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Centralized learning:

• Train a model on all data, then deploy

Federated Learning (FL):

• Clients continually compute updates 
to the model with new data

• Server continually aggregates 
updates

Federated Learning: Continual On-Device Training

shared

model



Concept Drift

• The data distribution (concept) can change over time

• Ex: next word prediction

Jan 2022                                       Feb 2022

• No single model captures both concepts                      



Challenges of FL under Distributed Concept Drift
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Real-world Example: Localized Drift in FMoW

Functional Map of the World (FMoW): 
identify building type from satellite 
images

• Globally, drift is small compared to local 
drift for Africa

• Global model has only 48% accuracy on 
Africa post-2014, compared to 66% on 
rest of the world



Training a Single Global Model is Suboptimal

Observations from single concept change on SEA dataset staggered over time

• Locally: Drift occurs abruptly

Globally: Performance degrades slowly & drift is harder to detect

• Any single global model cannot fit both concepts during the transition 
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FedDrift Learns the Clustering of Clients

Ideally, clusters correspond 1-to-1 with concepts

2. Lazy Merging

Merge clusters via hierarchical 

clustering up to distance 𝛿

Cluster distances are the pairwise drift

1. Eager Splitting

Isolate clients into individual 

clusters via local drift detection 

of size 𝛿
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• FedDrift employs multiple models, each trained by a time-varying cluster of clients

• Challenge: determining the right number of clusters
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Experimental Results: Single Staggered Drift

E.g., Single concept change on SEA dataset staggered over time

• Oracle has access to matrix, trains a model specialized for each concept

• FedDrift’s accuracy is stable and comparable to Oracle
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Experimental Results: More General Drifts

• On the 4-concept 
drift, FedDrift is 
comparable to 
Oracle

• On the real-world drift in FMoW, 
FedDrift outperforms the best 
baseline (64% to 58%)
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FedDrift’s Accuracy Higher Than Prior Work



Takeaways

• Our work is the first to study drifts distributed both over 
time and across clients in federated learning

• Existing centralized solutions fail on staggered drifts

• FedDrift’s eager splitting and lazy merging accurately 
clusters

• FedDrift achieves high accuracy on variety of drifts

• Comparable to an idealized oracle algorithm on synthetic datasets

• Outperforms the best baseline (64% to 58%) on the real-world FMoW
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