
Efficient Craig Interpolation for Linear Diophantine
(Dis)Equations and Linear Modular Equations�

Himanshu Jain1, Edmund Clarke1, and Orna Grumberg2

1 School of Computer Science, Carnegie Mellon University
2 Department of Computer Science, Technion - Israel Institute of Technology

Abstract. The use of Craig interpolants has enabled the development of pow-
erful hardware and software model checking techniques. Efficient algorithms
are known for computing interpolants in rational and real linear arithmetic. We
focus on subsets of integer linear arithmetic. Our main results are polynomial
time algorithms for obtaining interpolants for conjunctions of linear diophantine
equations, linear modular equations (linear congruences), and linear diophantine
disequations. We show the utility of the proposed interpolation algorithms for
discovering modular/divisibility predicates in a counterexample guided abstrac-
tion refinement (CEGAR) framework. This has enabled verification of simple
programs that cannot be checked using existing CEGAR based model checkers.

1 Introduction

The use of Craig interpolation [8] has led to powerful hardware [14] and software [9]
model checking techniques. In [14] the idea of interpolation is used for obtaining over-
approximations of the reachable set of states without using the costly image computa-
tion (existential quantification) operations. In [9,11] interpolants are used for finding the
right set of predicates in order to rule out spurious counterexamples. An interpolating
theorem prover performs the task of finding the interpolants. Such provers are available
for various theories such as propositional logic, rational and real linear arithmetic, and
equality with uninterpreted functions [6,11,12,13,15,19,21].

Efficient algorithms are known for computing interpolants in rational and real linear
arithmetic [6,15,19]. Linear arithmetic formulas where all variables are constrained to
be integers are said to be formulas in (pure) integer linear arithmetic or LA(Z), where
Z is the set of integers. There are no known efficient algorithms for computing inter-
polants for formulas in LA(Z). This is expected because checking the satisfiability of
conjunctions of atomic formulas in LA(Z) is itself NP-hard. We show that for various
subsets of LA(Z) one can compute interpolants efficiently.

Informally, a linear equation where all variables are integer variables is said to be
a linear diophantine equation (LDE). A linear modular equation (LME) or a linear
congruence over integer variables is a type of linear equation that expresses divisibil-
ity relationships. A system of LDEs (LMEs) denotes conjunctions of LDEs (LMEs).

� This research was sponsored by the Gigascale Systems Research Center (GSRC), the Semicon-
ductor Research Corporation (SRC), the Office of Naval Research (ONR), the Naval Research
Laboratory (NRL), the Army Research Office (ARO), and the General Motors Lab at CMU.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 254–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 255

Both LDEs and LMEs arise naturally in program verification when modeling assign-
ments and conditional statements as logical formulas. These subsets of LA(Z) are
also known to be tractable, that is, polynomial time algorithms are known for decid-
ing systems of LDEs and LMEs. We study the interpolation problem for LDEs and
LMEs.

Given formulas F, G such that F ∧ G is unsatisfiable, an interpolant for the pair
(F, G) is a formula I(F, G) with the following properties: 1) F implies I(F, G), 2)
I(F, G) ∧ G is unsatisfiable, and 3) I(F, G) refers only to the common variables of F
and G. This paper presents the following new results.

• F, G denote a system of LDEs: We show that I(F, G) can be obtained in polyno-
mial time by using a proof of unsatisfiability of F ∧G. The interpolant can be either
a LDE or a LME. This is because in some cases there is no I(F, G) that is a LDE.
In these cases, however, there is always an I(F, G) in the form of a LME. (Sec. 3)

• F, G denote a system of LMEs: We obtain I(F, G) in polynomial time by using a
proof of unsatisfiability of F ∧ G. We can ensure that I(F, G) is a LME. (Sec. 4)

• Let S denote an unsatisfiable system of LDEs. The proof of unsatisfiability of S
can be obtained in polynomial time by using the Hermite Normal Form of S (rep-
resented in matrix form) [20]. A system of LMEs R can be reduced to an equi-
satisfiable system of LDEs R′. The proof of unsatisfiability for R is easily obtained
from the proof of unsatisfiability of R′. (Sec. 5)

• Let S denote a system of LDEs. We show that if S has an integral solution, then ev-
ery LDE that is implied by S, can be obtained by a linear combination of equations
in S. We show that S is convex [17], that is, if S implies a disjunction of LDEs,
then it implies one of the equations in the disjunction. In contrast, conjunctions of
atomic formulas in LA(Z) are not convex due to inequalities [17]. These results
help in efficiently dealing with linear diophantine disequations (LDDs). (Sec. 6)

• Let S = S1 ∧S2, where S1 is a system of LDEs, while S2 is a system of LDDs. We
say that S is a system of LDEs+LDDs. We show that S has no integral solution if
and only if S1∧S2 has no rational solution or S1 has no integral solution. This gives
a polynomial time decision procedure for checking if S has an integral solution. If
S has no integral solution, then the proof of unsatisfiability of S can be obtained in
polynomial time. (Sec. 6)

• F, G denote a system of LDEs+LDDs: We show I(F, G) can be obtained in poly-
nomial time. The interpolant can be a LDE, a LDD, or a LME. (Sec. 6)

• We show the utility of our interpolation algorithms in counterexample guided ab-
straction refinement (CEGAR) based verification [7]. Our interpolation algorithm
is effective at discovering modular/divisibility predicates, such as 3x + y + 2z ≡
1 (mod 4), from spurious counterexamples. This has allowed us to verify programs
that cannot be verified by existing CEGAR based model checkers.

