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Abstract

We address the problem of embedding enti-
ties into Euclidean space over time based on
co-occurrence data. We extend the CODE
model of Globerson et al. (2004) to a dy-
namic setting. This leads to a non-standard
factored state space model with real-valued
hidden parent nodes and discrete observa-
tion nodes. We investigate the use of vari-
ational approximations applied to the obser-
vation model that allow us to formulate the
entire dynamic model as a Kalman filter. Ap-
plying this model to temporal co-occurrence
data yields posterior distributions of entity
coordinates in Euclidean space that are up-
dated over time. Initial results on per-year
co-occurrences of authors and words in the
NIPS corpus and on synthetic data, including
videos of dynamic embeddings, seem to indi-
cate that the model results in embeddings of
co-occurrence data that are meaningful both
temporally and contextually.

1. Introduction

Embedding discrete entities into Euclidean space is
an important area of research for obtaining inter-
pretable representations of relationships between ob-
jects. This is very useful for visualization, clustering
and exploratory data analysis. Recent work (Glober-
son et al., 2004) proposes a novel technique for embed-
ding heterogeneous entities such as author-names and
paper keywords into a single Euclidean space based on
their co-occurrence counts. When applied to the NIPS
corpus, the resulting clusters of keywords and authors
reflect real-life relationships between different research
areas and researchers in those respective areas. How-
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ever, it would be interesting to see how these relation-
ships evolve over time, an aspect which these tech-
niques do not address. Recent work has examined the
dynamic behavior of social networks (Sarkar & Moore,
2005), but only with homogeneous entities, and with
point estimates of the embedding coordinates. The
problem we are interested in differs in two ways: first,
embedding time-series co-occurrence data from two
kinds of entities (essentially weighted link data from
a bipartite graph) in a dynamic model could be use-
ful for temporal data visualization, link prediction and
group detection in such networks. Examples of such
bipartite data are author-word co-occurrences in con-
ference proceedings over time, actor-director collabo-
rations throughout their careers, and so on. Second,
modelling a distribution over the coordinates of these
embeddings instead of point estimates (as in Sarkar
and Moore (2005)) would tell us about the correlation
and uncertainty in the entities’ coordinates. In this pa-
per, we explore one possible approach to achieve both
these goals.

The layout of the rest of this paper is as follows. We
discuss some related work, in particular the model of
(Globerson et al., 2004) which we utilize. We then ex-
tend this model to the dynamic case, describing how
our dynamic model can be used for posterior estima-
tion using a Kalman filter after some approximations.
The resulting model keeps track of the belief state over
all author and word coordinates in the latent space
based on the approximated co-occurrence observation
model and a zero-mean Gaussian transition model. We
give derivations and intuition for the operation of this
dynamic model, as well as results on the NIPS corpus
of author-word co-occurrence data and on synthetic
data.

2. Related Work

The problem of embedding discrete entities into euclid-
ean space is well-studied. Principal Components
Analysis (PCA) is a standard technique based on
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eigen-decomposition of the counts matrix (M.W. Berry
& Letsche, 1995). However it is not suitable for tem-
poral data because it fails to capture the temporal con-
sistency.

The most closely related work is the CODE model of
Globerson et al. (2004), which gives a technique for
embedding heterogenous entities (such as authors and
keywords) based on co-occurence data for the static
case. We briefly introduce their model here, and our
notation is similar to theirs.

The basic model of CODE is a conditional model
p(wl|a), where w denotes the words and a denotes
the authors. Let ¢; and v¢; denote the hidden vari-
ables representing the coordinates of author a; and
word w; in the latent space respectively. By ®.(A),

U, (W) we represent the states related to all au-
thor positions, word positions and their respective co-
occurrence counts at timestep t. The conditional prob-
ability of seeing word w; given an author a; is related

(inversely) to the distance d;; = |¢; — 1;| of author i
and word j in the latent space, as well as the marginal
counts of each individual entity, (i) and p,,(j). For
latent coordinates in a d dimensional space,

p(wjla:) = Zgh
Z(a) = X, plw;)e” 4%l (1)
|6 = 5| = Eim (oF — )

The hidden coordinates ®;(A), U, (W) are learned

by maximizing the likelihood objective function using
conjugate gradient or other such techniques.

p(wj) —|p;—wv;|?
@ ® !

