
15-398, Fall 2002

Final Project

Due December 5, 2002

All final projects, including this one, are due the last day of the classes, i.e., December 5,
2002.

This is a project that every one should do if they haven’t found out a topic for project yet. You should
not collaborate with others on this project. Submit your own hand-in.

1 The Cigarette Smoker’s Problem

We will model an interesting synchronization problem, known as the cigarette smoker’s problem in SMV
or Promela/SPIN. This problem is due to S. S. Patil in 1971 ([1]). Suppose a cigarette requires three
ingredients, tobacco, paper and match. There are three chain smokers (resource users). Each of them has
only one ingredient with infinite supply. There is an agent who has infinite supply of all three ingredients.
To make a cigarette, the smoker has tobacco (resp., paper and match) must have the other two ingredients
paper and match (resp., tobacco and match, and tobacco and paper). The agent and smokers share a table.
The agent randomly generates two ingredients and notifies the smoker who needs these two ingredients.
Once the ingredients are taken from the table, the agent supplies another two. On the other hand, each
smoker waits for the agent’s notification. Once it is notified, the smoker picks up the ingredients, makes a
cigarette, smokes for a while, and goes back to the table waiting for his next ingredients. The problem is to
come up with an algorithm for the smokers using semaphores as synchronization primitives. Semaphores
are described in section 2. The algorithm that an agent follows is given in Figure 1 as a collection of six
processes ra, rb, rc, βx, βy, βz.

semaphore s; (initially 1)
semaphore a, b, c, X, Y, Z; (all initially 0)
ra : P (s); rb : P (s); rc : P (s);

V (b); V (a); V (a);
V (c); V (c); V (b);
go to ra; go to rb; go to rc;

βx : P (X); βy : P (Y ); βz : P (Z);
V (s); V (s); V (s);
go to βx; go to βy; go to βz;

Figure 1: Six processes algorithm for the agent in the Cigarette Smoker’s Problem.

The semaphores a, b and c are used by the agent to report the availability of the three resources. Each
semaphore denotes one of the resources. s is a mutual exclusion semaphore to assure that only one pair of
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resources is made available at a time. X, Y, Z are to be used by the resource users to report that they are
done with the resources.

Patil contended that there is no solution to the problem without using conditional statements and without
using simultaneous semaphore primitives and semaphore arrays. However, Parnas in [2] showed that the
restriction of not having a semaphore array was unreasonable and presented a simple solution using an
array of semaphores without any conditional statement or simultaneous semaphore operation. This solution
is presented below in Figure 2 with nine processes δa, δb, δc, αx, αy, αz and semaphore overflow prevention
processes δ1, δ2, δ3. For full description of the solution, refer to [2].

semaphore mutex; (initially 1)
integer t; (initially 0)
semaphore array S[1..6]; (all initially 0)
δa : P (a); δb : P (b); δc : P (c);

P (mutex); P (mutex); P (mutex);
t← t + 1; t← t + 2; t← t + 4;
V (S[t]); V (S[t]); V (S[t]);
V (mutex); V (mutex); V (mutex);
go to δa; go to δb; go to δc;

αx : P (S[6]); αy : P (S[5]); αz : P (S[3]);
t← 0; t← 0; t← 0;
// smoking now // smoking now // smoking now
V (X); V (Y ); V (Z);
go to αx; go to αy; go to αz;

δ1 : P (S[1]); δ2 : P (S[2]); δ3 : P (S[4]);
go to δ1; go to δ2; go to δ3;

Figure 2: Nine processes algorithm for three resource users in the Cigarette Smoker’s Problem. All
semaphores, variables and processes defined here are in addition to the agent of Figure 1.

We will be implementing this solution in SMV or Promela/SPIN and verify some interesting properties of
the resource users.

2 Semaphores

Semaphores were introduces by Dijkstra in [3] in 1965. They are used for synchronization between processes.
A semaphore is a shared variable that supports to operations P or down and V or up. If a process wants
to do a P operation on a semaphore s, and s > 0, then the value of s is atomically decremented and
the processes goes ahead. On the other hand, if s = 0, then the process blocks until s becomes greater
than 0. A semaphore is atomically incremented by a V operation. A process never blocks while doing V
operations on a semaphore. Typically, there is a bound on the size of the semaphore. Once the value of
the semaphore reaches that bound, further V operations on the semaphore do not have any effect. The
value of the semaphore stays the same. Note that it does not roll-over to 0 as with other bounded variables
in a programming language. These semaphores are known as counting semaphores. If a semaphore counts
up to 1 only, then it is called a binary semaphore.

2



3 Modeling in SMV or Promela/SPIN

You should begin by first modeling a working semaphore. Any modern OS typically provides an implemen-
tation of semaphores. You should model a semaphore in SMV by implementing mutual exclusion algorithm
for asynchronous systems. Note that all processes that may be using a semaphore need to participate in
the mutual exclusion, so it is not a two way mutual exclusion. Therefore, you will have to think of some-
thing like Peterson’s algorithm for mutual exclusion. Another option is to implement mutual exclusion by
a request-grant signal pair for each process that is participating in the mutual exclusion. In this case, a
non deterministic variable would decide which process gets access to critical region. Another thing to note
is that you will have to implement a semaphore with a finite size. Therefore, processes δ1, δ2 and δ3 are
required. Given these processes, a bound of 1 (binary semaphore) should suffice. However, you will write
a property to verify that the bound is indeed not exceeded given these three processes.

The property that you should verify for a semaphore is that once the semaphore reaches 0, it should not
allow another P operation until a V operation is done on it. If you implemented mutual exclusion, you
will also want to verify the usual mutual exclusion properties, i.e, safety and liveness.

Once you’ve got a semaphore working, then following the algorithms for agent and the users should be
easy. You should specify the running fairness constraint to make sure each process gets a chance to run
infinitely often. Also note that if you doing this in SMV, you will have to implement a state machine
for each process that essentially captures the sequential flow of the statements. The simplest way to do
this to label each statement by a program counter or a state number and following the sequential flow
for defining the transition relation. Promela allows you to do this easily however, since it provides for
sequential composition.

Once you have these implemented, you should state following property and verify them.

Liveness The smokers do get to smoke infinitely often, i.e., they visit the section marked with the comment
// smoking now infinitely often.

Safety No two smokers are smoking at the same time.

No Strict Sequencing You will state the pairwise no strict sequencing property.

4 Submission

1. A detailed report describing your implementation of semaphores, agent and the user processes,
CTL/LTL properties and verification results (including running time, memory requirement).

2. SMV/Promela programs for semaphores, agents and user processes.

3. Output of the model checkers clearly showing that the properties were verified.

You should feel free to experiment with your own ideas for solving this problem and may want to refer to
the original paper [1]. The original paper describes a solution with conditional statements and simultaneous
semaphore operation. You may want to experiment with that solution.
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