Polynomial time algorithms are known for solving (deciding) a system of LDEs [20,5]
and LMEs (by reduction to LDEs) over integers. We do not give any new algorithms
for solving a system of LDEs or LMEs. Instead we focus on obtaining proofs of unsat-
isfiability and interpolants for systems of LDEs, LMEs, LDEs+LDDs. We only consider

256 H. Jain, E. Clarke, and O. Grumberg

conjunctions of LDEs, LMEs, LDEs+LDDs. Interpolants for any (unsatisfiable)
Boolean combinations of LDEs can also be obtained by calling the interpolation algo-
rithm for conjunctions of LDEs+LDDs multiple times in a satisfiability modulo theory
(SMT) framework [6]. However, computing interpolants for Boolean combinations of
LMEs is difficult. This is due to linear modular disequations (LMDs). We can show that
even the decision problem for conjunctions of LMDs is NP-hard. The extended version
of the paper [10] contains all proofs.

Related Work. It is known that Presburger arithmetic (PA) augmented with modulus
operator (divisibility predicates) allows quantifier elimination. Kapur et al. [12] show
that a recursively enumerable theory allows quantifier-free interpolants if and only if it
allows quantifier elimination. The systems of LDEs, LMEs, LDEs+LDDs are subsets
of PA. Thus, the existence of quantifier-free interpolants for these systems follows from
[12]. However, quantifier elimination for PA has exponential complexity and does not
immediately yield efficient algorithms for computing interpolants. We give polynomial
time algorithms for computing interpolants for systems of LDEs, LMEs, LDEs+LDDs.

Let S1, S2 denote conjunctions of atomic formulas in LA(Z). Suppose S1 ∧ S2 is
unsatisfiable. Pudlak [18] shows how to compute an interpolant for (S1, S2) by us-
ing a cutting-plane (CP) proof of unsatisfiability. The CP proof system is a sound and
complete way of proving unsatisfiability of conjunctions of atomic formulas in LA(Z).
However, a CP proof for a formula can be exponential in the size of the formula. Pudlak
does not provide any guarantee on the size of CP proofs for a system of LDEs or LMEs.
Our results show that polynomially sized proofs of unsatisfiability and interpolants can
be obtained for systems of LDEs, LMEs and LDEs+LDDs.

McMillan [15] shows how to compute interpolants in the combined theory of ratio-
nal linear arithmetic LA(Q) and equality with uninterpreted functions EUF by using
proofs of unsatisfiability. Rybalchenko and Sofronie-Stokkermans [19] show how to
compute interpolants in combined LA(Q), EUF and real linear arithmetic LA(R) by
using linear programming solvers in a black-box fashion. The key idea in [19] is to use
an extension of Farkas lemma [20] to reduce the interpolation problem to constraint
solving in LA(Q) and LA(R). Cimatti et al. [6] show how to compute interpolants in
a satisfiability modulo theory (SMT) framework for LA(Q), rational difference logic
fragment and EUF . By making use of state-of-the-art SMT algorithms they obtain sig-
nificant improvements over existing interpolation tools for LA(Q) and EUF . Yorsh and
Musuvathi [21] give a Nelson-Oppen [17] style method for generating interpolants in a
combined theory by using the interpolation procedures for individual theories. Kroen-
ing and Weissenbacher [13] show how a bit-level proof can be lifted to a word-level
proof of unsatisfiability (and interpolants) for equality logic.

To the best of our knowledge the work in [15,21,19,13,6] is not complete for com-
puting interpolants in LA(Z) or its subsets such as LDEs, LMEs, LDEs+LDDs. That is,
the work in [15,21,19,13,6] cannot compute interpolants for formulas that are satisfiable
over rationals but unsatisfiable over integers. Such formulas can arise in both hardware
and software verification. We give sound and complete polynomial time algorithms for
computing interpolants for conjunctions of LDEs, LMEs, LDEs+LDDs.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 257

2 Notation and Preliminaries

We use capital letters A, B, C, X, Y, Z, . . . to denote matrices and formulas. A matrix
M is integral (rational) iff all elements of M are integers (rationals). For a matrix
M with m rows and n columns we say that the size of M is m × n. A row vector
is a matrix with a single row. A column vector is a matrix with a single column. We
sometimes identify a matrix M of size 1 × 1 by its only element. If A, B are matrices,
then AB denotes matrix multiplication. We assume that all matrix operations are well
defined in this paper. For example, when we write AB without specifying the sizes of
matrices A, B, it is assumed that the number of columns in A equals the number of
rows in B.

For any rational numbers α and β, α|β if and only if, α divides β, that is, if and
only if β = λα for some integer λ. We say that α is equivalent to β modulo γ written
as α ≡ β (mod γ) if and only if γ|(α − β). We say γ is the modulus of the equation
α ≡ β (mod γ). We allow α, β, γ to be rational numbers. If α1, . . . , αn are ratio-
nal numbers, not all equal to 0, then the largest rational number γ dividing each of
α1, . . . , αn exists [20], and is called the greatest common divisor, or gcd of α1, . . . , αn

denoted by gcd(α1, . . . , αn). We assume that gcd is always positive.