3. The single-timestep model

The original conditional model was chosen by consider-
ing % to be inversely proportional to the exponen-
tiated squared distance between the latent embeddings
¢(a) and ¢(w). Similarly, our model of the joint is mo-
p(w,a)
p(w)p(a)
instead, and deriving the resultant p(w,a) . The rea-
son for dividing by the empirical marginals is to nor-
malize the joint by the overall frequencies of the indi-
vidual entities in the joint. This represents the single
timestep graphical model shown in Figure 1(A). The
resultant p(w, a) is as follows:

tivated by considering the initial ratio to be

plai,wjléi, ¥5) = Lp(ai)p(w;)e” 1ol

Z = Za,; ij ﬁ(ai)ﬁ(wj)e*wz‘fwﬂ? (2)

4. Dynamic embedding of
co-occurrence data through time

We consider the unknown coordinates of authors and
words to be hidden variables in a latent space. Our
goal is now to estimate these continuous hidden vari-
ables given discrete co-occurrence observations. As

shown above, we model the joint posterior probabil-
ity of author and word coordinates (given the obser-
vations) based on the distances between those coor-
dinates. To make the problem tractable, we aim to
derive a Gaussian distribution that is somehow close
to our observation model, which would allow us to use
Kalman Filters, which are described below. The nat-
ural approach which we follow is to minimize the KL-
divergence of a Gaussian distribution and the normal-
ized likelihood of our model. However, this turns out
to be difficult since the KL-divergence has no closed-
form solution, mainly due to the non-standard log(Z2)
term (where Z is defined in equation (2). We investi-
gate two methods for making this expression tractable
and obtaining a Gaussian that approximates the ob-
servation model. We will see how the approximated
model, together with a Gaussian transition model for
the coordinates, can be formulated as a standard dy-
namic model.

4.1. The State-Space Model

For our state-space model in the dynamic setting, we
choose a factored state space model as shown in Fig-
ure 1(B), similar to a factorial HMM (Ghahramani &
Jordan, 1995) or switching state space model (Ghahra-
mani & Hinton, 1998). It is a natural choice over the
full joint model because we consider the hidden coor-
dinates of authors and words to be decoupled Markov
chains conditionally coupled given their co-occurrence.
This model closely resembles the factorial HMM model
yet is distinct because of the hidden variables being
real-valued. Exact filtering and smoothing are very
difficult in this model because the prior belief state is
not conjugate to the discrete observation density for
typical belief distribution choices like the Normal dis-
tribution. Instead, we would like to approximate this
exact model in order to formulate it as a Kalman Fil-
ter.

4.2. Kalman Filters

A Kalman filter (Kalman, 1960) is a linear chain
graphical model with a backbone of hidden real-valued
states emitting a real-valued observation at every
timestep. Both the observation and transition mod-
els are assumed to be Gaussian. It is commonly used
in tracking the states of complex systems or locations
of moving objects such as robots or missiles. Filter-
ing and smoothing are tractable in this model because
of the conjugacy of the Gaussian distribution to it-
self, which enables the belief state to remain Normally
distributed at each timestep after the three standard
steps of conditioning (factoring in a new observation to
the current belief state), prediction (propogating the
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Figure 1. Shaded nodes indicate hidden random variables. (A) The graphical model relating author/keyword positions to
co-occurrence counts at a single timestep. (B) The corresponding factored state-space model for temporal inference.

belief through the transition model) and rollup (mar-
ginalizing to obtain the new belief state). These steps
are described in more detail below.

4.3. Kalman Filter formulation for dynamic
embedding

In a standard Kalman Filter, all three steps mentioned
above have closed form solutions, i.e.:

Conditioning: P(@t, \Ift|Cu_1, Cy = Ct)
x P(Cy = c¢|Ps, Ue) P(Py, Ue|Clrit—1)

Prediction and Rollup: P(®¢41, U41|Chut)
= Jo, Ju, P(Pei1, Wep1|Pe, W) P(Pe, Ue[C1:)0P: OV
(3)
These are the Kalman filter updates in our model.
Lets see what happens for our model in the condition-
ing step. The observation model is:

log p(Cy|®¢, Wy) (@)
== Ya; Lo, Plai, wi)|¢ri — e —log Z

However, this is not a Gaussian kernel, so we do not

have a closed form update equation available. Now
we look at approximations to project this family of
density functions to a Gaussian, in order to overcome
this problem.

