Checking Consistency of C and Verilog
using Predicate Abstraction and Induction®

Daniel Kroening
Computer Systems Institute, ETH Ziirich
Ziirich, Switzerland
daniel.kroening@inf.ethz.ch

Abstract

1t is common practice to write C models of circuits due to
the greater simulation efficiency. Once the C program satis-
fies the requirements, the circuit is designed in a hardware
description language (HDL) such as Verilog. It is therefore
highly desirable to automatically perform a correspondence
check between the C model and a circuit given in HDL.
We present an algorithm that checks consistency between an
ANSE-C program and a circuit given in Verilog using Predi-
cate Abstraction. The algorithm exploits the fact that the C
program and the circuit share many basic predicates. In con-
trast to existing tools that perform predicate abstraction, our
approach is SAT-based and allows all ANSI-C and Verilog
operators in the predicates. We report experimental results
on an out-of-order RISC processor. We compare the per-
Jormance of the new technigue to Bounded Model Checking
(BMC).

INTRODUCTION

ANSI-C is a language designed for best execution efficiency.
This is why C programs are often used as a model for circuits
that require ¢xtensive testing and simulations. The testing
is done using the fast C model. Once the C model satisfies
the requirements, it is used as a specification for building
the circuit in a language that will yield to an efficient circuit,
such as Verilog or VHDL. Due to time-to-market constraints,
there is often not enough time to perform the same rigorous
evaluation of the Verilog implementation as it was performed
for the C model.

Thus, it is highly desirable to determine if the C and Verilog
programs are consistent [20].

Related Work There are already multipie differentapproaches
to this problem:

There are tools that take a C program in a specific form as
input and translate it into a circuit. The two circuits can then
be compared using standard equivalence checkers, as done
by Sémériaetal. [24]. However, the C program has to be very
similar to the circuit, e.g., they must share the same registers

*This research was sponsored by the Semiconductor Research Corporation
(SRC) under contract no. 99-TJ-684, the National Science Foundation
(NSF) under grant no. CCR-9803774, the Office of Naval Research
(ONR), the Naval Research Laboratory (NRL) under contract no.
N00014-01-1-0796, and by the Defense Advanced Research Projects
Agency, and the Army Research Office {ARQC) under contract no.
DAADI9-01-1-0485, and the General Motors Collaborative Research Lab
at CMU. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official
policies, either expressed or implied, of SRC, NSF, ONR, NRL, DOD,
ARO, or the U.S. povernment.

0-7803-8702-3/04/%$20.00 ©2004 IEEE.

66

Edmund Clarke
Computer Science Dept., Camegie Mellon University
Pittsburgh, PA, USA
emc@cs.cmu.edu

and must perform the computations in the same number of
steps.

Matsumoto, Saito, and Fujita compare two C-based hard-
ware descriptions [16]. First, the differences are identified
syntactically, and then compared using symbolic simulation.
The method also assumes very strong similarity of the two
descriptions.

In [12], Bounded Model Checking (BMC) {4, 3] is applied
to both a circuit and an ANSI-C program, No particular
similarity is assumed, and the notion of equivalence can be
adapted using C language constructs. However, no attempt
is made to abstract the program or the circuit, which limits
the capacity of the method. Furthermore, Bounded Model
Checking anly shows the absence of inconsistencies up to a
given bound. Determining if this bound is large enough to
guarantee the absence of any inconsistencies is hard [13].
The concept of verifying the equivalence of a software im-
plementation and a synchronous transition system was in-
treduced by Pnueli, Siegel, and Shtrichman [23]. Since the
target code is generated automatically by a compiler, the C
program is assumed to have a specific form.

With the exception of [12], the related work requires a very
strong correspondence of the circuit and the program. How-
ever, the programs written for simulation purposes often do
not show such a strong correspondence. This means that
these programs would have to be rewritten for equivalence
checking, which is undesirable. Thus, we would like to be
able to compare programs and circuits that achieve the same
goal in completely different ways.