Basic Properties of Modular Arithmetic: Let a, b, c, d, m be rational numbers.
P1. a ≡ a (mod m) (reflexivity).
P2. a ≡ b (mod m) implies b ≡ a (mod m) (symmetry).
P3. a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m) (transitivity).
P4. If a ≡ b (mod m), c ≡ d (mod m), and x, y are integers, then ax + cy ≡ bx +
dy (mod m) (integer linear combination).
P5. If c > 0 then a ≡ b (mod m) if, and only if, ac ≡ bc (mod mc).
P6. If a = b, then a ≡ b (mod m) for any m.

Example 1. Observe that x ≡ 0 (mod 1) for any integer x. Also observe from P5 (with
c = 2) that 1

2x ≡ 0 (mod 1) if and only if x ≡ 0 (mod 2).

A linear diophantine equation (LDE) is a linear equation c1x1 + . . . + cnxn = c0,
where x1, . . . , xn are integer variables and c0, . . . , cn are rational numbers. A variable
xi is said to occur in the LDE if ci �= 0. We denote a system of m LDEs in a matrix
form as CX = D, where C denotes an m × n matrix of rationals, X denotes a column
vector of n integer variables and D denotes a column vector of m rationals. When we
write a (single) LDE in the form CX = D, it is implicitly assumed that the sizes of
C, X, D are of the form 1 × n, n × 1, 1 × 1, respectively. A variable is said to occur in
a system of LDEs if it occurs in at least one of the LDEs in the given system of LDEs.

A linear modular equation (LME) has the form c1x1 + . . . + cnxn ≡ c0 (mod l),
where x1, . . . , xn are integer variables, c0, . . . , cn are rational numbers, and l is a ra-
tional number. We call l the modulus of the LME. Allowing l to be a rational number
leads to simpler proofs and covers the case when l is an integer. We abbreviate a LME
t ≡ c (mod l) by t ≡l c. A variable xi is said to occur in a LME if l does not divide ci.

A system of LDEs (LMEs) denotes conjunctions of LDEs (LMEs). If F, G are a
system of LDEs (LMEs), then F ∧ G is also a system of LDEs (LMEs).

258 H. Jain, E. Clarke, and O. Grumberg

2.1 Craig Interpolants

Given two logical formulas F and G in a theory T such that F ∧ G is unsatisfiable in
T , an interpolant I for the ordered pair (F, G) is a formula such that

(1) F ⇒ I in T
(2) I ∧ G is unsatisfiable in T
(3) I refers to only the common variables of A and B.

The interpolant I can contain symbols that are interpreted by T . In this paper such
symbols will be one of the following: addition (+), equality (=), modular equality for
some rational number m (≡m), disequality (�=), and multiplication by a rational number
(×). The exact set of interpreted symbols in the interpolant depends on T .

3 System of Linear Diophantine Equations (LDEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for
LDEs. The following theorem from [20] gives a necessary and sufficient condition for
a system of LDEs to have an integral solution.

Theorem 1. (Corollary 4.1(a) in Schrijver [20]) A system of LDEs CX = D has no
integral solution for X , if and only if there exists a rational row vector R such that RC
is integral and RD is not an integer.

Definition 1. We say a system of LDEs CX = D is unsatisfiable if it has no integral
solution for X . For a system of LDEs CX = D a proof of unsatisfiability is a rational
row vector R such that RC is integral and RD is not an integer.

Example 2. Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=

⎡
⎣

1 1 0
1 −1 0
0 2 2

⎤
⎦

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

1
1
3

⎤
⎦

R = [12 , − 1
2 , 1

2]
RC = [0, 2, 1]
RD = 3

2

Example 3. Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=
[
1 −2 0
1 0 −2

] ⎡
⎣

x
y
z

⎤
⎦ =

[
0
1

] R = [12 , 1
2]

RC = [1, −1, −1]
RD = 1

2

The above examples will be used as running examples in the paper. In section 5 we
describe how a proof of unsatisfiability can be obtained in polynomial time for an un-
satisfiable system of LDEs.

Definition 2. (Implication) A system of LDEs CX = D implies a (single) LDE AX =
B, if every integral vector X satisfying CX = D also satisfies AX = B.

Similarly, CX = D implies a (single) LME AX ≡m B, if every integral vector X
satisfying CX = D also satisfies AX ≡m B.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 259

Lemma 1. (Linear combination) For every rational row vector U the system of LDEs
CX = D implies the LDE UCX = UD. Note that UCX = UD is simply a linear
combination of the equations in CX = D. The system CX = D also implies the LME
UCX ≡m UD for any rational number m.

Example 4. The system of LDEs CX = D in Example 3 implies the LDE [12 , 1
2]CX =

[12 , 1
2]D, which simplifies to x − y − z = 1

2 . The system CX = D also implies the
LME x − y − z ≡m

1
2 for any rational number m.