4.4. Approximate Conditioning Step

4.4.1. A SIMPLE APPROACH: JENSEN’S INEQUALITY

One natural approach is to apply Jensen’s inequality
to approximate the difficult portion of the likelihood
(i.e. the log Z term), which happens to be concave.
However as we shall see, this approximation causes us
to lose much of the information encoded in the nor-
malization constant, and will not be used in our final
model. The log normalizing function of our joint model
is

logZ — log(z Zp(ai)ﬁ(wj)e*”%,i*d)t,j|\2) 5)

a; wj

Using Jensen’s inequality,

logZ > = Y plai)p(w;)|léei — el (6)

a; wj
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Figure 2. A plot of the log normalizing constant
log(e~(#=®?~(=0)*) | o(~@=*~w=DM) for two given
coordinates a,b and c¢,d. Two things are apparent: the
correlation of x and y coordinates , and the presence
of multiple optima in this function. @ We desire an
approximation that preserves the x — y correlation.

This gives us a lower bound on the KL divergence be-
tween an approximate Gaussian distribution p and our
distribution gq. We denote p(a;) by p; and p(w;) by p;.
We also denote by x the random variables < &, ¥ >.
Maximizing the KL divergence (details in the Appen-
dix) gives us the parameters for the closest Gaussian
approximation to our observation model with mean
zero and covariance Y given by the following equation.

vl =2A (7)

Where A is defined as follows:

Y Gilaxa j=i,1<i<24-1

Y Giilaxe i=7,2A+1<j<2A4+W) -1

—28i;Iaxs  i#j,1<i<24A—1,
2A4+1<5<2(4A+W)—-1

O2x2 otherwise

(8)

In the above equation ¢;; = p;; —P;p;. Note that there
is no correlation between the x and y coordinates in
this model. It is clear that the numerator of our obser-
vation model doesn’t give rise to any such correlation.

However the log-normalization constant gives rise to
such correlation, which is clear from figure 2. Unfor-
tunately this approximation removes the correlations
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between the x,y coordinates as we can see from equa-
tion 8. Having uncorrelated x and y coordinates im-
plies that higher-dimensional embeddings are not ben-
eficial, and that we may as well be embedding to a
line. In practice, this model often leaves us with such
an embedding even when the space is two-dimensional,
since we are optimizing over the two dimensions inde-
pendently. Also the mean of the observation model
is zero. Also this method is effectively minimizing a
lower bound on the KL divergence, which is not neces-
sarily beneficial. We therefore look for a better model.

4.4.2. A MORE SOPHISTICATED APPROACH: TAYLOR
APPROXIMATION OF A VARIATIONAL UPPER
BOUND

Now we try and come up with a model which preserves
the correlations between the axes. We look at a vari-
ational upper bound on the log normalizing constant
(Jordan et al., 1998).

log Z < )\Zﬁi@ef(m—wjﬂwﬁwj) ~1-logX
ij
Minimizing this upper bound effectively minimizes an
upper bound on the KL-divergence. However, direct
minimization of this bound is difficult because of the

term inside the expectation, and because the expres-
sion is not convex. Instead, we take a second order

Taylor approximation of the e~ (#i—%; )" (¢:=%3) values
around &;,§;. A Taylor approximation of a function
g(x) is given by,

T{@ 99

1 7
Oz, awg]ging + ix H(&v&])x

g(x) =g(0) + =

Where H(&;,&;) is the Hessian of the function evalu-
ated at &;,&;.

Now we have a Gaussian approximation to our ob-
servation model, which has canonical parameters A, 7.
These parameters , as derived in the appendix, are
functions of the Jacobian and Hessian matrix of the
taylor approximation, evaluated at &;, §;. We shall de-
scribe how we choose these parameters later in this
section.