The criterion we use for equivalence is input/output equiva-
lence: assuming the circuit and program obtain correspond-
ing input, we want to show that they produce corresponding
output. However, if this property is checked cycle-by-cycle,
this would require that the C program has to be cvcle accu-
rate, i.e., it would have to compute all the values the circuit
computes in the same number of steps. .
We would like to be more flexible about the points in time
used for the /O equivalence check. The user of the frame-
work should be able to customize it for anything from com-
plete cycle-accuracy to an occasional check of computational
results. This means that both the circuit and the program
should be allowed to perform a possible lengthy computa-
tion completely independent from each other. Onece each
transition system is finished, only the results are compared,
The number of transitions required for each machine to ob-
tain the results may not be related at ali. Obviously, the time

required may depend on input data and the algorithms used
by the machines. This flexibility is achieved by distinguish-
ing external and internal transitions. The external transitions
of the two machines are synchronized, and the equivalence
check is only performed on these transitions.

Contribution. We formalize 1/O equivalence for transition
systems with external and internal transitions, similar to weak
bisimulation as described by Milner [18]. We describe a
method to reduce this equivalence criterion to a safety prop-
erty of a special product machine of the two transition sys-
tems. We then describe how to use predicate abstraction in
order to prove the safety property, and thus, the I/O equiva-
lence.

During the abstraction of the transition system, we add the
safety property as a constraint to the current state. This is
a special form of inductive reasoning, and allows to exploit
structural similarities of the two machines automatically. The
more the two machines share, the stronger is the constraint.
In the special case of two machines that have the exact same
set of latches, the problem becomes equivalent to SAT-based
combinational equivalence checking.

This approach is less flexible than the approach in the related
work: In [12], the ANSI-C program is able to refer to the
value of any circuit signal in any given cycle. In contrast to
that, the approach proposed in this paper only allows to refer
to current signal values, not past values. However, we believe
that this is not a strong restriction, and that the benefits of
abstraction out-weight this downside. In particular, we are
able to conclude that the circuit and program are consistent
for any number of steps, not for just a given bound.

Outline. In section , we formalize the correctness criterion.
In section , we describe how to reduce it to a safety prop-
erty of the product machine using given relations for input
and output. In section , we show possible ways to write
circuit specifications in the form of efficient C programs and
how to automatically generate the input/output relations for
a particular form of correspondence. In section , we report
experimental results.

FORMAL EQUIVALENCE CRITERION

We use the following formalism to model both the C program
and the circuit: A transitionsystem I = (8,7, I, R, L) consists
of a set of states S, a set of initial states I C S, a transition
relation R, which relates a current state s € S to a next-state
ses

L(s) is a labeling function: it maps a state s € Sto the action
(or event) that is generated by the state. We consider only one
action, o, which is used to synchronize the two machines,
and the silent event T, which denotes an internal transition.
No synchronization is done when a machine generates a 1-
action. A state s with L(s) = ¢ is called a visible state, a state
s with L(s) = T is a hidden state. Analogously, a transition
out of a state labeled with 7 is called an invisible or weak

67

transition, and a transition labeled with ¢ is a visible or strong
transition [18].
We call a sequence of states #(0),...,#(n) of a machine a
trace of the machine iff the state of t(0) is an initial state, and
all subsequent states are related using R:
HO) el

Vi<n:t(Rt(i+1)
By V¢, we denote the sequence of states where the first state
is the first visible state in the sequence ¢, the second state is
the second visible state in ¢, and so on.
Let the circuit be given by Ty = (81,4, 1, R1,L1), and the
ANSI-C program be given by & = (52,5, Ry, Ly). We
will describe several restrictions of these transition systems,
but note that we do not require 5 = S, i.e., the regis-
ters/latches do not have to correspond to any program vari-
ables or vice versa. This is in contrast to the work presented
in [24], which assumes a one-on-one mapping of registers
and variables.
Instead of comparing the states of the two machines, we pro-
pose to check the externally visible /0 behavior only, In-
formally, in visible states, we require that the outputs match
assuming that the inputs have matched so far. We assume that
there is a user-provided relation that specifies what matching
inputs and outputs are. The relation may be generated auto-
matically for a restricted program syntax, e.g., by means of
a variable mapping (section). Formally, input is modeled by
means of non-determinism in the transition relations R, and
Rz. The output is assumed to be a function of the current
states 51 and 52. Thus, it is sufficient to relate the states. Let
£, denote the consistency relation for inputs, and =¢ for
outputs:

