional restrictions on the type, number and direction of changes lead
to a variety of specific parsimony models [12]. In this work, we focus on binary
characters, characters that take only the values zero or one, usually interpreted
as the presence or absence of the attribute in the taxa.
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Fig. 1. Phylogenetic tree of family protein tyrosine kinase family, adopted from the
tree presented in [30] constructed from an MSA of the kinase domain.

The most restrictive parsimony assumption is perfect phylogeny: a tree in
which each character state change occurs at most once [12]. One method of test-
ing the existence of perfect phylogeny tree is based on the compatibility criterion.
For a given set of taxa, two characters A and B are compatible if and only if
there do not exist four different taxa respectively representing all four possible
combination of character states for A and B (that is, (0, 0), (0, 1), (1, 0), (1, 1)).
The appearance of all four combinations indicates that one of the two characters
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must have changed state twice. A set of taxa admits a perfect phylogeny if and
only if every pair of taxon is compatible [12].

In Dollo parsimony, a character may change state from zero to one only
once, but from one to zero multiple times [21]. This model is appropriate for
complex characters such as restriction sites and introns which are hard to gain
but relatively easy to lose [12].

We model multidomain protein evolution in terms of domain insertion and
loss. In our model, the taxa are domain architectures and each domain defines
a single binary character, where state one corresponds to the presence, and zero
to the absence, of the domain in a given architecture. Thus, a state change from
zero to one corresponds to an insertion and from one to zero to a deletion. This
model focuses on the evolution of domain architecture, ignoring sequence evo-
lution and thus obviating the problem of constructing an appropriate MSA for
tree reconstruction. Figure 1 (a) shows a domain architecture phylogeny for the
protein tyrosine kinases, based on a tree constructed from an MSA of the ki-
nase domain [30]. Note that the tree is not optimal with respect to a parsimony
criterion minimizing the total number of insertions and deletions. For example,
if architectures INSR and EGFR were siblings (the only two architectures con-
taining the Furin-like cysteine rich and Receptor ligand binding domains) the
number of insertions and deletions would be smaller.

The general maximum parsimony and the Dollo parsimony problems are
optimization problems: an optimal tree satisfying the given parsimony criterion
is sought. In contrast, the perfect phylogeny problem asks whether a perfect
phylogeny exists. If such a tree does exist, it is guaranteed to be optimal. Finding
the most parsimonious tree (both in the general setting as well with the Dollo
restriction) is NP-complete [10]. The existence of a perfect phylogeny can be
solved in O(nm) time, where m is the number of characters (i.e., domains) and
n is the number of taxa (i.e., architectures) [11].

In contrast to perfect phylogeny, it is always possible to construct a Dollo
phylogeny by positing an ancestral taxon where the state of every character is
one. Since there is no restriction on the number of transitions from one to zero,
any combination of character states found in the leaf taxa can be generated. Such
a tree makes no sense in the context of multidomain evolution, since it implies the
existence of an ancient protein containing all domains seen in any contemporary
protein in the family. Can we put a restriction on the Dollo phylogeny tree so
that the existence of such restricted Dollo parsimony is both informative and
computationally tractable? In this paper we propose two such restrictions:

Static Dollo Parsimony is a Dollo parsimony with the following restriction:
for any ancestral taxon the set of characters in state one in this taxon is a
subset of the set of characters in state one in some leaf taxon (hence, the
term “static”). We assume here that more than one character can change in
one step.

Conservative Dollo Parsimony is a Dollo parsimony with the following re-
striction: for any ancestral taxon and any pair of characters that appear in
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state one in this taxon, there exists a leaf taxon where these two characters
are also in state one.

Clearly every static phylogeny is also conservative. From the perspective of
multidomain proteins, the intuition motivating the conservative restriction is as
follows. The simultaneous presence of two domains in one protein often sug-
gests that these domains contribute to the functionality of the protein as a pair.
For instance, the SH2 and SH3 domains frequently appear together in various
signal transduction proteins involving recognition of phosphorylated tyrosine.
SH2 domains localize tyrosine phosphorylated sites while SH3 domain binds to
target proteins through sequences containing proline and hydrophobic amino
acids. If the domains acting in concert offer a selective advantage, it is unlikely
that the pair, once formed, would later separate in all contemporary protein ar-
chitectures. Conservative Dollo parsimony provides a correct parsimony model
when this possibility is excluded. (Note that it may be possible that a pair of
domains does not form a functional unit without additional domains but we
do not explore such intricate relationships here due to insufficient data). Static
Dollo parsimony additionally requires that the set of characters in state “one” in
an ancestral taxa is a subset of the set of characters in state one in at least one
contemporary taxa. Consequently, an ancestral architecture (defined as a set of
domains) is a subset of at least one contemporary architecture.

