
15-398 Bug Catching: Automated Program
Verification and Testing
Homework Assignment

October 18, 2002

1. The following SMV code models a simple in-order pipeline stage. Such a
pipeline stage is part of all modern microprocessors. The instructions of a
program are processed as a car in an assembly line.

The signal that indicates that an instruction moves into the next stage is
calledupdate enablesignal. The instruction in this next stage is overwritten,
unless it also moves. This update enable signal is used as clock signal for
the registers of the next stage.

The module of the stage takes the following parameters: The parameter
first is set if the stage is the first stage. This allows injection of new in-
structions. The parameterprev ue is the update enable (i.e., clock) signal
of the previous stage. The parameternext stall is the stall signal of the
next stage. The stall signals allow stopping the execution in arbitrary stages.
A reason for such a stall condition might be slow external memory (or, in
case of the assembly line, that a worker dropped his screw driver).

MODULE simple_stage(first, prev_ue, next_stall)
VAR

full : boolean;
i_stall: boolean;

ASSIGN
init(full):=first;
next(full):=prev_ue | stall | first;

DEFINE

1

ue:=full & !stall;
stall:=(i_stall | next_stall) & full;

The module has two state variables: the variablefull indicates that there
is an instruction in the stage. If it is not set, the stage is empty. The vari-
ablei stall allows nondeterministic stalls within the stage, as described
above.

Describe - informally - the behavior of one stage.

2. The stages can be composed to a five stage pipeline as follows:

MODULE main
VAR

stage0: simple_stage(1, 0, stage1.stall);
stage1: simple_stage(0, stage0.ue, stage2.stall);
stage2: simple_stage(0, stage1.ue, stage3.stall);
stage3: simple_stage(0, stage2.ue, stage4.stall);
stage4: simple_stage(0, stage3.ue, 0);

2

stage1.full

stage2.full

stage3.full

stagen.full

stage0.full

Formalize and verify the following properties:

• Liveness: Eventually, every stage will be clocked (i.e., the update
enable signal is active) infinitely often. In order to verify this claim,
you have to make an assumption. What is the assumption? What goes
wrong without it? How does this compare to the assembly line?

• Nothing is overwritten: If the instruction in a given stage is over-
written, it simultaneously moves into the next stage. For which stages
does this hold? Make the comparison with the assembly line!

• Nothing is lost: If an instruction does not move into the next stage, it
will be in the same stage in the next cycle.

• Nothing is duplicated: If an instruction in a given stage moves into
the next stage, and no instruction moves into the given stage, the given
stage will be empty in the next cycle.

• No instruction appears without reason:Any stage - other than stage
0 - is not full until an instruction moves into the stage.

3

3. The model of the bus protocol presented in the class is available on the class
home page. Add a special node that is not communicating initially, but has
no power. Later on, after the node is powered on, it tries to synchronize
with the nodes that are already running. This process is calledintegration.

• Extend the control automaton by a stateno power and a statein-
tegrating .

• The automaton is initialized with the stateno power .

• If in the stateno power , the node can stay there or go into the state
integrating . This is chosen nondeterministically.

• If in the stateintegrating , the node watches the bus. Upon activ-
ity, the node goes into thebusy state.

• Formalize (and verify) the following property: If the node gets power,
it will be in thebusy state eventually.

• This requires help from the other nodes. Why? How can you ensure
this help as part of the implementation, i.e., without a fairness con-
straint?

4