3.1 Computing Interpolants for Systems of LDEs

Let F ∧ G denote an unsatisfiable system of LDEs. The following example shows that
an unsatisfiable system of LDEs does not always have a LDE as an interpolant.

Example 5. Let F := x − 2y = 0 and G := x − 2z = 1. Intuitively, F expresses
the constraint that x is even and G expresses the constraint that x is odd, thus, F ∧ G
is unsatisfiable. We gave a proof of unsatisfiability of F ∧ G in Example 3. Observe
that the pair (F, G) does not have any quantifier-free interpolant that is also a LDE. The
problem is that the interpolant can only refer to the variable x. We can show that there
is no formula I of the form c1x + c2 = 0, where c1, c2 are rational numbers, such that
F ⇒ I and I ∧ G is unsatisfiable (see [10] for proof).

As shown by the above example it is possible that there exists no LDE that is an in-
terpolant for (F, G). We show that in this case the system (F, G) always has a LME
as an interpolant. In the above example an interpolant will be x ≡2 0. Intuitively, the
interpolant means that x is an even integer.

We now describe the algorithm for obtaining interpolants. Let AX = A′, BX = B′

be systems of LDEs, where X = [x1, . . . , xn] is a column vector of n integer variables.
Suppose the combined system of LDEs AX = A′ ∧ BX = B′ is unsatisfiable. We
want to compute an interpolant for (AX = A′, BX = B′). Let R = [R1, R2] be a
proof of unsatisfiability of AX = A′ ∧ BX = B′ such that

R1A + R2B is integral and R1A
′ + R2B

′ is not an integer.

Recall that a variable is said to occur in a system of LDEs if it occurs with a non-
zero coefficient in one of the equations in the given system of LDEs. Let VAB ⊆ X
denote the set of variables that occur in both AX = A′ and BX = B′, let VA\B ⊆ X
denote the set of variables occurring only in AX = A′ (and not in BX = B′), and
let VB\A ⊆ X denote the set of variables occurring only in BX = B′ (and not in
AX = A′).

We call the LDE R1AX = R1A
′ a partial interpolant for (AX = A′, BX = B′).

It is a linear combination of equations in AX = A′. The partial interpolant R1AX =
R1A

′ can be written in the following form
∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi = c (1)

where all coefficients ai, bi and c = R1A
′ are rational numbers. Observe that the partial

interpolant does not contain any variable that occurs only in BX = B′ (VB\A).

260 H. Jain, E. Clarke, and O. Grumberg

Lemma 2. The coefficient ai of each xi ∈ VA\B in the partial interpolant R1AX =
R1A

′ (Equation 1) is an integer.

Lemma 3. The partial interpolant R1AX = R1A
′ satisfies the first two conditions in

the definition of an interpolant. That is,

1. AX = A′ implies R1AX = R1A
′

2. (R1AX = R1A
′) ∧ BX = B′ is unsatisfiable

If ai = 0 for all xi ∈ VA\B (equation 1), then the partial interpolant only contains the
variables from VAB . In this case the partial interpolant is an interpolant for (AX =
A′, BX = B′). (The proof is given in [10].)

Example 6. Consider the system of LDEs CX = D in Example 2. A proof of unsat-
isfiability for this system is R = [12 , − 1

2 , 1
2]. Let AX = A′ be the first two equations

in CX = D, that is, x + y = 1 ∧ x − y = 1 (in matrix form). Let BX = B′ be the
third equation in CX = D, that is, 2y + 2z = 3. Observe that VA\B := {x}, VAB :=
{y}, VB\A := {z}. In this case R1 = [12 , − 1

2]. The partial interpolant for the pair
(AX = A′, BX = B′) is y = 0, which is also an interpolant because y ∈ VAB .

The following example shows that a partial interpolant need not be an interpolant.

Example 7. Consider the system CX = D in Example 3. A proof of unsatisfiability
for this system is R = [12 , 1

2]. Let AX = A′ be the first equation in CX = D, that is,
x − 2y = 0. Let BX = B′ be the second equation in CX = D, that is, x − 2z = 1.
Observe that VA\B := {y}, VAB := {x}, VB\A := {z}. In this case R1 = [12]. Thus,
the partial interpolant for the pair (AX = A′, BX = B′) is 1

2x − y = 0. Observe
that the partial interpolant is not an interpolant as it contains the variable y, which does
not occur in VAB . This is not surprising since we have already seen in Example 5 that
(x − 2y = 0, x − 2z = 1) cannot have an interpolant that is a LDE.

We now intuitively describe how to remove variables from the partial interpolant that
are not common to AX = A′ and BX = B′. In example 7 the partial interpolant is
1
2x − y = 0, where y /∈ VAB . We show how to eliminate y from 1

2x − y = 0 in order
to obtain an interpolant. We use modular arithmetic in order to eliminate y. Informally,
the equation 1

2x − y = 0 implies 1
2x − y ≡ 0 (mod γ) for any rational number γ. Let

α denote the greatest common divisor of the coefficients of variables (in 1
2x − y = 0)

that do not occur in VAB . In this example α = 1 (gcd of the coefficient of y). We know
1
2x− y = 0 implies 1

2x− y ≡ 0 (mod 1). Since y is an integer variable y ≡ 0 (mod 1).
We can add 1

2x − y ≡ 0 (mod 1) and y ≡ 0 (mod 1) to obtain 1
2x ≡ 0 (mod 1)

(note that y is eliminated). Intuitively, the linear modular equation 1
2x ≡ 0 (mod 1) is

an interpolant for (x − 2y = 0, x − 2z = 1). By using basic modular arithmetic this
interpolant can be written as x ≡ 0 (mod 2).