Unlike the general Dollo parsimony which can be always inferred (even in
the case where it is not a reasonable model), a set of taxa may not admit the
conservative Dollo parsimony. Such a failure can be interpreted in two ways: the
single insertion assumption is not reasonable, or conservative assumption is too
strong. Thus non-existence of conservative Dollo parsimony provides a proof that
at least one of these two assumptions is incorrect. On the other hand, existence
of conservative Dollo tree does not provide a proof of correctness of the model
but only evidence that the assumptions are consistent with the data.

In this paper, we show that there is an elegant link between existence of
static and conservative Dollo phylogenies and some graph theoretical properties
of the domain overlap graph. This leads to fast algorithms for testing existence
of such restricted phylogenies and, in the case when the respective phylogenetic
tree exists, constructing that tree.

3 Graph theoretical properties of domain overlap graphs

and their relation to restricted Dollo parsimony

In this section we present our theoretical results. We start with the analysis
of the domain overlap graph. Stated formally, the domain overlap graph for a
given family of multidomain proteins is the graph G = (V,E) such that V is the
set of all domains represented in the data base and (u, v) ∈ E if there exists a
protein p in the set such that both u and v appear in p. Below, we state the
definition of chordality and discuss its importance in the context of the domain
overlap graph. Subsequently, we review the Helly property and its relation to
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chordal graphs. Finally, we show how these concepts can be exploited to answer
the questions stated in the introduction and discuss related statistical issues.

3.1 Chordal graphs and their properties

Chordal graphs constitute an important and well studied graph family [16]. A
chord in a graph is any edge that connects two non-consecutive vertices of a
cycle. A chordal graph is a graph which does not contain chordless cycles of
length greater than three. Intuitively, any cycle of length greater than three in
a chordal graph is triangulated, that it is partitioned (not necessary uniquely)
into triangles using edges of the graph. This motivates another term for chordal
graphs, namely triangulated graphs. Figure 2 (a) shows the domain overlap graph
for a set of domains in protein kinase family shown in Figure 1. For simplicity,
only domains that occur in more than one architecture are used. Note that this
graph is chordal.

The important property that is explored directly in this paper is the relation
between chordal graphs and trees. To elucidate this relation we need to introduce
the concept of intersection graph.

Let F be a family of objects, such as intervals on a coordinate line or rect-
angles in space. A graph G = (V,E) is called an intersection graph of F if each
vertex, v ∈ V , corresponds to an object in F and (u, v) ∈ E if and only if the
objects in F corresponding to u and v intersect.

We will consider a special family of intersection graphs where the objects are
subtrees of some (usually unrooted) tree. We will refer to the tree as the guide

tree. Here, by a subtree of a tree we understand any connected subgraph of a
tree. Furthermore, our family typically does not contain all possible subtrees of
a tree.
Theorem(Gavril [13]) A graph G is chordal if and only if there exists a tree T

and a family of subtrees of this tree such that G is the intersection graph of this
family.

Our key observation is stated in the following theorem:
Theorem 1. There exists a conservative Dollo parsimony tree for a given set of
multidomain architectures, if and only if the domain overlap graph for this set
is chordal.
Proof (sketch): We argue that if a given set of architectures admits conservative
Dollo parsimony then the corresponding domain overlap graph is chordal. The
argument in the opposite direction is left to the full version of the paper.

Assume that conservative Dollo parsimony tree exists and take this tree as
the guide tree for an intersection graph construction. For any domain consider
all nodes (leaves or ancestral) that contain this domain. Since the guide tree is
a Dollo tree, these nodes form a connected subtrees. Consider the family of such
subtrees for all considered domains. We argue that the intersection graph of this
family of subtrees is exactly the domain overlap graph. By the definition, the
nodes of this intersection graph correspond to protein domains and there is an
edge between two such domains if and only if there exists a node in the Dollo
tree containing both domains. Thus if two domains belong to the same protein
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they are connected by an edge in the intersection graph. We need to show that
if two domains do not occur together in at least one protein architecture, then
there is no edge between them in the intersection graph. Assume towards a
contradiction that there exists an edge between two domains that do not belong
to the same architecture. This means that the corresponding subtrees of the
guide tree intersect in an internal node but they don’t intersect in a leaf. This
contradicts the assumption that the tree is conservative. Thus the intersection
graph is exactly equal to the domain overlap graph. By Gavril’s theorem, the
domain overlap graph is chordal. QED

Furin

(a)

(b)

Transmembrane

region

Immunoglobulin-

like domain

Fibronectin

type III 

SH3

SH2

Receptor ligand
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Fig. 2. a) The domain overlap graph for a selected domains from the human tyrosine
kinase family. Chosen domains belong to more than one architecture (under assump-
tion that architectures containing the same set of domains are considered to be the
same). The kinase domain is omitted since it is present in all these architectures. b)
Representation of the domain overlap graph as an intersection graph of subtrees of a
tree. The correspondence between subtrees and domains is indicated by corresponding
colors. The label of a node indicates which subtrees intersect in this node.