-~

= 51 — ‘52

20 5] — 52
Two traces f; of 7} and 1, of T are said to be input consis-
tent iff the inputs of all external transitions of the traces are
consistent:

h=my = YiiVn(i)EVn(i)

H
Analogously, two traces £ of T} and #; of 15 are said to be
output consistent iff the outputs of all external transitions of

the traces are consistent;
n=of = Yi:¥n{i)=o Vi (i) (2)
Formally, we define two transition systems 7} and 7> to be I/O
consistent, {ff input consistency implies output consistency
for all valid traces:
NeEh = 3

(h=2) = (n=0t2)
IMPLEMENTATION

The Product Machine

This section describes how we apply counterexample guided
abstraction refinement in order to check equivalence as de-
fined in the previous section. We define a specific product
machine 7, as follows: The set of states S, of the product

machine is §) x S2. Thus, a state of T, is a pair of one state
of 77 and one state of 7. The initial state of the machine
must be a pair of initial states of the corresponding machines
(no attempt is made to synchronize the initial states).

The transition relation R, of T, is constructed as follows:
First, we define relations A} and A;, which take a state s € Sy,
a next state 5’ € S, and a Boolean value ¢. If the Boolean
value is true, A; and A; are identical to the original transition
relations R and R;, respectively. If it is false, only equal
states are related to each other, and thus the state of the
machine does not change:

|

Note that the equality in the definition above is equality of
two states in Sy, not a mixture of both transition systems.
Intuitively, ¢ is a "clock enable signal” for the transition
systems. Ifnot active, the state of the corresponding machine
does not change.

A transition system is allowed to make a transition iff the
transition is either a T-transition, or if both transition systems
are ready to make a O-transition. We use ¢ and ¢; as a
shorthand for these conditions.

(Lifs1) =) V(L2(s2) = 0)
(La(s2) =)V (Li{s1) = 0)
We also label the states of the product machine using the
labeling function L. A state (5),52) of the product machine

is labeled with o if and only of both transition systems are
about perform a ¢ transition. It is labeled with t otherwise.

Lp(sl,-.ij) = (L](S],)=GAL2(52)=G)

R(s,s) : ¢

Al(s,c,s .
x(5:¢,5) s=¢ otherwise

<1

<2

If the product machine makes a G-transition, we require that
the inputs of both transition systems are consistent. We use
p as a shorthand for this restriction:

p(s1,52) 1= Lp(s1,:) =6 = (515152)

This allows us to define the transition relation as follows:
the product machine can make a transition from (s1,52) to
(5], 5,) iff the states obey the restriction p and allow making
the steps of the two machines using A; and A;:

(s1,52)Rp(s7,5%) 1= pls1,m)A
Aj(s1,c1,54) A
Ay(s52,62,53)

Thus, given the machines T} and 73, the product machine can
be constructed easily. For all reachable states of the product
machine that are labeled with g, we check that the two states
{51,52) are output consistent;

L] (.S‘] ,.S‘z) =0 =5 206‘2

“)

Claim 1 T\ and T; are I/O equivalent iff s\=s2 holds for
all reachable states (s51,57) of T, that are labeled with o,
i.e., perform I/0.

