# Federated Learning under Distributed Concept Drift

Joint work with Kevin Hsieh (Microsoft), Jianyu Wang (CMU), Gauri Joshi (CMU), Phillip B. Gibbons (CMU)

Ellango Jothimurugesan **Carnegie Mellon University** 



## Federated Learning: Continual On-Device Training

Centralized learning:

• Train a model on all data, then deploy

Federated Learning (FL):

- Clients continually compute updates to the model with new data
- Server continually aggregates updates



## **Concept Drift**

- The data distribution (concept) can change over time
- Ex: next word prediction



### Jan 2022

No single model captures both concepts



### Feb 2022

## **Challenges of FL under Distributed Concept Drift**

Drifts occur staggered in time across clients

| clients | A | Α | Α | В | B | В | В | В | В | В |
|---------|---|---|---|---|---|---|---|---|---|---|
|         | Α | Α | Α | В | В | В | В | В | В | В |
|         | Α | Α | Α | Α | В | В | В | В | В | В |
|         | Α | A | Α | A | В | В | В | В | В | В |
|         | Α | Α | Α | Α | В | В | В | В | В | В |
|         | Α | Α | Α | Α | A | В | В | В | В | В |
|         | Α | A | Α | A | A | A | В | В | В | В |
|         | Α | Α | Α | Α | A | Α | В | В | В | В |
|         | A | A | A | Α | A | A | A | A | В | В |
|         | Α | A | A | A | A | A | A | A | В | В |
|         |   |   |   |   |   |   |   |   |   |   |

time

Multiple concepts may arise at the same time



clients

time

## **Real-world Example: Localized Drift in FMoW**

Functional Map of the World (FMoW): identify building type from satellite images

- Globally, drift is small compared to local drift for Africa
- Global model has only 48% accuracy on Africa post-2014, compared to 66% on rest of the world







# **Training a Single Global Model is Suboptimal**



- Locally: Drift occurs abruptly Globally: Performance degrades slowly & drift is harder to detect
- Any single global model cannot fit both concepts during the transition

### Observations from single concept change on SEA dataset staggered over time



# FedDrift Learns the Clustering of Clients

- FedDrift employs multiple models, each trained by a time-varying cluster of clients
- Challenge: determining the right number of clusters



### time

Example clustering Color: Ground-truth Number: Cluster ID

### 1. Eager Splitting

Isolate clients into individual clusters via local drift detection of size  $\delta$ 



Ideally, clusters correspond 1-to-1 with concepts

2. Lazy Merging Merge clusters via hierarchical clustering up to distance  $\delta$ 

Cluster distances are the pairwise drift



# **Experimental Results: Single Staggered Drift**

## E.g., Single concept change on SEA dataset staggered over time



- Oracle has access to matrix, trains a model specialized for each concept
- FedDrift's accuracy is stable and comparable to Oracle

Time

## **Experimental Results: More General Drifts**

• On the 4-concept drift, FedDrift is comparable to Oracle



• On the real-world drift in FMoW, FedDrift outperforms the best baseline (64% to 58%)

DriftSurf (Detection) -FedAvg (No adaptation)



## for real data)

# FedDrift's Accuracy Higher Than Prior Work

|                 | SINE-2                             | CIRCLE-2                           | SEA-2                              | MNIST-2          | SEA-4            | MNIST-4                            | FMoW          |
|-----------------|------------------------------------|------------------------------------|------------------------------------|------------------|------------------|------------------------------------|---------------|
| FedAvg          | $52.11 \pm 1.79$                   | $88.38 \pm 0.17$                   | $86.46 \pm 0.22$                   | $87.37 \pm 0.16$ | $85.40 \pm 0.09$ | $82.95\pm0.03$                     | $58.57 \pm 0$ |
| DriftSurf       | $84.18 \pm 1.40$                   | $92.34 \pm 0.38$                   | $87.20 \pm 0.27$                   | $93.26 \pm 0.52$ | $85.55 \pm 0.13$ | $82.97 \pm 0.09$                   | $58.45 \pm 0$ |
| KUE             | $86.86 \pm 0.17$                   | $93.71 \pm 0.14$                   | $87.25 \pm 0.94$                   | $90.44 \pm 0.44$ | $85.09 \pm 0.86$ | $79.89 \pm 0.26$                   | $33.11 \pm 6$ |
| AUE             | $86.00 \pm 0.95$                   | $92.84 \pm 0.19$                   | $87.48 \pm 0.07$                   | $92.22\pm0.05$   | $85.47 \pm 0.12$ | $82.07 \pm 0.47$                   | $54.23 \pm 0$ |
| Window          | $86.28 \pm 0.64$                   | $93.72 \pm 0.14$                   | $87.94 \pm 0.10$                   | $92.34 \pm 0.07$ | $85.72 \pm 0.13$ | $81.43 \pm 0.44$                   | $58.88 \pm 0$ |
| Adaptive-FedAvg | $74.10 \pm 10.03$                  | $86.26\pm0.00$                     | $86.77 \pm 0.53$                   | $92.18\pm0.05$   | $85.25\pm0.27$   | $81.64 \pm 0.04$                   | $52.82 \pm 0$ |
| IFCA+Window     | $\textbf{98.49} \pm \textbf{0.13}$ | $94.31 \pm 1.62$                   | $\textbf{88.04} \pm \textbf{0.17}$ | $91.76 \pm 0.50$ | $86.17 \pm 1.00$ | $81.27 \pm 0.43$                   | $49.40 \pm 0$ |
| CFL+Window      | $96.92 \pm 1.84$                   | $96.04 \pm 1.56$                   | $87.81 \pm 0.32$                   | $90.66 \pm 0.35$ | $86.06 \pm 0.11$ | $80.51 \pm 0.72$                   | $58.82 \pm 0$ |
| FedDrift        | $97.43 \pm 0.06$                   | $\textbf{97.82} \pm \textbf{0.19}$ | $87.29\pm0.75$                     | $95.48 \pm 0.08$ | $88.13 \pm 0.76$ | $\textbf{93.80} \pm \textbf{0.08}$ | $64.84 \pm 0$ |
| Oracle          | $98.45 \pm 0.03$                   | $97.84 \pm 0.22$                   | $87.76 \pm 0.98$                   | $95.54 \pm 0.11$ | $88.79 \pm 0.41$ | $94.30 \pm 0.08$                   | -             |

Table 2: Average accuracy (%) across all clients and time (over 5 trials)



## Takeaways

- Our work is the first to study drifts distributed both over time and across clients in federated learning
- Existing centralized solutions fail on staggered drifts
- FedDrift's eager splitting and lazy merging accurately clusters
- FedDrift achieves high accuracy on variety of drifts
  - Comparable to an idealized oracle algorithm on synthetic datasets
  - Outperforms the best baseline (64% to 58%) on the real-world FMoW