In (3), we multiply two Gaussians i.e.  prior
(P, Ue|Crii—1) with canonical parameters
(nt|t717At|t,1) and the approximate observation
distribution with 7, A. The notation 7,;_; denotes
the value of a parameter at time ¢ conditioned on
observations from timesteps 1...¢t — 1. The resulting
Gaussian p(®¢, ¥¢|Cy.¢) is distributed with 7y, Ay,
where

Nt = Nije—1 TN
A = Nyjp—1 +A

We compute the moment parameters jiy|¢, 3, from the
canonical parameters. And we get the 7,1, Ay—1
from the previous time-step of the Kalman Filter.

When applying the Taylor expansion, we set the & val-
ues to the p); 1 learnt from the previous timestep. We
found this to be most effective, and this also makes
sense since given the former time-steps’ data we are
most likely to be around the conditional means pre-
dicted from the former time-steps. Because of the non-
convex structure of the log-normalizer, which is due to
the presence of saddle points (Figure 2), the resulting
A can become non-positive definite and have negative
eigenvalues. To project to the closest possible posi-
tive definite matrix, we set the negative eigenvalues to
zero (plus a small positive constant). Together these
approximations succeed in giving us a tractable ex-
pression while not losing the highly informative inter-
coordinate interactions (e.g. x-y correlation in two
dimensions) that the simple Jensen’s inequality ap-
proach would discard.

4.5. Prediction and Rollup Step

Our transition model is very simple, just a zero-mean
symmetric increase in uncertainty:

((I)t-i-lv lIlt-&-l) = (q)ty \I,t) + N(07 Etransition)

Here Y4, qnsition 18 a diagonal noise term denoting the
spread of uncertainty along both axes, which must be
fixed beforehand. The prediction and rollup steps give
the following result:

(Prt1, V1) ~ N(fegr)es Devape)
where pu )¢ = pe)e and Xy = Xgpp + Ltransition-

5. Experiments

We divide the results section in three parts. We
present some snapshots from our algorithm on em-
beddings of a synthetic datasets with pre-specified
dynamic structure. We then present snapshots and
closeups of embeddings of author-word co-occurrence
data from the NIPS corpus over thirteen years. We
also show how the distance in our embedding between
author-word pairs in the corpus evolve over time. In all
cases, Xiransition 1S currently set heuristically to give a
smoothly varying embedding that is still responsive to
new data. We finish our experimental section with a
comparison with PCA (M.W. Berry & Letsche, 1995),
a well-studied static embedding technique.
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Figure 3. Dynamic embedding of synthetic data vs. static embedding. A, B are two groups of authors and X,Y are two
groups of words. The 140-timestep data smoothly varies from strong A-X and B-Y links to strong A-Y and B-X links. The
entities are initialized randomly (not shown). A. ¢t = 20, strong A-X and B-Y links. B. ¢t = 70, Intermediate configuration,
noisy uniform links. C. Strong A-Y and B-X links. D. A static embedding of the aggregate co-occurrence matrix, which
is effectively a noisy uniform matrix, resulting in entities mixing with each other.

5.1. Modeling trends over time

We wish to inspect the performance of dynamic em-
bedding in cases where the underlying model is known.
To do this, we generate noisy co-occurrence matrices
of 3 words and 3 authors over 140 timesteps. The
matrices have some amount of random sparseness in
every timestep, to be more realistic. We divide the
authors in two groups, namely A, B and the words in
two groups X,Y. We vary the co-occurrences between
these groups smoothly such that in the first 20 steps,
authors A have high co-occurrence counts with X, and
B with Y, whereas the A-Y and B-X counts are very
low. After ¢ = 20, this pattern starts becoming less
sharp, blending to a completely uniform matrix with
noise at ¢t = 70. From then until ¢ = 120, the authors
and words “switch” i.e. A-Y and B-X counts begin to
dominate. From ¢t = 120 to 140, the data continues to
reflect strong A-Y and B-X co-occurrences. A movie
with this and other dynamic embeddings is available
at http://www.cs.cmu.edu/~psarkar/icml06/.  Fig-
ure 3(A,B,C) shows three snapshots from a dynamic
embedding of this data sequence, which clearly re-

flect the underlying dynamic structure at different
timesteps. In contrast, Figure 3(D) shows a static
embedding of the aggregate summed counts matrix,
which happens to be approximately uniform and thus
not indicative of any interesting structure in the data.