68

Using Abstraction
Claim 1 reduces the criterion for I[/O equivalence to a safety
property on the product machine. We check this safety
property using counterexample guided abstraction refine-
ment (CEGAR) [14, 1, 5]. We perform a predicate abstrac-
tion [10], i.e., the latches of the circuit and the variables of the
program are replaced by Boolean variables that.correspond
to a predicate on the original variables and latches.
Note that both transition systems are abstracted. Using ab-
straction for checking equivalence requires care in order to
avoid false positives. We argue that we do not obtain false
positives as we reduce the equivalence criterion to a safety
property, which can be verified using overapproximations
without risking false positives.
The first step is to obtain an initial abstraction of the product
machine. This abstraction is then checked using a symbolic
model checker. We perform a save abstraction, i.e., if the
property holds on the abstract model, we can conclude that
it also holds on the concrete model, and thus, I/O equiva-
lence is shown. If the property does not hold on the abstract
model, we expect the model checker to provide a counterex-
ample. This abstract counterexample is then simulated on
the concrete machine. This step corresponds to Bounded
Model Checking on the concrete machine with additional
constraints that are derived from the abstract counterexam-
ple.
If the simulation 1s successful, we obtain a concrete coun-
terexample from the Bounded Model Checker. This coun-
terexample is for the product machine and therefore allows
us to extract separate traces for 77 and 75 that demonstrate
the inconsistency. If the simulation fails, the abstract coun-
terexample is spurious, and the abstraction has to be refined.
Formally, we assume that the algorithm maintains a set of n
predicates py,...,p,. The predicates are functions that map
a concrete state x € S, into a Boolean value. When applying
all predicates to a specific concrete state, one obtains a vector
of n Boolean values, which represents an abstract state 2. We
denote this function by o.(x). It maps a concrete state into an
abstract state and is therefore called abstraction function.
We perform an existential abstraction [6], i.e., the abstract
machine can make a transition from an abstract state % to &'
iff there is a transition from x to x’ in the concrete machine
and x is abstracted to £ and x' is abstracted to &. We call
the abstract product machine T, and we denote the transition
relation of 7 by &.

R = {&#| ¥ €S, xRpx'A)

: alx) =fAa(x) =2}
Note that in practice, additional transitions are often added
to the abstract transition relation in order to make the com-
putation of R easier. This is common for the abstraction of
both circuits and programs.
The abstraction of a safety property P{x) is defined as fol-
lows: for the property to hold on an abstract state £, the
property must hold on all states x that are abstracted to X.

B(x) == VxeS,:(ofx)=x)==Px)

(6)

The same abstraction is also used for the initial state predi-
cate. Thus, if P holds on all reachable states of the abstract
machine, P also holds on all reachable states of the concrete
machine. This leads to

Claim 2 T\ and T; are I/O equivalent if the abstraction of
eq. (4) holds for all reachable states of T.

A state violating the safety property is called a bad state.

Using Induction during Abstraction
As we are checking an invariant, itis straight-forward to make
the following restriction of the abstract transition relation:
When considering a concrete transition x to x’, we can safely
assume that the property helds in the state x. Thus, we can
use the following transition relation R~

R = (2.8 [R(x,¥) AP(%)} Q)
Note that the next state x’ is not restricted. Intuitively, we are
removing all transitions out of bad states. This restriction is
justified as follows: The abstraction of the initial state is not
restricted, and it is checked that it satisfies 2. It can now be
argued inductively that the restriction to R~ does not remove
paths to bad states, as only transitions ouf of bad states are
removed. Transitions into bad states are only removed if they
originate from a bad state.
This restriction allows us to benefit automatically from any
parts of the two transition systems that are equal. This applies
to both latches and combinational circuitry. The reason for
this is the fact that if such latches are present, the property
will assert that the corresponding latches/variables are equal.
Qur tool will then collapse the logic that is shared by both
transition systems. In the special case that both transition
systems have the exact same set of latches/variables, the
problem is reduced to SAT-based combinational equivalence
checking. While we do not propose to use our tool for this
special case, we benefit from the reduction in case some parts
of the transition system are equal.
The following two sections describe how to abstract the pro-
gram and the circuit given the set of predicates.

Abstracting the Program

Predicate abstraction of ANSI-C programs in combination
with counterexample guided abstraction refinement has be-
come a widely applied technique. It was introduced by Ball
and Rajamani [1] and promoted by the success of the SLAM
project [2]. The goal of this project is to verify that Windows
device drivers obey API conventions. SLAM models the pro-
gram variables using unbounded integer numbers, and does
not take overflow or bit-wise operators into account. The ab-
straction of the program is computed using a theorem prover
such as Simplify [9]. The property checked mainly depends
on the control flow, and thus, this treatment is sufficient.
However, for C programs that represent z circuit model, we
expect extensive use of bit-wise operators, and we expect
that the limited range of the variables will be crucial.

