
15-745 Optimizing Compilers
Project Final Report

Symbolic Execution in Difficult Environments

David Renshaw
renshaw@cmu.edu

Soonho Kong
soonhok@cs.cmu.edu

April 28, 2011

1 Introduction

1.1 Problem / Opportunity

Symbolic execution is a technique that can automatically generate high-coverage
test cases for programs. The idea is to step through a program while keeping
some input data symbolic—i.e. not fully specified. Then whenever a branch
point is reached, the program state can be forked and both branches can be
taken, with the symbolic data appropriately constrained on each branch. When
a potentially dangerous operation on symbolic data is encountered, a contraint
solver can be invoked used to try to generate concrete inputs that cause the
program to go wrong at that operation.

Symbolic execution becomes difficult for programs that interact with an
external environment like a filesystem. Although one could achieve “high
coverage” by returning arbitrary values from external calls, if these values are
not consistent with the behavior of the real environment, any “bugs” found on
these branches may be spurious. Thus, for symbolic execution to work in this
case—specifically if we want there to be no false positives—then the behavior
of these interactions must be modeled. The purpose of this project is to explore
what is involved in such an undertaking.

1.2 Approach

Our approach is to write a new filesystem model for KLEE [1], which is a
symbolic execution engine built on LLVM.

1.3 Related Work

KLEE has been used to find bugs in GNU coreutils [1]. Zamfir and Candea
have extended KLEE to add support for threads, creating a debugger for con-
current programs [4]. They have used their system, called “ESD,” to synthesize

1

renshaw@cmu.edu
soonhok@cs.cmu.edu

execution paths for difficult-to-reproduce bugs in open source projects such as
SQLite. Sasnauskas et al have extended KLEE with support for distributed
programs [2]. They have used their implementation, called “KleeNet,” to find
interaction-related bugs in the TCP/IP stack of the Contiki operating system
for embedded systems. Chipounov et al have integrated KLEE with a virtual
machine and a dynamic binary translation engine to create S2E [3], an anal-
ysis framework reportedly capable of testing an entire software stack such as
Windows.

1.4 Contributions

We identify a strategy for extending the filesystem modelling of KLEE. We
implement this strategy and we test its effect on the symbolic execution of a
selected set of GNU CoreUtils.

2 Design and Approach

2.1 KLEE’s Existing Model for the Environment

To increase code coverage for the program that interacts with a file system,
KLEE provides environment models and redirects library calls to the models.
The KLEE’s file-system models understand the semantics of POSIX system calls
such as open, read, write, stat, lseek, ftruncate, and ioctl. The models gener-
ate the required constraints for the programs, which enable KLEE’s symbolic
execution to achieve high coverage.

Example Consider a program which opens a file whose pathname is given as
a command-line argument. In general, this kind of program has two parts: (1)
routine that processes the opened file and (2) routine that handles I/O errors
such as FileNotFound. In the symbolic executions of this program, KLEE opens
a file by calling fd open function. This function is KLEE’s model function for
open system call and produces constraints so that KLEE generate test cases
which cover both of (1) and (2) parts of the program. These models are defined
in klee/runtime/POSIX directory.

Components KLEE’s models for file-system consists of the following compo-
nents:

• Symbolic File-system : It is a virtual file-system which is provided to the
target program. It maintains a list of symbolic files with other counters
such as number of I/O failures. KLEE’s POSIX system call functions
treat symbolic files as regular files. At the beginning of each symbolic
execution, KLEE initializes symbolic file system and use it during the
execution.

2

• Symbolic Environment : It represents virtual environment which pro-
vides programs with information about current environment such as
umask and number of opened file descriptors.

Symbolic file and concrete file KLEE’s file-system models distinguish sym-
bolic files and concrete files. A file is concrete if its pathname is a non-symbolic
variable. For example, if we have a program statement f = open("./a.txt",
O RDONLY), then file descriptor f represents a concrete file because its path-
name "./a.txt" is non-symbolic, which means fixed. It is important to note
that KLEE’s file-system models treat concrete file by directly invoking standard
POSIX system call. For example, if we have "./a.txt" in current directory,
then KLEE opens it and proceed with the following code. KLEE does not cover
the code which handles the case where "./a.txt" does not exist.