5.2. The NIPS corpus

In this section we shall look at word-author co-
occurrence data over thirteen years from the NIPS pro-
ceedings of 1986-1999. We implemented the dynamic
Kalman filter models on a subset of the NIPS dataset.
The NIPS data corpus! contains co-occurrence count
data for 13,649 words and 2,037 authors appearing
together in papers from 1986 to 1999. We partitioned
this data into yearly raw count matrices using addi-
tional information in the dataset, and picked a set of
well-known authors and meaningful keywords. The
experiments shown here are carried out on small sub-
sets of authors and words in order to get easily inter-
pretable 2-D plots for this paper, however the algo-

"http://www.cs.toronto.edu/ ~ roweis/data.html
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Figure 4. (A). t = 13 Dynamic embedding of NIPS data (final timestep, 1999). (B),(C). Close-ups of (roughly) the top
two rectangles in (A). The first Both contain authors and keyword groups that are interrelated (e.g. (B) contains entities
related to kernels, (C) contains reinforcement-learning-related terms and authots. (D). PCA embedding of aggregate
counts matrix of NIPS data, that averages out any sequential patterns.

rithm scales well to larger sets.

5.2.1. QUALITATIVE ANALYSIS

The resulting embedding has some very interesting
properties. The words on different parts of it define
different areas of machine learning. We also find the
corresponding authors in those areas. For example in
figure 4(A) we have presented the embedding of 40
authors and 428 words. These are the overall most
popular authors, and the words they tend to use.

We can divide the area in the figure in four clear
areas, within the rectangles. The top right re-
gion magnified in Figure 4(C) has words like
reinforcement,agent,actor,policy which clearly
are words from the field of reinforcement learn-
ing. We also have authors such as Singh, Dayan

and Barto in the same area. Dayan is known
to have worked on acquisition and trading
which are also words in this region. However
the very neighboring region on the left belongs
to words like kernel,regularization, error
and bound. We see some overlap with that re-
gion via the entities support and Vapnik. Also
one of the other two interesting regions con-

sists of authors Jordan, Hinton, Gharamani
Zemel ,Tresp. The lowest rectangular re-
gion is filled with words and authors like

image,segmentation,motion,movement Notably
we find that author Viola is placed very close to these
words and words like document, retrieval,facial.
Also we have author Murray co-placed with words
voltage,circuit,chip,analog,synapse. These are
strongly supported by the co-occurrence data and
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Figure 5. Average distance between author-word pairs over time (above), along with corresponding empirical probabilities
(below). A. Jordan and variational. B. Smola and kernel C. Waibel and speech. The graphs on the bottom reflect empirical
P(author | word) from the NIPS data which varies inversely over time with the average author-word distance in the
embedding shown in the top row, demonstrating the responsiveness of the embeddings to the underlying data.

anecdotal evidence.

5.2.2. QUANTITATIVE ANALYSIS

A single embedding does not tell us whether our al-
gorithm models dynamic structure. To investigate
this aspect, in Figure 5 we plot the average distance
per timestep between three word-author pairs of in-
terest, along with the empirical probability of that
pair per timestep, to see whether the distances cor-
relate to the probabilities. As we can see in the bot-
tom panels of Figures 5, (Jordan,variational) and
(Smola,kernel) have high empirical probabilities in
the later timesteps, corresponding to drops in the dis-
tance between these entities’ coordinates. In contrast,
(Waibel,speech) co-occurs mostly in the first half of
the data set, and so we see the distance between the
author-word embeddngs shrinking initially then grad-
ually increasing over time.

5.3. Comparison with PCA

An embedding of the aggregate data with PCA is
shown in Figure 4(D). The embedding reflects relation-
ships in the overall data very well, as seen in the three
rectangles highlighted. For example, one of them has
entities like Scholkopf,Smola,kernel and pca, and
the others also have consistent sets of authors and the
keywords they are known to use. However the data
fails to capture dynamic trends in the data that our
model successfully reflects. For example, Waibel and
speech do not co-occur at all in the latter timesteps
of the dataset, as is clear from the lower panel of Fig-
ure 5(C). However, since the aggregate counts matrix
embedded by static PCA averages out all sequential
structure, Waibel and speech are still relatively close
in the PCA embedding.