Thus, we compute the abstraction not using Simplify or sim-
ilar tools, but using SAT: this allows us to precisely model
the semantics of the bit vector arithmetic as described in the

69

ANSI-C standard. Furthermore, it allows us to support all
ANSI-C integer operators, including the bit-wise operators
71

The control flow structure is not changed during the abstrac-
tion, i.e., the abstraction will contain a program counter con-
struction that models the original control flow of the C pro-
gram. The conversion of all ANSI-C control flow statements
including goto and switch is straight-forward. However,
unbounded recursion is not supported, as we are not using
a push-down-automaton. However, we do not expect un-
bounded recursion in programs that serve as circuit model.
‘What remains is the abstraction of the branching conditions
and the basic blocks, i.e., sequences of instructions without
any control flow statements,

Abstracting the Basic Blocks

A basic block is a sequence of assignment statements. We
first transform the basic block into static single assignment
form (SSA). If pointer dereferencing operators are used, this
requires a standard points-to analysis.

After the transformation into SSA, the assignments in the ba-
sic block are turned into equalities. After that, these equal-
ities are conjuncted to form an equation system, which is
equivalent to the concrete transition relation for the basic
block. We denote it by 7'(v,v).

The abstract transition relation B(%,£') relates a current state
% (before the execution of the basic block) to a next state &
(after the execution of the basic block). It is defined using &
as follows:

{&X)(ofp) =) ATEV)A (@) =£)} (8)
We compute this setusing SAT-based Boolean quantification,
as described in section .

Abstracting the Branching Conditions

The expressions used in the branching conditions of the pro-
gram are ideal candidates for predicates, and thus, the branch-
ing condition will often be a Boclean combination of predi-
cates. Ifthis is so, the predicates are simply replaced by their
corresponding Boolean variables. If not so, the expression is
abstracted using SAT in analogy to a basic block,

Abstracting the Circuit
Let S, denote the set of states of the (concrete) circuit, and
R, the concrete transition relation. The abstract transition
relation of the circuit can be computed directly using the
circuit-part of the relation defined in definition 5:
{(Z#) | 2x,x" € S, : xR XA)
ofx) =fAa(x) =&}
This set is obtained using a Boolean quantification, as de-
scribed in section . If this equation is already too hard for
the SAT solver due to the sheer size of the circuit, it ¢can
be partitioned into components. The components are then
abstracted separately. The final abstract transition relation is
then the conjunction of the relations obtained for each part.
However, this partitioning may introduce additional spurious
behavior.

In {8], a similar approach te the abstraction of hardware is de-
scribed. The main difference to the approach presented here
is that [8] treats the SAT solver like a theorem prover, and enu-
merates particular abstract transitions instead of performing
a Boolean quantification. The idea of using a Boolean quan-
tification for hardware abstraction was introduced by Lahiri,
Bryant, and Cook [15]. While we are using a bit-accurate
representation of the circuit, [15] is using a word-level rep-
resentation, which does not permit the use of bit-level oper-
ators.

Simulation and Refinement

In order to check the abstract model, we use SMV. If the
property does not hold on the abstract model, SMV returns
a counterexample trace, This trace is then simulated on the
concrete model. This simulation corresponds to a series of
BMC instances with additional constraints. The unwinding
bound for the program loop constructs and the circuit can
be taken from the abstract counterexample. As the instances
are very similar, incremental SAT can be used. If the last
BMC instance is satisfiable, the counterexample can be con-
cretized, and the algorithm terminates.

If not so, the set of predicates has to be refined. This is done
by computing preconditions of the constraint that causes the
counterexample to be spurious.

Quantification using SAT

For the abstraction of both the circuit and the C program we
need to obtain a representation for a set of Boclean vectors
x such that a function is true for this argument. The vector
x corresponds to the abstract present and next-state. In ad-
dition to x, the function also takes an existentially quantified
vector y, which is used for intermediate variables for the CNF
conversion and for the concrete states.