We now formalize the above intuition to address the case when the partial interpolant
contains variables that are not common to AX = A′ and BX = B′.

Theorem 2. Assume that the coefficient ai of at least one xi ∈ VA\B in the partial
interpolant (Equation 1) is not zero. Let α denote the gcd of {ai|xi ∈ VA\B}.
(a) α is an integer and α > 0.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 261

(b) Let β be any integer that divides α. Then the following linear modular equation Iβ

is an interpolant for (AX = A′, BX = B′).

Iβ :=
∑

xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and BX =
B′. It is obtained from the partial interpolant by dropping all variables occurring only
in AX = A′ (VA\B) and replacing the linear equality by a modular equality.

The complete proof can be found in [10]. Lemma 3 and Theorem 2 give us a sound and
complete algorithm for computing an interpolant for unsatisfiable systems of LDEs (see
[10] for algorithm pseudocode). In theorem 2, I1 is always an interpolant for (AX =
A′, BX = B′). For α > 1 theorem 2 allows us to obtain multiple interpolants by
choosing different β. For any β that divides α, Iα ⇒ Iβ and Iβ ⇒ I1.

4 System of Linear Modular Equations (LMEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for
LMEs. We first consider a system of LMEs where all equations have the same mod-
ulus l, where l is a rational number. We denote this system as CX ≡l D, where C
denotes an m×n rational matrix, X denotes a column vector of n integer variables and
D denotes a column vector of m rational numbers. The next theorem gives a necessary
and sufficient condition for CX ≡l D to have an integral solution.

Theorem 3. The system CX ≡l D has no integral solution for X if and only if there
exists a rational row vector R such that RC is integral, lR is integral, and RD is not
an integer. (The proof uses reduction to LDEs and is given in [10].)

Definition 3. We say a system of LMEs CX ≡l D is unsatisfiable if it has no integral
solution X . A proof of unsatisfiability for a system of LMEs CX ≡l D is a rational
row vector R such that RC is integral, lR is integral, and RD is not an integer.

Example 8. Consider the system of LMEs CX ≡8 D and a proof of unsatisfiability R:

CX ≡8 D :=

⎡
⎣

2 2
2 1
4 0

⎤
⎦

[
x
y

]
≡8

⎡
⎣

4
4
4

⎤
⎦

R = [14 , − 1
2 , − 1

8]
RC = [−1, 0]
lR = [2, −4, −1]
RD = − 3

2

Intuitively, CX ≡8 D is unsatisfiable because we can take an integer linear combina-
tion of the given equations using lR to get a contradiction 0 ≡8 −12.

Definition 4. (Implication) A system of LMEs CX ≡l D implies a LME AX ≡l B,
if every integral vector X satisfying CX ≡l D also satisfies AX ≡l B.

Lemma 4. For every integral row vector U the system of LMEs CX ≡l D imply
UCX ≡l UD.

262 H. Jain, E. Clarke, and O. Grumberg

4.1 Computing Interpolants for Systems of LMEs

Let AX ≡l A′ and BX ≡l B′ be two systems of LMEs such that AX ≡l A′ ∧
BX ≡l B′ is unsatisfiable. We show that (AX ≡l A′, BX ≡l B′) always has a LME
as an interpolant. Let R = [R1, R2] denote a proof of unsatisfiability for the system
AX ≡l A′ ∧ BX ≡l B′ such that R1A + R2B is integral, lR = [lR1, lR2] is integral,
and R1A

′ + R2B
′ is not an integer. The following theorem shows that we can take

integer linear combinations of equations in AX ≡l A′ to obtain interpolants.

Theorem 4. We assume l �= 0. Let S1 denote the set of non-zero coefficients of xi ∈
VA\B in R1AX . Let S2 denote the set of non-zero elements of row vector lR1. If S2 = ∅,
then the interpolant for (AX ≡l A′, BX ≡l B′) is a trivial LME 0 ≡l 0. Otherwise,
let S2 �= ∅. Let α denote the gcd of numbers in S1 ∪ S2. (a) α is an integer and α > 0.
(b) Let β be any integer that divides α. Let U = l

β R1. Then UAX ≡l UA′ is an
interpolant for (AX ≡l A′, BX ≡l B′). (The proof is given in [10].)

Example 9. Consider the system of LMEs CX ≡l D in Example 8. Let AX ≡l A′

denote the first two equations in CX ≡l D and BX ≡l B′ denote the last equation
in CX ≡l D. Observe that VA\B := {y}, VAB := {x}, VB\A := ∅. A proof of
unsatisfiability for CX ≡l D is R = [14 , − 1

2 , − 1
8]. We have R1 = [14 , − 1

2], lR1 =
[2, −4], R1AX is − 1

2x, S1 = ∅, S2 = {2, −4}, α = 2. We can take β = 1 or
β = 2 to obtain two valid interpolants. For β = 1, U = [2, −4] and the interpolant
UAX ≡l UA′ is −4x ≡8 −8 (equivalently x ≡2 0). For β = 2, U = [1, −2] and the
interpolant UAX ≡l UA′ is −2x ≡8 −4 (equivalently x ≡4 2).