A file is symbolic if its pathname is a symbolic variable. For a symbolic file,
KLEE’s file-system models generate constraints and those constraints create
symbolic file-system for each test-case and possibly cover multiple branches of
the code.

Parameterized KLEE’s file-system models are parameterized. Maximum
number of symbolic files and their length are provided as command-line argu-
ments. This help KLEE’s users customize their testcase generation to balance
running time and coverage.

2.2 Limitation: Single Directory with Symbolic Files

KLEE’s symbolic file-system is “crude, containing only a single directory with
N symbolic files in it.”[1] In other words, the file system is flat and symbolic
files have pathnames such as "A", "B", and "C"without directory hierarchy1.

2.3 Our Extension

We extend KLEE’s file-system models to support directory hierarchy2 . To
achieve this goal, we modify and extend current implementation in the follow-
ing ways:

1. Extend Data Structures: We extend current file-system data-structures to
allow our file-system to have directories. A structure exe disk file t,
which is used to represent symbolic files, is extended to have is dir field
which is a flag for directory, and sym dfiles field to contain pointers to
the nested entries.

Note that we limit the number of sub-directories in a directory and the
depth of nested directories. This limits the total number of symbolic
files and prevents constraints explosion. These arguments are provided

1More precisely, the first symbolic file has a pathname "A", the second one has "B", etc.
2Our implementation is available at http://code.google.com/p/cmu15745/

3

http://code.google.com/p/cmu15745/

as command-line arguments to KLEE. A data structure for file-system
exe file system t keeps those constants which are used in the models.

2. Directory Construction: We modify symbolic file creation function create

new dfile to possibly create a symbolic directory. Whenever we create a
symbolic file, we make the field is dir symbolic so that KLEE can have a
chance to set this file as a directory. If KLEE sets a file as a directory, then
we build files and sub-directories for that directory, recursively.

Note that we set proper values for the inode number(st ino) and the
mode of the file(st mode) so that the directory is treated as a directory in
the standard POSIX implementation.

3. Directory Listing: We implements directory listing for the symbolic di-
rectories. Previously, directory listing function fd getdents just returns
an error when the argument is symbolic. Now it returns a list of files and
directories as a contents of the given directory if the argument is a sym-
bolic directory.

4. Other Functions: We extend other implemented POSIX functions to sup-
port symbolic directories. For example, we should allow to open a di-
rectory with POSIX open function, but we should not allow to write to
a directory with POSIX write. For functions in /runtime/POSIX/fd.c
which implement the behavior of POSIX system call, we add proper rou-
tines for the case of symbolic directories.

3 Experimental Setup

We set up experiments to compare our version of modified file-system models
with the KLEE’s original file-system models.

3.1 Benchmarks

We use the subset of the programs in the coreutils-6.11 benchmark3 which
depend on a file-system. coreutils benchmark is the set of linux basic utilities
and was also used as a benchmark in the original KLEE paper[1]. Here is the
list of 20 coreutils that are used in our experiments.

basename cat chcon chgrp chmod chown cp

dir dirname du link ln ls mknod

mktemp mv rm rmdir stat vdir

3.2 Arguments to KLEE

After the publication of the KLEE paper (2008), KLEE command-line arguments
have been changed and those changes are not well-documented. As a result, it

3Available at http://ftp.gnu.org/gnu/coreutils/coreutils-6.11.tar.gz.

4

http://ftp.gnu.org/gnu/coreutils/coreutils-6.11.tar.gz

was difficult to reproduce the result of the KLEE paper with arguments used
in the paper. We found the arguments in figure 1 from the thread4 in the
klee-dev mailing list and used them in our experiments. The “posix-model”
and “sym-dirs” options belong to our extensions of KLEE. We found that, in
order to prevent premature abort on some of the inputs, we needed to increase
the number of allowed open file descriptors from 1024 per process to 8192 per
process.

klee --simplify-sym-indices \

--output-module --max-memory=1000 --disable-inlining \

--optimize --use-forked-stp --use-cex-cache \

--libc=uclibc --posix-runtime --posix-model=[old|modified] \

--allow-external-sym-calls --only-output-states-covering-new \

--run-in=<sandbox> --output-dir=<output_dir> --max-sym-array-size=4096 \

--max-instruction-time=10. --max-time=1800. --watchdog \

--max-memory-inhibit=false --max-static-fork-pct=1 \

--max-static-solve-pct=1 --max-static-cpfork-pct=1 \

--switch-type=internal --randomize-fork --use-random-path \

--use-interleaved-covnew-NURS --use-batching-search \

--batch-instructions 10000 --init-env \

<program>.bc --sym-args 0 1 10 --sym-args 0 2 2 \

--sym-files 2 8 --sym-stdout [--sym-dirs 1 1]

Figure 1: Command-line arguments for KLEE that we used in our experiments.