{xe{0,1} | c {01} : flx,y}}

This corresponds to a quantification of the y variables.
The quantification is done by modifying the SAT solver
Chaff [19] as foilows: Every time a satisfying assignment
for f(x,y) is found, the algorithm records the values of the
literals corresponding to x (the variables rot to be quantified),
and then adds a blocking clause in terms of these literals that
eliminates all satisfying assignments with the same value for
x. The literals in the blocking clauses all have a decision
level, since the assignment is complete. The solver then
backtracks to the highest of these decision levels and con-
tinues its search for further, different satisfying assignments.
Eventually, the additional constraints will make the problem
unsatisfiable, and the algorithm terminates, The blocking
clauses added by the algorithm are a DNF representation of
the desired set.

This technique is commonly used in other areas, for example
in [17, 11] and was suggested earlier for solving quantified
formulae in [21, 22]. In [15], our implementation of this
algorithm was applied to predicate abstraction for hardware
and software systems. It outperformed BDDs on all soft-
ware examples. The basic algorithm can be improved by

(10)

70

heuristics that try to enlarge the cube represented by each
clause. McMillan [17] uses conflict graph analysis in order
to enlarge the cube. Gupta et al. [11] use BDDs for the en-
largement. However, these techniques are beyond the scope
of this article.

CIRCUIT SPECIFICATION USING C

Cycle Accurate C Programs

The equivalence criterion defined in section allows a wide
range of styles for the ANSI-C program. This is done by ad-
justing the relations that define input and output equivalence,
and by defining the labeling function L appropriately.

A cycle accurate C model has to compute the values of all
latches of the circuit in every cycle. These values have to be
stored in specially designated program variables. In our tool,
this is done by a separate file which contains an entry for
each latch containing the name of the latch in the circuit and
the name of the C program variable. Let v} and v, denote
such a pair of a corresponding latch and a variable for all
such variables V.

A special "next cycle” command indicates that this compu-
tation is finished. It can be used in arbitrary locations. When
invoked, the C program makes an externally visible transi-
tion. This is done by defining Ly (the labeling function for
the program) to be G for states that have a program counter
value corresponding to the “next cycle” command. L (the
labeling function for the circuit) is defined to be constantly
G.

Furthermore, the "next cycle” command asserts that the val-
ues computed by the C program match the values in the
circuit. This is done by defining =g as A . vi = va.

The C program performs input by reading the corresponding
input signals of the circuit. This is enforced by defining =,
for the input signals and variables in analogy to =g.

Non-Cycle Accurate C Programs

The related work in [12] allows accessing the values of the
signals of the circuit in arbitrary cycles by using the syntax
signal [cycle]. Our approach does not allow this, and
restricts the access to the cycle value in the current cycle
only. However, one can still write a wide range of non-cycle
accurate C models by adding additional program variables to
“remember” previous signal values.

It is not necessary for the C program to compute the values
of all latches for each cycle. Instead, only selected values
may be compared by using an explicit assert statement.
As an example, the following fragment checks that a counter

{a variable imported from the circuit) increases only:
extern int counter;

while (1) {
int previous=counter;
next_cyele();
assert (¢ounter>=previous);

This C program makes no attempt to actually reproduce the
computation of the circuit; it is used as a monitor only, Note

that, in contrast to [12], there is no need to refer to a bound,
as we perform an unbounded verification. The while loop
is unbounded.

The assertions are implemented as follows: First, the func-
tion L; is defined to be © for states that have a program counter
value corresponding to an assert statement. Secend, =¢
is defined to hold if the assertions are true. Formally, let pc;
denote the program counter of assertion #, and cond;{sy,s2)
the condition of the assertion. Then, =g is defined as follows:

=o(s1,8:2) = /\(sz,pc = pc; = cond(s1,52))

H
The following example illustrates how inputs are synchro-
nized: suppose the circuit performs a division 1/x using an
iterative algorithm that is controlled by a state machine. If
the signal ready is true, the state machine reads x. If the
signal done is true, the division is finished. The C program
waits for the ready signal and copies the value of x from
the circuit. It then waits for the done signal and checks the

division result, which is provided by the circuit as r.
extern unsigned int x, r;
extern Bool ready, done;

while (1} {
/* local variable to remember x */
unsigned int my_x;

/* wait for ready, then copy x */
while(!ready) next_cyclel(};
my_X=X;

/* wait for done, then check result */
while(!done} next_cycle(};
agsert (r==1/my_x);

next_cycle(); /* next round */

This is implemented by simply adding constraints to =;.
The maich between the variables of the C program and the
signals in the circuit can be automated if there is a syntactical
rule. As an example, our implementation matches variables
and signals based on their names. Signals within the Verilog
module hierarchy are mapped using st ruct types. Another
way to implement this mapping would be a file that explicitly
lists the corresponding signals and variables.