4.2 Handling LMEs with Different Moduli

Consider a system F of LMEs, where equations in F can have different moduli. In or-
der to check the satisfiability of F , we obtain another equivalent system of equations
F ′ such that each equation in F ′ has the same modulus. This is done using a stan-
dard trick. Let m1, . . . , mk represent the different moduli occurring in equations in F .
Let m denote the least common multiple of m1, . . . , mk. We multiply each equation
t ≡mi c in F by m

mi
to obtain another equation m

mi
t ≡m

m
mi

c. Let F ′ represent the
set of new equations. All equations in F ′ have same modulus m. Using basic modu-
lar arithmetic one can show that F and F ′ are equivalent. Suppose F is unsatisfiable.
Then the interpolants for any partition of F can be computed by working with F ′ and
using the techniques described in the previous section. For example, let F represent the
following system of LMEs x ≡2 1 ∧ x + y ≡4 2 ∧ 2x + y ≡8 4. One can work with
F ′ := 4x ≡8 4 ∧ 2x + 2y ≡8 4 ∧ 2x + y ≡8 4 instead of F .

5 Algorithms for Obtaining Proofs of Unsatisfiability

Polynomial time algorithms are known for determining if a system of LDEs CX = D
has an integral solution or not [20]. We review one such algorithm that is based on the
computation of the Hermite Normal Form (HNF) of the matrix C.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 263

Using standard Gaussian elimination it can be determined if CX = D has a rational
solution or not. If CX = D has no rational solution, then it cannot have any integral
solution. In the discussion below we assume that CX = D has a rational solution.
Without loss of generality we assume that the matrix C has full row rank, that is, all
rows of C are linearly independent (linearly dependent equations can be removed).

The HNF of an m × n matrix C with full row rank is of the form [E 0] where 0
represents an m × (n − m) matrix filled with zeros and E is a square m × m matrix
with the following properties: 1) E is lower triangular 2) E is non-singular (invertible)
3) all entries in E are non-negative and the maximum entry in each row lies on the
diagonal. The HNF of a matrix can be obtained by three elementary column operations.
1) Exchanging two columns. 2) Multiplying a column by -1. 3) Adding an integral
multiple of one column to another column. Each column operation can be represented
by a unimodular matrix. A unimodular matrix is a square matrix with integer entries and
determinant +1 or -1. The product of unimodular matrices is a unimodular matrix. The
inverse of a unimodular matrix is a unimodular matrix. The conversion of C to HNF
can be represented as follows CU = [E 0], where U is a unimodular matrix, the sizes
of C, U, E are m × n, n × n, m × m, respectively and 0 represents an m × (n − m)
matrix filled with zeros (n ≥ m because C has full row-rank). The following result
shows the use of HNF in determining the satisfiability of a system of LDEs.

Lemma 5. (Corollary 5.3(b) in [20]) For C, X, D, E defined as above, CX = D has
no integral solution if and only if E−1D is not integral. (E−1 denotes the inverse of E.)

Example 10. For the system of LDEs CX = D in example 3 we have the following:

[
1 −2 0
1 0 −2

]

︸ ︷︷ ︸
C

⎡
⎣

1 2 −2
0 1 −1
0 0 −1

⎤
⎦

︸ ︷︷ ︸
U

=
[

1 0 0
1 2 0

]

︸ ︷︷ ︸
[E 0]

[
1 0
−1
2

1
2

]

︸ ︷︷ ︸
E−1

[
0
1

]

︸︷︷︸
D

=
[

0
1
2

]

︸︷︷︸
not integral

5.1 Obtaining a Proof of Unsatisfiability for a System of LDEs

If a system of LDEs CX = D is unsatisfiable, then we want to compute a row vector R
such that RC is integral and RD is not an integer. The following corollary shows that
the proof of unsatisfiability can be obtained by using the HNF of C.

Corollary 1. Given CX = D where C, D are rational matrices, and C has full row
rank. Let [E 0] denote the HNF of C. If CX = D has no integral solution, then E−1D
is not integral. Suppose the ith entry in E−1D is not an integer. Let R′ denote the ith

row in E−1. Then (a) R′D is not an integer and (b) R′C is integral. Thus, R′ serves as
the required proof of unsatisfiability of CX = D.

In example 10 the second row in E−1D is not an integer. Thus, the proof of unsatisfia-
bility of CX = D is the second row in E−1 which is [− 1

2 , 1
2].

Proofs of Unsatisfiability for LMEs: Let CX ≡l D be a system of LMEs. Each
equation ti ≡l di in CX ≡l D can be written as an equi-satisfiable LDE, ti + lvi = di,

264 H. Jain, E. Clarke, and O. Grumberg

where vi is a new integer variable. In this way we can reduce CX ≡l D to an equi-
satisfiable system of LDEs C′Z = D. The proof of unsatisfiability of C′Z = D is
exactly a proof of unsatisfiability of CX ≡l D (see the proof of theorem 3 in [10]).