3.3 Experiment Environment

We run the experiments on a Dell Optiplex 960 running Ubuntu 10.04. the
machine has 3.8 GB of RAM and an Intel Core 2 Quad processor which has 4
cores at 2.83GHz each.

We set the sandbox directory—the concrete directory in which KLEE runs
its input program—to be a directory originally containing about 10 files and
5 subdirectories. We did not clean up this directory between runs. Over the
course of the experiements, this directory accumulated about 50 junk files as
the programs being tested wrote to concrete files. These new files have jibberish
names such as “BXCLo” and almost all have no contents. We believe that these
files had negligible effect on the runs. Moreover, we ran the corresponding
runs for modified and unmodified KLEE in parallel, so for any given program
being tested, the comparison should be fair.

4http://keeda.stanford.edu/pipermail/klee-dev/2011-February/000572.html

5

http://keeda.stanford.edu/pipermail/klee-dev/2011-February/000572.html

4 Experimental Evaluation

4.1 Metric

We have the following evaluation metrics:

• Instruction coverage (ICOV) & Branch coverage (BCOV) : Our goal is to
increase test coverage. Instruction coverage is a percentage of instructions
covered by generated test cases. We have instruction coverage instead of
line coverage because KLEE runs on top of the LLVM.

Branch coverage is another metric of code coverage. It counts number of
branches taken by generated test cases and divides it by the number of
total branches.

• Number of generate tese cases : One of goals of symbolic executions is to
minimize the number of generate test cases while maintaining high code
coverages.

• Time : We want to minimize the total time which is used for generating
test cases. In our experiments, we set timeout with 30 minutes. We collect
test cases generated until then.

4.2 Result and Discussion

Table 1 shows our experimental results.

4.2.1 Time

Our modified file-system increases the running time of test-case generation for
a few cases. dirname program is an example. Previously, it took 33.63 seconds
to finish, but we have time-out with the modified implementation. However,
we have increases in both of instruction coverage (+1.70, 37.96 → 39.66) and
branch coverage (+0.84, 25.84→ 26.68). So, this increased running time is spend
well.

4.2.2 Coverage

Figure 2 and 3 show the coverage improvements. Except four programs, we
have increases in coverage up to 5.88 percentage point (ICOV, stat) and 3.76
percentage point (BCOV, chown). Note that three programs that we have de-
crease in coverage (du, ln, and ls), we already have time-out. We think those
coverage decreases are due to increased search space. Especially, we have
coverage increases for the cases cat, basename, and dirname where we had
time-out with the original implementation.

The results of symbolic execution are very sensitive to the input parameters.
We would like to know if and how our extension is actually an improvement.
We have been using the KCachegrind tool to try to determine the nature of the

6

Path KLEE Modified KLEE
Time(s) ICov(%) BCov(%) # Tests Time(s) ICov(%) BCov(%) # Tests