Figure 2 shows a domain overlap graph and a corresponding Dollo parsimony
tree. Note that the tree does not need to be unique. For example the order of
internal no nodes in the SH2/SH3 subtree can be switched without inducing a
change in the overlap graph.
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3.2 The Helly property

As mentioned before, it is not always possible to construct a Dollo phylogeny
tree without introducing ancestral nodes with domain compositions not observed
in the leaves. For example, if we have three domains A, B, and C and three
proteins AB,BC,CA then we cannot construct a Dollo parsimony tree without
introducing an ancestral protein ABC. This property is equivalent to the Helly
property, named after the Austrian mathematician Eduard Helly [9]:

A family {Ti | i ∈ I} of subsets of a set T is said to satisfy the Helly property

if, for any collection of sets from this family, {Ti | j ∈ J ⊆ I}, ∩j∈JTj 6= ∅,
whenever Tj ∩ Tk 6= ∅, ∀j, k ∈ J .

In Figure 3 (a) shows an example of a family of three sets that do not
satisfy the Helly property: Each pair intersects but there is no intersection point
common to all three. In contrast, Figure 3 (b) shows an example where the three
subtrees A, B, C (respectively with vertices {1,3,4,5}, {2,3,4,6}, and {1,2,3} )
of tree T . The subtrees pairwise intersect and also have a common intersection
point in vertex 3. Thus they satisfy the Helly property. The last fact is true
for any set of subtrees of a tree: there is no way to have such subtrees pairwise
intersect but not intersect in a common point.

2
1

(a) (b)

3

4

A
B

C

A B

C

5 6

Fig. 3. (a) Three ovals that do not satisfy the Helly property; (b) and three subtrees
of a tree which satisfy the Helly property.

Consistent with the above definition of the Helly property, we introduce the
Helly property for a domain overlap as follows:
Definition (Helly property for domain overlap graph) A domain overlap
graph satisfies the Helly property if and only if for every clique in this graph
there exists a protein architecture that contains all domains of this clique.
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To see why this definition is consistent with the set theoretical definition for
each domain i consider set Ti of architectures that contain this domain. Then
an edge between i and j corresponds to Ti ∩ Tj 6= ∅. Subsequently a clique J

has property that all i, j ∈ J Ti ∩ Tj 6= ∅. The existence of an architecture
that contains all domains in the clique J ensures that ∩j∈JTj 6= ∅ since this
architecture belongs to all sets Tj in this clique.

The relation of the Helly property to the static Dollo parsimony is provided
by the following theorem (the proof will be given in the full version of the paper):
Theorem 2. There exist a static Dollo parsimony tree for a set of multidomain
proteins, if and only if the domain overlap graph for this set is chordal and
satisfies the Helly property.

4 Experimental results

We apply the methods developed in the previous section to genomic data sets
to investigate the questions stated in the introduction:

– Is independent merging of the same pair of domain a rare event?
– Do domain architectures persist through evolution?

To do this, we divide the protein universe into overlapping sets of proteins called
superfamilies. Each domain defines one superfamily, namely the set of all pro-
teins that contain the given domain. For example, all proteins containing the
kinase domain form one superfamily, proteins containing the SH2 domain form
another superfamily and these two superfamilies intersect. It is important for
our argument that each superfamily have a common reference point - here the
common domain. This reference point allows us to interpret each merge as an
insertion with respect to this domain. In particular, multiple independent inser-
tions correspond to multiple independent merges of the inserted domain and the
reference domain. For each superfamily in our data set, we determine whether
it satisfies the perfect phylogeny and conservative and static Dollo criteria. To
estimate the significance of our results, we also investigate the probability of ob-
serving conservative Dollo parsimony in two null models, uniform random graphs
(Erdos-Renyi model)and random scale free graphs generated using preferential
attachment random model.
Null Models. The existence of a conservative Dollo parsimony tree for a given
domain superfamily is a necessary but not a sufficient condition for concluding
that no repeated, independent merges occurred in the history of the family.
We therefore estimate the probability that a superfamily admits a conservative
Dollo phylogeny by chance under two different null models. Note, that this is
equivalent to determining the probability that a graph of with a given number
of vertices is chordal under our null hypotheses.