If a system of LDEs or LMEs is unsatisfiable, then we can obtain a proof of unsat-
isfiability in polynomial time. This is because HNF computation, matrix inversion, and
matrix multiplication can be done in polynomial time in the size of input [20].

6 Handling Linear Diophantine Equations and Disequations

We show how to compute interpolants in presence of linear diophantine disequations.
A linear diophantine disequation (LDD) is of the form c1x1 + . . . + cnxn �= c0,
where c0, . . . , cn are rational numbers and x1, . . . , xn are integer variables. A system
of LDEs+LDDs denotes conjunctions of LDEs and LDDs. For example, x + 2y =
1 ∧ x + y �= 1 ∧ 2y + z �= 1 with x, y, z as integer variables represents a system of
LDEs+LDDs. We represent a conjunction of m LDDs as

∧m
i=1 CiX �= Di, where Ci is

a rational row vector and Di is a rational number. The next theorem gives a necessary
and sufficient condition for a system of LDEs+LDDs to have an integral solution.

Theorem 5. Let F denote AX = B ∧
∧m

i=1 CiX �= Di. The following are equivalent:
1. F has no integral solution
2. F has no rational solution or AX = B has no integral solution.

The proof of (2) ⇒ (1) in Theorem 5 is easy. The proof of (1) ⇒ (2) is involved and
relies on the following lemmas (see full proof in [10]). The first lemma shows that if a
system of LDEs AX = B has an integral solution, then every LDE that is implied by
AX = B, can be obtained by a linear combination of equations in AX = B.

Lemma 6. A system of LDEs AX = B implies a LDE EX = F if and only if AX = B
is unsatisfiable or there exists a rational vector R such that E = RA and F = RB.

We use the properties of the cutting-plane proof system [20,5] in order to prove lemma
6. The next lemma shows that if a system of LDEs implies a disjunction of LDEs, then
it implies one of the LDEs in the disjunction (also called convexity [17]).

Lemma 7. A system of LDEs AX = B implies
∨m

i=1 CiX = Di if and only if there
exists 1 ≤ k ≤ m such that AX = B implies CkX = Dk.

We use a theorem from [20] that gives a parametric description of the integral solutions
to AX = B in order to prove lemma 7. Let F denote AX = B ∧

∧m
i=1 CiX �= Di.

Using Theorem 5 we can determine whether F has an integral solution in polynomial
time. This is because checking if AX = B has an integral solution can be done in
polynomial time [20,5]. Checking whether the system F has a rational solution can be
done in polynomial time as well [17].

6.1 Interpolants for LDEs+LDDs

We say a system of LDEs+LDDs is unsatisfiable if it has no integral solution. Con-
sider systems of LDEs+LDDs F := F1 ∧ F2 and G := G1 ∧ G2, where F1, G1 are

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 265

Example Preds/Interpolants VINT2
ex1 y ≡2 1 2.72s
ex2 x + y ≡2 0 0.83s
ex4 x + y + z ≡4 0 0.95s
ex5 x ≡4 0, y ≡4 0 1.1s
ex6 4x + 2y + z ≡8 0 0.93s
ex7 4x − 2y + z ≡222 0 0.54s
forb1 x + y ≡3 0 -

(a)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

H
N

F
 (

se
co

nd
s)

Yices Black-box Use (seconds)

(b)

Fig. 1. (a) Table showing the predicates needed and time taken in seconds. (b) Comparing Hermite
Normal Form based algorithm and black-box use of Yices for getting proofs of unsatisfiability.

systems of LDEs and F2, G2 are systems of LDDs. F ∧ G represents another system
of LDEs+LDDs. Suppose F ∧ G is unsatisfiable. The interpolant for (F, G) can be
computed by considering two cases (due to theorem 5):

Case 1: F ∧G is unsatisfiable because F1 ∧ F2 ∧G1 ∧G2 has no rational solution. We
can compute an interpolant for (F, G) using the techniques described in [15,19,6]. The
algorithms in [15,19,6] can result in interpolants containing inequalities. We describe
an alternative algorithm in [10] that always produces a LDE or a LDD as an interpolant.
Case 2: F ∧G is unsatisfiable because F1 ∧G1 has no integral solution. In this case we
can compute an interpolant for the pair (F1, G1) using the techniques from Section 3.
The computed interpolant will be an interpolant for (F, G). It can be a LDE or a LME.

7 Experimental Results

We implemented the interpolation algorithms in a tool called INTeger
INTerpolate (INT2). The experiments are performed on a 1.86 GHz Intel
Xeon (R) machine with 4 GB of memory running Linux. INT2 is designed for
computing interpolants for formulas (LDEs, LMEs, LDEs+LDDs) that are satisfiable
over rationals but unsatisfiable over integers. Currently, there are no other interpolation
tools for such formulas.

