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Federated Learning: Continual On-Device Training

Centralized learning:

°* Train a model on all data, then deploy

Federated Learning (FL):

* Clients continually compute updates
to the model with new data

* Server continually aggregates

updates federated

learning

shared

model .




Concept Drift

* The data distribution (concept) can change over time

* EX: next word prediction
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. ukraine time - ukraine news
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. ukraine currency - ukraine war news
Jan 2022 Feb 2022

* No single model captures both concepts



Challenges of FL under Distributed Concept Drift

Drifts occur staggered Multiple concepts may
IN time across clients arise at the same time

clients
clients

time



Real-world Example: Localized Drift iIn FMoW

Functional Map of the World (FMoW):
identify building type from satellite
Images
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* Globally, drift is small compared to local
drift for Africa

* Global model has only 48% accuracy on
Africa post-2014, compared to 66% on
rest of the world
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Training a Single Global Model Is Suboptimal

Observations from single concept change on SEA dataset staggered over time
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* Locally: Drift occurs abruptly
Globally: Performance degrades slowly & drift is harder to detect

* Any single global model cannot fit both concepts during the transition



FedDrift Learns the Clustering of Clients

* FedDrift employs multiple models, each trained by a time-varying cluster of clients
* Challenge: determining the right number of clusters
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1. Eager Splitting

|Isolate clients into individual
clusters via local drift detection

of size 6
Client 1 Client4
X | )
D A
e ‘ :
— -
©
=2
-
LIJ |

Distance at time 4

1
Time

2. Lazy Merging
Merge clusters via hierarchical

clustering up to distance §

Cluster distances are the pairwise drift
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ldeally, clusters correspond 1-to-1 with concepts

d(i,j) =risk of
model trained by
cluster i over data of
cluster j, relative to
data of cluster i



Experimental Results: Single Staggered Drift

E.g., Single concept change on SEA dataset staggered over time
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* QOracle has access to matrix, trains a model specialized for each concept

* FedDrift's accuracy Is stable and comparable to Oracle



Experimental Results: More General Drifts
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Table 2: Average accuracy (%) across all clients and time (over 5 trials)

FedDrift’s Accuracy Higher Than Prior Work

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

FedAvo 5211 = 1.79 8838 =0.17 8646 =0.22 &87.37 =0.16 8540 x=0.09 8295 =003 538.57 =0.07

DriftSurf A8 4+ 1.40 9234 4+ 0.38 87.204+0.27 9326 +£0.52 8555 4+0.13 8297 +£0.09 5845+ 0.19

KUE Box=0.17 9371 =0.14 R87.251+094 9044 =044 85.09 =086 79.89 +=0.26 33.11 =6.09

AUE + 095 9284 +0.19 8748 +0.07 92224+ 005 8547 +0.12 8207 +047 5423+0.14

+ 0.64 93,72 1+0.14 8794 +=0.10 9234 +=0.07 &85.720.13 8143 =044 5888 =0.15

10.03 86.26 =0.00 86.77 £0.53 9218 =0.05 85.25+0.27 81.64 +=0.04 52.82+0.21

IFCA+Window | 98.49 + 0.13 9431 +1.62 88.04 +0.17 91.76 £ 050 &86.17 £ 1.00 81274+ 043 4940 4+ 0.76

CFL+Window 9692 = 1.84 96,04 =1.56 87.81 =0.32 90.66 =0.35 86.06 =0.11 8051 =0.72 38.82 =0.11

FedDrift 0743 +0.06 97.82 1+ 0.19 K87.29+0.75 9548 +0.08 88.13 +0.76 93.80 + 0.08 64.84 + 0.33
Oracle 08.45 +£0.03 9784 +0.22 R&7.76 2098 9554 +0.11 &88.79 041 9430 £ 0.08 -



Takeaways

* Our work Is the first to study drifts distributed both over
time and across clients In federated learning

* EXisting centralized solutions fail on staggered drifts

* FedDirift's eager splitting and lazy merging accurately
clusters
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* FedDrift achieves high accuracy on variety of drifts

* Comparable to an idealized oracle algorithm on synthetic datasets

* Qutperforms the best baseline (64% to 58%) on the real-world FMoW
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