All graphs with less than four vertices are chordal, as are all acyclic graphs
(i.e., graphs which are collections of trees). Since a random, sufficiently sparse
graph will be acyclic with high probability, such a graph is also likely to be
chordal. In fact, a random graph with edge probability p < c

n
, where n is number
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of vertices, is almost certainly acyclic when c < 1, while almost all vertices of
such a graph belong to a cycle when c > 1 and the phase transition occurs at
p = 1

n
[7]. Consequently, since we are interested in graphs that are unlikely to

be chordal by chance, we consider only graphs with at least four vertices that
have at least as many edges as vertices. We define a complex superfamily to be a
superfamily whose domains overlap graph satisfies these criteria and restrict our
analysis to complex superfamilies in our data sets. To determine the probability
of observing conservative Dollo parsimony in complex superfamilies by chance,
we collected statistics to estimate the value of c for domain overlap graphs in
our data set. We then used simulation (1000 runs) to estimate the probability
that a random graph with uniform edge probability p = c

n
is chordal.

Several papers have suggested that the domain overlap graphs have scale free
properties [2,33]. We therefore also considered a null model based on preferential
attachment, a classical random model for scale free graphs [3]. Under this model,
a random graph is constructed iteratively. At each step, a new vertex is connected
to an existing vertex with probability proportional to the degree of that vertex.
We simulated the preferential attachment model taking care that the parameters
are chosen in such a way that the edge density of the resulting random graphs
is approximately the same as that in domain overlap graphs of the same size.

Data. We use two different data sets derived from SwissProt version 44 re-
leased in 09/2004 [6] (http://us.expasy.org/sprot/). The first contains all mouse
proteins, thus all homologous proteins in this set are paralogs. In contrast, the
second test set consists of all non redundant (nr90) proteins in SwissProt, and
thus contains both paralogs and orthologs. The architectures of each protein in
both sets were identified using CDART [14] based on PSSM domain models. The
domains identified by CDART as similar have been clustered using single linkage
clustering and subsequently considered as one superdomain. The proteins that
contained no recognizable domain were removed, leaving 256,937 proteins with
5,349 distinct domains in the nr90 data set and 6,681 proteins with 1951 distinct
domains in the mouse data set. Of these, 2,896 nr90 and 983 mouse superfamilies
have at least one partner domain. We let Mouse.c and nr90.c denote the set of
complex superfamilies in mouse and nr90, respectively. To determine the effect
of superfamily size on the results, we defined Mouse.c.x-y and nr90.c.x-y to be
sets of superfamily in Mouse.c and nr90.c, respectively, containing at least x and
at most y domains.

There is always a danger of inaccuracy when working with large, automat-
ically annotated, data sets. Since errors in domain architecture identification
could result in incorrect conclusions concerning domain insertion and loss, we
also tested our approach on on a hand curated data set, namely the kinase
superfamily, which has been heavily studied and for which it is possible to ob-
tain highly reliable domain annotations. We compared the set of complete human
protein sequences, obtained from SwissProt along with their symbols and Pfam
codes, with a list of designated kinase gene symbols and Pfam codes (PF00069,
PF001163 and PF01633) derived from three recent, genomic analyses of the
kinase superfamily [8,18,30]. A protein was judged to be a kinase if it was anno-
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tated with a known kinase gene symbol or Pfam code. This procedure resulted in
a set of 378 human kinase sequences. The domain architectures of these kinases
were then obtained from CDART [14]. From this curated set, we analyzed the
kinase superfamily, and all superfamilies that overlapped with it.
Analysis. To test the consistency of the data with the perfect phylogeny, static
Dollo parsimony, and conservative Dollo parsimony models, we implemented the
algorithms discussed in the previous sections using the LEDA platform [29].
The agreement with perfect phylogeny criterion was tested using compatibility
criterion [12]. To test conservative Dollo parsimony, we implemented a chordality
test and for static Dollo parsimony we additionally tested if the Helly property
is satisfied. Using these tools, we test our data for these criteria and asked under
what circumstances could at least 90% of superfamilies be explained by a given
evolutionary model. The results are summarized in Table 1.