Use of Interpolants in Verification: We wrote a collection of small C programs each
containing a while loop and an ERROR label. These programs are safe (ERROR
is unreachable). The existing tools based on predicate abstraction and counterexam-
ple guided abstraction refinement (CEGAR) such as BLAST [9], SATABS [1] are not
able to verify these programs. This is because the inductive invariant required for the
proof contains LMEs as predicates, shown in the “Preds/Interpolants” column of Fig-
ure 1(a). These predicates cannot be discovered by the interpolation engine [15,19] used
in BLAST or by the weakest precondition based procedure used in SATABS. The in-
terpolation algorithms described in this paper are able to find the right predicates by

266 H. Jain, E. Clarke, and O. Grumberg

computing the interpolants for spurious program traces. Only one unwinding of the
while loop suffices to find the right predicates in 6 out of 7 cases.

We wrote similar programs in Verilog and tried verifying them with VCEGAR [2], a
CEGAR based model checker for Verilog. VCEGAR fails on these examples due to its
use of weakest preconditions. Next, we externally provided the interpolants (predicates)
found by INT2 to VCEGAR. With the help of these predicates VCEGAR is able to show
the unreachability of ERROR labels in all examples except forb1 (ERROR is reachable
in the Verilog version of forb1). The runtimes are shown in “VINT2” column.

Müller-Olm and Seidl [16] propose an abstraction technique that can infer linear
invariants that are sound with respect to integer arithmetic modulo a power of 2. Their
work provides an alternative way of verifying the programs listed in Figure 1(a).

Proofs of Unsatisfiability (PoU) Algorithms: We obtained 459 unsatisfiable formulas
(system of LDEs) by unwinding the while loops for C programs mentioned above.
The number of LDEs in these formulas range from 3 to 1500 with 2 to 4 variables per
equation. There are two options for obtaining PoU in INT2. a) Using Hermite Normal
Form (HNF) (Section 5.1). We use PARI/GP [4] to compute HNF of matrices. b) By
using a state-of-the-art SMT solver Yices 1.0.11 [3] in a black-box fashion (along the
lines of [19]). Given a system of LDEs AX = B we encode the constraints that RA is
integral and RB is not an integer by means of mixed integer linear arithmetic constraints
(see [10]). The SMT solver returns concrete values to elements in R if AX = B is
unsatisfiable. The comparison between (a) and (b) is shown in Figure 1(b). There is a
timeout of 1000 seconds per problem. The HNF based algorithm is able to solve all
problems, while the black-box usage of Yices cannot solve 102 problems within the
timeout. Thus, the HNF based method is superior over the black-box use of Yices.

Note that the interpolation algorithms proposed in our paper are independent of the
algorithm used to generate the PoU. Any decision procedure that can produce PoU
according to definitions 1, 3 can be used (we are not restricted to using HNF or Yices).

8 Conclusion

We presented polynomial time algorithms for computing proofs of unsatisfiability and
interpolants for conjunctions of linear diophantine equations, linear modular equations
and linear diophantine disequations. These interpolation algorithms are useful for dis-
covering modular/divisibility predicates from spurious counterexamples in a counterex-
ample guided abstraction refinement framework. In future, we plan to work on interpo-
lating theorem provers for integer linear arithmetic and bit-vector arithmetic and make
use of the satisfiability modulo theories framework.

Acknowledgment. We thank Axel Legay and Jeremy Avigad for their valuable
comments.

References

1. SATABS 1.9 website, http://www.verify.ethz.ch/satabs/
2. VCEGAR 1.3 website, http://www.cs.cmu.edu/∼modelcheck/vcegar/

http://www.verify.ethz.ch/satabs/
http://www.cs.cmu.edu/~modelcheck/vcegar/

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 267

3. Yices 1.0.11 website, http://yices.csl.sri.com/
4. PARI/GP, Version 2.3.2 (2006), http://pari.math.u-bordeaux.fr/
5. Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, A., Voronkov,

A. (eds.) Handbook of Automated Reasoning, pp. 751–842 (2001)
6. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolation in satisfiability modulo theo-

ries. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50(5) (2003)

8. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957)

9. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL, pp. 232–244. ACM Press, New York (2004)

10. Jain, H., Clarke, E.M., Grumberg, O.: Efficient craig interpolation for linear diophantine
(dis)equations and linear modular equations. Technical Report CMU-CS-08-102, Carnegie
Mellon University, School of Computer Science (2008)

11. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

12. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIGSOFT
2006/FSE-14, pp. 105–116. ACM, New York (2006)

13. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-level. In:
FMCAD, pp. 85–89. IEEE, Los Alamitos (2007)

14. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

15. McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

16. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Trans. Program. Lang.
Syst. 29(5), 29 (2007)

17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

18. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log. 62(3), 981–998 (1997)

19. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

20. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, NY (1986)
21. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwen-

huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

http://yices.csl.sri.com/
http://pari.math.u-bordeaux.fr/

	Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
	Introduction
	Notation and Preliminaries
	Craig Interpolants

	System of Linear Diophantine Equations (LDEs)
	Computing Interpolants for Systems of LDEs

	System of Linear Modular Equations (LMEs)
	Computing Interpolants for Systems of LMEs
	Handling LMEs with Different Moduli

	Algorithms for Obtaining Proofs of Unsatisfiability
	Obtaining a Proof of Unsatisfiability for a System of LDEs

	Handling Linear Diophantine Equations and Disequations
	Interpolants for LDEs+LDDs

	Experimental Results
	Conclusion

