
SMT-based Model Checking

Cesare Tinelli

The University of Iowa

Clarke Symposium, Sep 2014 – p.1/17



The Intuition That Started it All

A software or hardware system S can be modeled as

a state transition system M = (S, I, T ,L) where

• S is a set of states, the state space

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2P is a labeling function

where P is a set of state predicates

M can be seen as a Kripke structure

Clarke Symposium, Sep 2014 – p.2/17



The Intuition That Started it All

Functional properties of S can be expressed in a suitable
temporal logic that admits M = (S, I, T ,L) as a model

Clarke Symposium, Sep 2014 – p.3/17



The Intuition That Started it All

Functional properties of S can be expressed in a suitable
temporal logic that admits M = (S, I, T ,L) as a model

Checking properties of S then reduces to satisfiability checking
in M

Clarke Symposium, Sep 2014 – p.3/17



The Intuition That Started it All

Functional properties of S can be expressed in a suitable
temporal logic that admits M = (S, I, T ,L) as a model

Checking properties of S then reduces to satisfiability checking
in M

Model Checking!

Clarke Symposium, Sep 2014 – p.3/17



Model Checking of Finite State Systems

A temporal logic extends a classical base logic L with temporal
operators

Clarke Symposium, Sep 2014 – p.4/17



Model Checking of Finite State Systems

A temporal logic extends a classical base logic L with temporal
operators

Traditionally in model checking, L has been propositional logic

This limits model checking to finite-state systems

Clarke Symposium, Sep 2014 – p.4/17



Model Checking of Finite State Systems

A temporal logic extends a classical base logic L with temporal
operators

Traditionally in model checking, L has been propositional logic

This limits model checking to finite-state systems

Under the right conditions, more powerful logics L can be used

This is especially the case for safety checking and its dual,
invariance checking

Clarke Symposium, Sep 2014 – p.4/17



Logic-based Safety Checking

Necessary condition: can represent M = (S, I, T , L)
symbolically in some (classical) logic L with decidable
entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Clarke Symposium, Sep 2014 – p.5/17



Logic-based Safety Checking

Necessary condition: can represent M = (S, I, T , L)
symbolically in some (classical) logic L with decidable
entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Examples of L:

• Propositional logic

• Quantified Boolean Formulas

• Bernay-Schönfinkel logic

• Bit vector logic

• Quantifier-free real (or linear integer) arithmetic

• . . .

Clarke Symposium, Sep 2014 – p.5/17



Logical encodings of transitions systems

M = (S, I, T , L) V : set of values in L x: n-tuple of variables

Clarke Symposium, Sep 2014 – p.6/17



Logical encodings of transitions systems

M = (S, I, T , L) V : set of values in L x: n-tuple of variables

• states s ∈ S encoded as n-tuples of V n

Clarke Symposium, Sep 2014 – p.6/17



Logical encodings of transitions systems

M = (S, I, T , L) V : set of values in L x: n-tuple of variables

• states s ∈ S encoded as n-tuples of V n

• I encoded as a formula I[x] such that

s ∈ I iff |=L I[s]

Clarke Symposium, Sep 2014 – p.6/17



Logical encodings of transitions systems

M = (S, I, T , L) V : set of values in L x: n-tuple of variables

• states s ∈ S encoded as n-tuples of V n

• I encoded as a formula I[x] such that

s ∈ I iff |=L I[s]

• T encoded as a formula T [x,x′] such that

|=L T [s, s′] for all (s, s′) ∈ T

Clarke Symposium, Sep 2014 – p.6/17



Logical encodings of transitions systems

M = (S, I, T , L) V : set of values in L x: n-tuple of variables

• states s ∈ S encoded as n-tuples of V n

• I encoded as a formula I[x] such that

s ∈ I iff |=L I[s]

• T encoded as a formula T [x,x′] such that

|=L T [s, s′] for all (s, s′) ∈ T

• State properties encoded as formulas P [x]

Clarke Symposium, Sep 2014 – p.6/17



Main Logic-based Approaches

• Bounded model checking

• Interpolation-based model checking

• Property Directed Reachability (IC3)

• Temporal induction

• Backward reachability

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

Clarke Symposium, Sep 2014 – p.7/17



Main Logic-based Approaches

• Bounded model checking

• Interpolation-based model checking

• Property Directed Reachability (IC3)

• Temporal induction

• Backward reachability

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

New frontier: based on logics decided by solvers for

Satisfiability Modulo Theories

Clarke Symposium, Sep 2014 – p.7/17



Safety Checking Modulo Theories

We invariably reason about computational systems in the
context of some theory T of their data types

Examples

Pipelined microprocessors: theory of equality, atoms like
f(g(a, b), c) = g(c, a)

Timed automata: theory of integers/reals, atoms like
x− y < 2

General software: combination of theories, atoms like
a[2 ∗ j + 1] + x ≥ car(l)− f(x)

Such reasoning can be reduced to checking the satisfiability of
certain formulas in (or modulo) T

Clarke Symposium, Sep 2014 – p.8/17



Satisfiability Modulo Theories

The satisfiability of quantifier-free formulas is decidable for
many theories T of interest in model checking

Clarke Symposium, Sep 2014 – p.9/17



Satisfiability Modulo Theories

The satisfiability of quantifier-free formulas is decidable for
many theories T of interest in model checking

• Equality with“Uninterpreted Function Symbols”

• Linear Arithmetic (Real and Integer)

• Bit vectors

• Arrays (i.e., updatable maps)

• Finite sets and multisets

• Strings

• Inductive data types (enumerations, lists, trees, . . . )

• . . .

