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Distributed Concept Drift

Centralized Algorithms are Suboptimal

FL Solution: FedDrift

Experimental Results

• Data are decentralized and continuously arriving over time

• At each client 𝑐 and each time step 𝑡, data are drawn from a distribution 𝑃𝑐
(𝑡)
(𝑥, 𝑦)

• Concept drift occurs if 𝑃𝑐
(𝑡)

≠ 𝑃𝑐
(𝑡−1)

• Distributed concept drift poses previously unaddressed challenges:

• Objective: High accuracy on test data at each client, at each time step

Federated Learning (FL): 
collaborative training 
across clients without 
sharing raw training data 

A A A B B B B B B B

A A A B B B B B B B

A A A A B B B B B B

A A A A B B B B B B

A A A A B B B B B B

A A A A A B B B B B

A A A A A A B B B B

A A A A A A B B B B

A A A A A A A A B B

A A A A A A A A B B

A A B B C C C D D A

A A B B C C D D A A

A A B B B C C C D D

A A C C B B B D D D

A A C C C C B B D D

A A C C C D D D B B

A A A A C C D D D C

A A A A B B B C C C

A A A D D D D B B C

A A A A A A D D D D

Drifts can occur staggered 
in time across clients 

Multiple concepts can 
arise at the same time

Drifts can evolve at varying rates—the global drift is 
small relative to the local drift for Africa (FMoW dataset)
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Experimental observations from the 2-concept staggered drift:

• Locally, drift occurs abruptly; globally, drift is slow and hard to detect

• No single global model works well for all clients when multiple concepts exist

• Ensemble algorithm (KUE) also suboptimal—new models are trained over a 

mixture of both concepts

• FedDrift employs multiple models, each trained by a cluster of clients

• Challenge: determining the right number of clusters. FedDrift runs 2 subroutines each time step:

• Unified hyperparameter 𝛿 can be interpreted as tolerance for performance loss

• Iterative merging accounts for new model warm-up where cluster distances vary over time
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Clustering learned on MNIST-4
Color: Ground-truth
Number: Cluster ID
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1. Eager Splitting
Isolate clients into individual clusters 
via local drift detection of size 𝛿

2. Lazy Merging
Merge clusters via hierarchical clustering up to distance 𝛿

𝑑 𝑖, 𝑗 = risk of model 
trained by cluster 𝑖 over 
data of cluster 𝑗, relative 
to data of cluster 𝑖

FedDrift achieves significantly higher and more stable accuracy than existing baselines, and similar accuracy to an Oracle algorithm
Algorithms evaluated
• Oblivious: FedAvg (McMahan et al. ‘17) with 

no adaptation
• DriftSurf (Tahmasbi et al. ‘21): drift detection
• KUE (Cano and Krawcyzk ‘20) and AUE 

(Brzezinski and Stefanowski ‘13): ensembles
• Window: forget past one time step
• Adaptive-FedAvg (Canonaco et al. ‘21): single-

model FL with adaptive learning rate
• IFCA (Ghosh et al. ‘21) and CFL (Sattler et al. 

‘20): static clustered FL algorithms extended 
with the window method

• FedDrift-Eager: variant of FedDrift that eagerly 
merges all drifted clients each time step—
more efficient than hierarchical clustering, but 
inaccurate when multiple concepts arise 

• Oracle: idealized algorithm that uses ground-
truth clustering

Average test accuracy across clients and time (5 trials)
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MNIST-4
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SEA-2 FedAvg (No adaptation)

DriftSurf (Detection)

KUE (Ensemble)

Oracle (2 models for A/B)
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