EXPERIMENTAL RESULTS

We compare the performance of the approach presented in
this paper with an implementation using Bounded Model
Checking as suggested in [12]. Bounded Model Checking
is used for refutation only, i.e., it cannot conclude that there
is no error trace. Instead, it checks the correspondence of
the program and circuit up to a given number of cycles. In
contrast to that, the approach presented in this paper can con-
clude that both transiticn systems match. The experiments
are performed on a 1.5 GHz AMD machine with 3 GB of
memory running Linux.

The benchmarks (table 1) we use are taken from an im-
plementation of an out-of-order RISC microprocessor with
Tomasulo scheduler. The processor implements a MIPS-like
ISA and precise interrupts by means of a reorder buffer.

71

The ALU.PIPE circuit implements pipelined versions of
arithmetic circuits. The corresponding C program observes
the values that enter the pipeline and wait for the result at the
end of the pipeline. They then compare the result with an in-
ternally computed result. The C program computes the result
in one step. Proving the two to be consistent requires pred-
icates that assert the correctness of the intermediate results
in the pipeline. These predicates are computed automati-
cally during the abstraction refinement phase. Note that for
the satisfiable instances the time required until BMC finds
a counterexample actually decreases with the bound. The
unsatisfiable instance is hard for BMC,

The RF circuit contains the integer register file. The C pro-
gram checks properties of the register values.

The ROB circuit is the reorder buffer of the design. It contains
a large number of latches. In the ROB1 benchmark, the C
programs check properties of the cottrol. The ROB2 bench-
mark has C program which is a bit-accurate implementation
of the control part. The ROB3 benchmark uses the C program
to check a (failing) property of a counter in the design.

In conclusion, BMC can outperform the abstraction based
approach if there is a short counterexample. This can be jus-
tified by the fact that the abstraction based approach has to
perform a simulation in order to confirm a counterexample.
This simulation is as hard as a BMC instance. If the coun-
terexample is long, the simulation step apparently benefits
from the additional constraints from the abstract counterex-
ample.

However, the abstraction based approach is superior if the
property actually holds. In this case, the abstraction based
approach can conclude that there is no counterexample, while
BMC cannot.

CONCLUSION AND FUTURE WORK

The paper presents an algorithm to check the correspondence
of a C program and a circuit given in Verilog. The C program
may be cycle accurate, a partial implementation, or just a
monitor. The equivalence criterion is formalized and then
reduced to a safety property. This property is then checked
using predicate abstraction. We show the effectiveness of the
algorithm using benchmarks from processor design.

In the future, we plan to impiement floating point arithmetic
for the C program, as C programs with floating point arith-
metic are commonly used as efficient circuit model. Further-
more, we would like to investigate refinement algorithims that
are specialized for this algorithm.

REFERENCES

[1] T.Ball and S. Rajamani. Boolean programs: A model
and process for software analysis. Technical Report
2000-14, Microsoft Research, February 2000.

[2] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN
Workshop, volume 2057 of LNCS, pages 103-122.
Springer, May 2001.

bu; Run time BMC [12 Run time
Benchmark | #latches |\ A | T 10] 0] =l [40 abstraction
ALU.PIPE1l 163 2 1.7s 3.7s | 370.7s | 21.8s 8.2s 36.6s
ALU_PIPE2 163 - - | 303.7s * * * 31.0s
RF1 1024 - -| 137s| RB4.85 | 134.0s | 356.8s 0.5s
RF2 1024 1 0.7s 77s | 203s | 44.4s * 0.7s
ROB1 2963 - - 38| 103s| 21.8s| 116.0s 0.2s
ROB2 2963 - -| 63.3s * * * 3.8s
RCB3 2963 16 5.7s 2.5s 7.0s 10.6s 14.3s 1.8s
ROB4 2963 64 106.0s 2.5s 5.3s 98s | 21.5s 14.1s

Table 1. Experimental Results. if no bug length is given, the program and circuit are consistent. The run time for BMC
is given for various depths. The "min” column contains the run time for BMC for the shortest counterexample. A star
(*} denotes that the timeout of 1000s was exceeded. The best times for refutation are in bold.