Clarke Symposium, Sep 2014 – p.9/17



Satisfiability Modulo Theories

The satisfiability of quantifier-free formulas is decidable for
many theories T of interest in model checking

Thanks to advances in SAT and in decision procedures, this can
be done very efficiently in practice by current SMT solvers

Clarke Symposium, Sep 2014 – p.9/17



SMT Solvers

Provide additional functionalities besides satisfiability checking

• compute satisfying assignments

• evaluate terms

• identify unsatisfiable cores

• generate interpolants

• eliminate quantifiers

• construct proof objects

• optimize objective functions

• . . .

Clarke Symposium, Sep 2014 – p.10/17



SAT vs SMT in Safety Checking

SMT encodings provide several advantages over SAT encodings:

• more powerful language

(unquantified) first-order formulas instead of Boolean formulas

• satisfiability still efficiently decidable

• similar high level of automation

• more natural and compact encodings

• greater scalability

• not limited to finite-state systems

Clarke Symposium, Sep 2014 – p.11/17



Unifying Theme in SMT-based MC

Def. The strongest inductive invariant (for M in L) is a
formula R[x] such that |=L R[s] iff s is reachable

Clarke Symposium, Sep 2014 – p.12/17



Unifying Theme in SMT-based MC

Def. The strongest inductive invariant (for M in L) is a
formula R[x] such that |=L R[s] iff s is reachable

Suppose we can compute R from an L-encoding (I, T ) of M

Clarke Symposium, Sep 2014 – p.12/17



Unifying Theme in SMT-based MC

Def. The strongest inductive invariant (for M in L) is a
formula R[x] such that |=L R[s] iff s is reachable

Suppose we can compute R from an L-encoding (I, T ) of M

To check that some P [x] is invariant for M it suffices to check
that R[x] |=L P [x]

Clarke Symposium, Sep 2014 – p.12/17



Unifying Theme in SMT-based MC

Def. The strongest inductive invariant (for M in L) is a
formula R[x] such that |=L R[s] iff s is reachable

Suppose we can compute R from an L-encoding (I, T ) of M

To check that some P [x] is invariant for M it suffices to check
that R[x] |=L P [x]

Problem: R may be very expensive or impossible to compute
or even represent in L

Clarke Symposium, Sep 2014 – p.12/17



Unifying Theme in SMT-based MC

Def. The strongest inductive invariant (for M in L) is a
formula R[x] such that |=L R[s] iff s is reachable

Suppose we can compute R from an L-encoding (I, T ) of M

To check that some P [x] is invariant for M it suffices to check
that R[x] |=L P [x]

SMT-based safety checking is about approximating R

in L as efficiently as possible and as precisely as needed,

with the help of SMT solvers

Clarke Symposium, Sep 2014 – p.12/17



Main Idea

With the aid of a solver for L, find or construct R̂[x] such that

1. R̂ is invariant

2. R̂ entails the input property P

Clarke Symposium, Sep 2014 – p.13/17



Main Idea

With the aid of a solver for L, find or construct R̂[x] such that

1. R̂ is invariant

2. R̂ entails the input property P

R̂ is a witness of P ’s invariance

Clarke Symposium, Sep 2014 – p.13/17



Temporal Induction

Find k ≥ 0 such that

1.
I[x0] ∧

T [x0,x1] ∧ · · · ∧ T [xk−1,xk]
|=L P [x0] ∧ · · · ∧ P [xk]

2.
P [x0] ∧ · · · ∧ P [xk] ∧

T [x0,x1] ∧ · · · ∧ T [xk−1,xk]
|=L P [xk+1]

R̂ = P

Requires solver that:

• decides |=L

Clarke Symposium, Sep 2014 – p.14/17



Interpolation-based MC

For some k > 0, compute a sequence R̂0[x], . . . , R̂n[x] such that

1. Ri[x] |=L R̂i[x] (Ri denotes states reachable in up to i steps)

2. R̂i[x1]∧T [x1,x2]∧ · · ·∧T [xk−1,xk] |=L P [x1]∧ · · ·∧P [xk]

3. R̂i[x] |=L R̂i+1[x]

4. R̂n[x] |=L R̂n−1[x]

R̂ = R̂n[x]

Requires solver that:

• decides |=L

• produces interpolants in L

Clarke Symposium, Sep 2014 – p.15/17



IC3

Compute a sequence R̂0[x], . . . , R̂n[x] such that

1. Ri[x] |=L R̂i[x] (Ri denotes states reachable in up to i steps)

2. R̂i[x] |=L P [x]

3. R̂i[x] |=L R̂i+1[x]

4. R̂n[x] |=L R̂n−1[x]

R̂ = R̂n[x]

Requires solver that:

• decides |=L

• generalizes induction counterexamples

• produces unsat cores

Clarke Symposium, Sep 2014 – p.16/17



Some Future Directions

• New SMT techniques to work with quantified transition
relations/interpolants/invariants/. . .

• Compositional model checking techniques built on Horn
clause-based SMT encodings

• Synergistic combinations of SMT with traditional abstract
interpretation techniques and tools

• Promising cross-fertilization between SMT-based model
checking and SMT-based program synthesis

• Checking of non-functional properties
(i.e., worst-case execution time)

Clarke Symposium, Sep 2014 – p.17/17


	
	The Intuition That Started it All
	The Intuition That Started it All
	Model Checking of Finite State Systems
	Logic-based Safety Checking
	Logical encodings of transitions systems
	Main Logic-based Approaches
	Safety Checking Modulo Theories
	Satisfiability Modulo Theories
	SMT Solvers
	SAT vs SMT in Safety Checking
	Unifying Theme in SMT-based MC
	Main Idea
	Temporal Induction
	Interpolation-based MC
	IC3
	Some Future Directions

