
15-745 Optimizing Compilers
Project Proposal

Symbolic Execution in Difficult Environments

David Renshaw
renshaw@cmu.edu

Soonho Kong
soonhok@cs.cmu.edu

March 18, 2011

This project will be hosted at www.cs.cmu.edu/˜dwrensha/15-745/.

1 Introduction

Symoblic execution is a static analysis technique that allows programs to be run on
input that is not fully specified. Program data is kept abstract as long as possible. At
branch points, all possible paths are taken, and the corresponding contraints on the
abstract data are propagated. Symbolic execution has been used for generating high-
coverage test cases [2], for performance profiling and reverse engineering [5], and for
verification of remote client behavior in online games [1].

KLEE [2] is a symbolic execution engine built on top of LLVM. The primary goal of
our project will be to add new features to KLEE.

2 Description

Goal Our tentative goal is to improve KLEE to overcome the following limitations of
the way that it models file systems.

1. KLEE does not handle file operations on a concrete file symbolically (§4.1 of [2]).
If a target program does an operation on an actually existing file (called concrete
file), KLEE just executes that operation. This limits the possible test coverage of
generated test cases.

For example, consider a program which uses “config.txt” file as a configuration
file and do operations based on the content of this file.

...

if(read("config.txt") == "A") {

doA();

} else {

doB();

}

...

1

renshaw@cmu.edu
soonhok@cs.cmu.edu
www.cs.cmu.edu/~dwrensha/15-745/


Because KLEE treats “config.txt” as a concrete file, KLEE generates test cases
only covering either doA() part or doB() part, not the both of them.

2. As indicated in §4.1 of [2], KLEE’s symbolic file sysem is crude, containing a single
directory with N symbolic files in it. We will extend this to be a richer symbolic
file system which supports multiple directories and nested directories.

Metric We are going to run our version of KLEE and compare the result with original
KLEE’s result. The same coreutils will be used as a benchmark. We expect our
version generates test cases which are better than KLEE in terms of line coverage with
not severly degenerating performance (time).

Specific Goals

• 75%: Only achieve item 1.
• 100%: Achieve item 1 & 2.
• 125%: Have more test benchmarks and show that our extended KLEE performs

better than the original.

3 Logistics

3.1 Plan of Attack
Week David Renshaw Soonho Kong

1 (3/18 - 3/22) Figure out KLEE internals, settle on goals
2 (3/23 - 3/29) Write simple program analyses
3 (3/30 - 4/5) Design analysis
4 (4/6 - 4/12) Implement analysis
5 (4/13 - 4/19) find / create interesting code for analysis tune analysis
6 (4/20 - 4/26) Write documentation Perform Experiments

3.2 Milestone

For the milestone, we hope to have a working analysis so that in the remaining two
weeks we can concentrate on tuning it and achieving interesting experimental results.

3.3 Literature Search

Basically, KLEE paper [2] is the start point. Tkachuk and et al. [4] try to address similar
problem for compositional model checking of Java programs. Kong et al. [3] present
a parameterized model of the file system that can be used in conjunction with Pex, an
automated test generation tool for .NET framework.

3.4 Resources Needed

We have all the resources needed, including LLVM suite, KLEE source code, and
coreutils benchmark.

2



3.5 Getting Started

We have installed KLEE on our machines and followed tutorials.

References

[1] Darrell Bethea, Robert A. Cochran, and Michael K. Reiter. Server-side verification
of client behavior in online games. In Network and Distributed System Security
Symposium (NDSS), 2010.

[2] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
USENIX Symposium on Operating System Design and Implementation (OSDI), 2008.

[3] Soonho Kong, Nikolai Tillmann, and Jonathan de Halleux. Automated testing
of environment-dependent programs - a case study of modeling the file system
for pex. Information Technology: New Generations, Third International Conference on,
0:758–762, 2009.

[4] O. Tkachuk, M.B. Dwyer, and C.S. Pasareanu. Automated environment generation
for software model checking. In Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on, pages 116 – 127, 2003.

[5] Volodymyr Kuznetsov Vitaly Chipounov and George Candea. S2e: A platform
for in-vivo multi-path analysis of software systems. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

3


	Introduction
	Description
	Logistics
	Plan of Attack
	Milestone
	Literature Search
	Resources Needed
	Getting Started