set # super- % PP % SDP % CDP % random % random
families uniform PA

Mouse 983 95 99 99.7 NE NE

Mouse.c.4-5 88 99 100 100 80 98

Mouse.c.6-8 37 84 100 100 31 66

Mouse.c.9-10 11 66 100 100 17 25

Mouse.c.11-20 23 31 96 96 1.7 1.0

Mouse.c.21-30 9 0 66 100 0 0

Mouse.c.31- * 8 0 50 75 0 0

Nr90 2896 80 98 99.9 NE NE

Nr90.c.4-5 143 57 99 99.5 80 98

Nr90.c.6-8 130 37 99 100 31 66

Nr90.c.9-10 40 28 100 100 17 25

Nr90.c.11-20 104 13 87 99 1.7 1.0

Nr90.c.21-30 34 6 53 88 0 0

Nr90.c.30- * 28 0 15 50 0 0

Human Kin 101 11 100 100 NE NE

Table 1. The percentage of superfamilies that are consistent with the perfect phylogeny
(PP), static Dollo parsimony (SDP) and conservative Dollo parsimony (CDP) criteria.
Abbreviations: PA - preferential attachment; NE - not estimated.

Not surprisingly, with the exception of very small (in terms of number of dif-
ferent domains or equivalently the size of domain overlap graph) superfamilies
in mouse perfect phylogeny does not meet this standard suggesting that it is not
a suitable model for multidomain protein evolution. In contrast, 95% or more
of complex superfamilies up to size 20 in mouse and size 10 in nr90 could be
explained by static Dollo parsimony. All but the largest complex superfamilies
(greater than 30 in mouse and greater than 20 in nr90) were consistent with con-
servative Dollo parsimony. In contrast, the probability of observing conservative
Dollo parsimony by chance was much lower in both null models. Furthermore,
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our results show that domain overlap graphs of real multidomain superfamilies
do not have the same the topological structure as random scale free graphs of
the same size and edge density constructed according to preferential attachment
random model.

While the vast majority of small and medium size superfamilies admit con-
servative and static Dollo parsimony, a significant percentage large superfamilies
do not. A less restrictive evolutionary model that allows multiple insertions is
needed to explain the data. Furthermore, our simplifying assumptions may result
in underestimation of the number of independent merges since only merges that
violate chordality are detected. For the mouse data set, the superfamilies that do
not satisfy conservative Dollo parsimony are FER2, Trypsin, and EGF. For nr90,
this set contains 34 superfamilies including TRK, IG, PH, EGF, SH3, C2, and
a large superdomain containing several ATPases (the largest superfamily in the
nr90 set). Several of these are known to be “promiscuous” domains, which also
supports the hypothesis of repeated independent merges in large families [28].
While the quality of domain recognition and incompleteness of the data may
be affecting our results, the results for the curated kinases family are consistent
with the results for non-curated data (the sizes of all but one domain overlap
graphs for this set, are less than 20).

5 Conclusions and future research

In this paper, we formulated two new parsimony models and showed their con-
nection to properties of domain overlap graphs. Previous analysis of these graphs
focused on counting vertex degrees and statistical analysis of connectivity [2,33].
We demonstrated that these graphs frequently have interesting topological prop-
erties, and in fact the topology of domain overlap graphs can provide information
about evolution of a multidomain protein family. We applied our new graph the-
oretical tools to test whether independent merging of the same pair of domains
is a rare event and whether domain architectures persist through evolution? In
the case of small and medium sizes superfamilies, the data is consistent with
this hypothesis. However, our results do not support the hypothesis in the case
of large families. We also demonstrate that the topological properties of domain
overlap graphs of multidomain superfamilies are very different from those of ran-
dom scale free graphs of the same size and density. Based on these results, we
reject preferential attachment as a mechanism for multidomain protein evolu-
tion. This also prompts the question: what evolutionary model for multidomain
proteins will explain the observed behavior?

We show that the independent domain mergers can be detected by testing
if the corresponding domain overlap graph is chordal. An intriguing question is
whether the minimal set of domains that must be removed to obtain a chordal
domain overlap graph is related to the set of promiscuous domains.

Although the focus of this study is evolution of protein architectures, ap-
plicability of the methods developed in this paper goes beyond the analysis of
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multidomain protein superfamilies. They can be applied to analysis of any set
of taxa with binary character states.

Another interesting direction of future research is to study of properties of
protein overlap graphs. While the domain overlap graph is dual to the protein
overlap graph, this duality is not symmetric. Given a protein overlap graph, we
can construct the corresponding domain overlap graph, but given a domain over-
lap graph we cannot reconstruct the initial protein overlap graph. The domain
overlap graph thus contains less information than the protein overlap graph.
Therefore, direct analysis of protein overlap graphs may bring new insights in
analyzing evolution of multidomain proteins.
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