basename 37.01 38.42 26.36 42 78.11 40.08 27.18 43
cat 1802.75 40.04 28.54 50 1801.53 41.96 29.87 45
chcon 1807.20 30.36 20.69 53 1805.60 31.48 21.32 55
chgrp 1809.60 45.52 31.65 66 1810.47 46.95 33.02 79
chmod 1806.58 39.77 27.88 95 1809 40.68 28.43 97
chown 1810.09 37.74 27.83 73 1810.76 43.60 31.59 91
cp 1805.76 38.22 29.14 107 1807.70 39.22 30.06 113
dir 1285.78 38.49 28.28 70 1859.12 37.50 27.07 116
dirname 33.63 37.96 25.84 31 65.87 39.66 26.68 38
du 1804.39 42.96 30.02 79 1812.92 39.59 27.67 75
link 1806.60 46.78 32.71 48 1805.33 48.08 33.20 41
ln 1805.71 51.72 38.85 101 1809.98 49.26 38.22 105
ls 1802.66 39.84 29.66 82 1804.09 37.96 27.69 60
mknod 1807.83 47.79 33.04 73 1809.24 49.10 33.70 75
mktemp 1806.13 48.18 35.20 65 1807.79 50.25 37.17 74
mv 1806.55 36.18 26.43 92 1811.07 38.22 27.91 106
rm 1805.71 32.50 23.70 49 1809.11 33.66 24.89 58
rmdir 1805.65 38.69 26.71 40 1807.31 40.55 28.58 60
stat 1804.43 37.59 25.97 64 1820.02 43.47 29.40 79
vdir 1097.58 37.08 26.83 33 973.63 37.74 27.17 37

Table 1: Experimental Results: ICov(%) : Instruction(line) coverage, BCov(%) :
Branch coverage, # Tests : Number of generated tests.

-4.5

-3.0

-1.5

0

1.5

3.0

4.5

6.0

 du ln ls dir vdir chmod cp chcon rm link mknod chgrp basename dirname rmdir cat mv mktemp chown stat

Improvement in Instruction Coverage (ICOV)

Figure 2: Improvement in Instruction Coverage(ICOV)

coverage increases. KCachegrind lets the user examine coverage on a line-by-
line basis. Unfortunately, it is hard to understand the main differences that we
see. For example, for stat, the modified version of KLEE gets considerablt
better coverage. The only significant way that this manifests itself in terms of
the code from the stat.c file is that the usage function is not covered as well

7

-3

-2

-1

0

1

2

3

4

 du ls dir ln vdir link chmod chcon mknod basename dirname cp rm cat chgrp mv rmdir mktemp stat chown

Improvement in Branch Coverage (BCOV)

Figure 3: Improvement in Branch Coverage(BCOV)

by unmodified KLEE. The filesystem model should not affect the execution of
a help message, so this discrepancy is puzzling.

4.2.3 Number of test cases

We observed about 10% increase in number of generated test-cases on average.
Because higher code coverage inevitably causes larger number of test-cases, we
think that this increase is natural consequences.

5 Surprises and Lessons Learned

Our primary mistake with this project was in underestimating how much time it
would take for us to understand the parts of KLEE that we would be interacting
with. We ended with very little time to implement our intended changes.

Also, we learned that small changes in the setup of symbolic execution can
have large and hard to analyze effects on the results of the execution.

6 Conclusions and Future Work

The next step in this project would be to understand better where our coverage
increases are coming from, and, using that knowledge, to further improve our
model. It would be interesting to try the modified version of KLEE on other
input programs, such as the BUSYBOX utilities tested in [1].

7 Distribution of Total Credit

We have designed the framework together. Soonho has done the implementa-
tion part, and David has done the experiments and analysis part. The credit
distribution is 50% - 50%.

8

References

[1] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems pro-
grams. In USENIX Symposium on Operating System Design and Implementation
(OSDI), 2008.

[2] Raimondas Sasnauskas, Olaf Landsiedel, Muhammad Hamad Alizai,
Carsten Weise, Stefan Kowalewski, and Klaus Wehrle. Kleenet: Discovering
insidious interaction bugs in wireless sensor networks before deployment,
2010.

[3] Volodymyr Kuznetsov Vitaly Chipounov and George Candea. S2e: A plat-
form for in-vivo multi-path analysis of software systems. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2011.

[4] Cristian Zamfir and George Candea. Execution synthesis: A technique for
automated software debugging. In ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems (EuroSys), 2010.

9

	Introduction
	Problem / Opportunity
	Approach
	Related Work
	Contributions

	Design and Approach
	KLEE's Existing Model for the Environment
	Limitation: Single Directory with Symbolic Files
	Our Extension

	Experimental Setup
	Benchmarks
	Arguments to KLEE
	Experiment Environment

	Experimental Evaluation
	Metric
	Result and Discussion
	Time
	Coverage
	Number of test cases

	Surprises and Lessons Learned
	Conclusions and Future Work
	Distribution of Total Credit