6. Conclusion and Future Work

We have proposed and demonstrated a model for
Euclidean embedding of co-occurrence data over time
by formulating the problem as a factored state space
model, and used an approximation to yield a tractable
Kalman filter formulation. The resulting model gives
us an estimate of the posterior distribution over the
coordinates of the entities in latent space. The pre-
vious work we are extending addresses this problem
only for the single-timestep case, giving only point es-
timates for the coordinates. Experimental results show
that our model yields interpretable visual results and
reflects dynamic trends in the data. For future work
we will implement smoothing in the dynamic model
to see if it offers improved results over filtering. We
will also obtain quantitative results for the model on
problems such as link prediction in social networks and
classification in word-document embedding.
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7. Appendix

In this section we give a detailed description of the
derivations.

7.1. Derivation of Section 4.4.1

We compute the KL projection of our observation
model (p) to the closest Gaussian family (g).

D(p,q) = [plnp — [plng
= —H(p) + [(3;;Pi5(di — ¥3)" (¢ — ¥3))dp + Ep(In Z)
= —(A+ W) - e m)
+Ep(zij @j(@bi - wg)T(@ — ;) + Ep(In2)
9)

Using equations 5 and 6 we get a lower bound on
equation 9.

2m)2(A+W)|s))

D(p,q) > —(A+ W) — 2t >
+EP(Zij(T7ij - Toiﬁj)(@ - ¢J) (¢z - 7/)3))
> —(A+ W) - MEDEEDED 4 B, (¢TAY)

We get the expression in equation 8 by parameter
matching. Differentiating the above equation w.r.t X
gives us the parameters for the closest Gaussian we
project our distribution into.

7.2. Derivation of Section 4.4.2

Now we derive the approximate observation model
using Taylor expansion of the exponentiated dis-
tance term of the normalization constant, i.e.
e~ (#:=v) " (#:=¥1) around parameters &;,§;. We define
the gradient (V) and Hessian (H) for our function.
The gradient is defined as follows:

Vi(&i, &) = (@)si,sj — 2”@ &) (g, — )

d¢i
99
J
829 629
T T T
H= aégzaj” a\pé;zqn,
oelow, ovlovy

&i,&5
_ (Hu Hi
Hz1  Ha»
The second order approximation of e~ ($i=v) " ($i=v;)
gives
14+ 7 Vi + 9] Vo + 5[®F UTTH (&, &) [0 0]
=1+ %[@THHG% + %THm(Z% + ¢7 Hiathj + w;'-erzwj]
(10)

Where H(§;,§;) is H evaluated at &;,&;. For our pur-
pose these values evaluate to the following:

Hiy = 2™ &8 G=8) (9(¢, — &) (& — )7 = 1)

Hi2 = —Hn
Hyy = —HE
Hap = Hoo

(11)

We also define the following symmetric matrix 77 and A
for making the derivations simple. Also here 77 is 2(A+
W) a dimensional vector and A is a 2(A+W), 2(A+W)
dimensional symmetric matrix. By ¢ we denote author
i and by j we index word j.

ﬁj = ﬁj Zl piv2(£i7 fj)

§ii P> piH11(&is &)

Ajj =D > PiH22(&i,&5) (13)
Aij = @ﬁjHlZ(fiagj)

Now using equations (10), (13) and (11) the expec-

tation of the log normalizing constant under the new
distribution becomes:

EP(Zij ﬁiﬁje—(¢i—¢j)T(¢i—wj))

=c+ B[}, ol mi + Ej %-TWH

$Ep [ 0T Nisgpi + 237, 67 Nigihi + 32, 65 Ajids]
=c+ B XM + 3 Eplx AX]

=c+p"i+ 3Tr((pu” + X)A)

All terms independent of p,3 are combined in the
constant term c¢. Hence the approximation of D(p, q)
comes out to be,

3Tr((up” + D))

A derivative w.r.t ¥ and p yields

A=3"'=2(A+3R)
n=—An

which are the required parameters for the Gaussian
approximation of the observation model used in the
Kalman filter.
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