[3] A. Biere, A, Cimatti, E. M. Clarke, M. Fujita, and
Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs, In DAC, 1999,

(4] A. Biere, A, Cimatti, E. M. Clarke, and Y. Yhu.
Symbolic model checking without BDDs. In TACAS,
pages 193-207, 1999,

[5] E. Clarke, O. Gramberg, S. Jha, Y. Lu, and V. H,
Counterexample-guided abstraction refinement. In
Computer Aided Verification, pages 154—-169, 2000.

[6] E. Clarke, O. Grumberg, and D. Long, Model
checking and abstraction. In Principles of
Programming Languages, January 1992,

[7] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate abstraction of ANSI-C programs using SAT.
Formal Methods in System Design (FMSD), 2004, To
appear.

(8] E. Clarke, M. Talupur, and D. Wang. SAT based
predicate abstraction for hardware verification. In
Proceedings of SAT 03, May 2003.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, July 2003.

[10] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In O. Grumberg, editor, CAV,
volume 1254, pages 72—83. Springer Verlag, 1997.

[11] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based
image computation with application in reachability
analysis. In Formal Methods in Computer-Aided
Design (FMCAD), number 1954 in LNCS, pages
354-372, 2000.

[12] D. Kroening, E. Clarke, and K. Yoray. Behavioral

consistency of C and Verilog programs using bounded

model checking. In Proceedings of DAC 2003, pages

368-371. ACM Press, 2003.

D. Kroening and O. Strichman. Efficient computation

of recurrence diameters. In L. Zuck, P. Attie,

A, Cortesi, and S, Mukhopadhyay, editors, VFMCA/,

volume 2575 of Lecture Notes in Computer Science,

pages 298-309. Springer Verlag, January 2003,

i13]

72

[14] R. Kurshan. Computer-aided verification of
coordinating processes: the automata-theoretic
approach. Princeton University Press, 1994,

[15] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic
approach to predicate abstraction. In W. A. Hunt and
F. Somenzi, editors, CAV, number 2725 in LNCS,
pages 141-153. Springer-Verlag, July 2003.

[16] T. Matsumoto, H. Saito, and M. Fujita. Equivalence
checking of C-based hardware descriptions by using
symbolic simulation and program slicer. In
International Workshop on Logic and Synthesis
(IWLS’03), 2003.

[17] K. McMillan. Applying SAT methods in unbounded
symbolic model checking. In I4th Conference on
Computer Aided Verification, pages 250-264, 2002,

[18] R. Milner. Communication and Concurrency. Prentice
Hall, 1989,

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. In DAC, pages 530-535, June 2001.

[20] C. Pixley. Guest Editor’s Introduction: Formal
Verification of Commercial Integrated Circuits. J[EFE
Design & Test of Computers, 18(4):4--5, 2001,

{21] D. Plaisted. Method for design verification of
hardware and non-hardware systems, October 2000,
United States Patent, 6,131,078.

[22] D. Plaisted, A, Biere, and Y. Zhu. A satisfiability tester
for quantified boolean formulae. Journal of Discrete
Applied Mathematics (DAM), 130(2):291-328, 2003.

[23] A. Pnueli, M. Siegel, and O. Shtrichman. The code
validation tool (CVT) - automatic verification of a
compilation process. Int. Journal of Software Tools for
Technology Transfer (STTT), 2(2):192-201, 1998.

{24] L. Séméria, A. Seawright, R. Mehra, D. Ng,

A. Ekanayake, and B. Pangrle. RTL C-based
methodology for designing and verifying a
multi-threaded processor. In DAC, pages 123-128.
ACM Press, 2002.

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

