IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

ware and fault-tolerant computing. In 1979 he joined the Information Sci-
ences Institute of the University of Southern California, Marina del Rey,
where he has carried out research into hardware descriptive languages, em-
ulation of machine descriptions, and microcode verification. He is currently
supervising a project at USC-ISI, investigating strategies for the testing and
debugging of formal semantic definitions of programming languages. (in
particular, Ada) by transforming such definitions into executable program
objects. His current research interests include fault-tolerant computing, re-

771

liability modeling, formal semantics of programming languages, design-
automation of digital hardware, and the design of hardware descriptive lan-

_guages.

Dr. Kini is a member of the IEEE Computer Society and Phi Kappa
Phi.

Daniel P. Siewiorek (S’67-M’72-SM*79-F81), for a photograph and biog-
raphy, see page 671 of the July 1982 issue of this TRANSACTIONS.

Distributed Reconfiguration Strategies for Fault-
Tolerant Multiprocessor Systems

EDMUND M. CLARKE, MEMBER, IEEE, AND CHRISTOS N. NIKOLAOU

Abstract—In this paper, we investigate strategies for dynamically
reconfiguring shared memory multiprocessor systems that are subject
to common memory faults and unpredictable processor deaths. These
strategies aim at determining a communication page, i.c., a page of
common memory that can be used by a group of processors for storing
crucial common resources such as global locks for synchronization
and global data structures for voting algorithms. To ensure system
reliability, the reconfiguration strategies must be distributed so that
each processor independently arrives at exactly the same choice. This
type of reconfiguration strategy is currently used in the STAGE op-
erating system on the PLURIBUS multiprocessor [5]. We analyze the
weak points of the PLURIBUS algorithm and examine alternative
strategies satisfying optimization criteria such as maximization of
the number of processors and the number of common memory pages
in the reconfigured system. We also present a general distributed al-
gorithm which enables the processors in such a system to exchange
the local information that is needed to reach a consensus on system
reconfiguration.

Index Terms—Communication page, fault-tolerence, multipro-
cessor systems, reconfiguration strategies.

I. INTRODUCTION

HE use of multiprocessor systems in real-time applica-

tions, such as network or aircraft controllers, considerably
increases the reliability requirements of such systems. The
presence of multiple resources can potentially enable a mul-
tiprocessor system to continue functioning despite nonfatal
hardware errors. To achieve this goal, however, it is necessary
to develop adequate software to detect failures and, if possible,

Manuscript received October 6, 1981; revised January 21, 1982 and Feb-
ruary 16, 1982. This work was supported by the National Science Foundation
under Grant MCS-7908365 and by the U.S. Navy, Naval Electronic Systems
Command, under Contract N00039-78-G-0020.

E. M. Clarke is with the Center for Research in Computing Technology,
Harvard University, Cambridge, MA 02138.

C. N. Nikolaou is with IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598.

reconfigure the system into a reliable subsystem.

In this paper, we consider shared memory multiprocessors
where memory is partitioned into common memory, accessible
by all processors, and local memory associated with a partic-
ular processor and only accessed by that processor. We focus
our attention on two important classes of failures: memory
failures and processor deaths. Furthermore, we assume that
the memory failures never appear as arbitrary alterations of
memory contents, but rather as unaccessibility of parts of the
shared memory by some or all processors. Likewise, “death”
is the only symptom of malfunction that we assume for pro-
cessors. Failure of memory local to a particular processor will
appear as slowdown or death of the processor and will not be
considered.

In order to make such a multiprocessor system fault tolerant
it is necessary to develop strategies which, after the occurrence
of one or more memory failures or processor deaths, will permit
the processors to cooperate and agree on a reconfiguration of
the system. The resulting subsystem should be one, where all
participating processors can access all parts (pages) of par-
ticipating common memory, and therefore share common
resources.

An important first step in such a strategy is the determi-
nation of a communication page, a page of common memory
that can be used by a group of processors as a message area
while they attempt to arrive at a consensus on the appropriate
reconfiguration of the system through various voting proce-
dures. Determination of the communication page is compli-
cated by the fact that no processor can assume the existence
of global data structures or global locks for synchronization
until this page has been selected. This problem is solved by the
STAGE operating system on the PLURIBUS multiprocessor
[5] by means of a distributed algorithm which forces each:
processor in the reconfigured system to independently arrive

0018-9340/82/0800-0771$00.75 © 1982 IEEE

772

at the same choice of communication page and shut down those
processors which cannot see this page.

Since a given page of common memory will, in general, only
be visible to a subset of the processors, the choice of a com-
munication page can seriously affect the size of the reconfig-
ured system. Thus, it is important to develop criteria for
measuring the performance of alternative approaches for se-
lecting a communication page. The criteria that we have se-
lected deal with optimization of the two main system resources,
namely processors and pages of common memory:

1) maximization of the number of participating processors
in the resulting subsystem,

2) maximization of the number of pages of common
memory used by the participating processors,

3) maximization of the value of an arbitrary performance
function of both the processors and the pages.

In what follows, we analyze the algorithm used by PLU-
RIBUS for establishing a communication page. This algorithm
yields configurations with maximum number of common pages
if single faults are assumed. We show, however, that it does
not produce an optimum choice according to either of the first
two optimization criteria, in the case of multiple faults. Next,
we present a general algorithm which enables processors to
exchange private information. We show how this algorithm
can be used to develop reconfiguration strategies satisfying the
first two criteria. Finally, we prove that the decision problem
associated with the satisfaction of the third criterion is NP-
complete, and develop and analyze probabilistic algorithms
which yield system configurations approximating the maxi-
mum of special performance functions.

II. THE MODEL

Our multiprocessor model is loosely based on the PLURI-
BUS system [5] developed by Bolt Beranek and Newman as
a reliable, high-speed Interface Message Processor (IMP) for
the ARPANET. We expect, however, that our results are
applicable to many other shared memory multiprocessor sys-
tems. Fig. 1 gives an overview of the architecture of the
PLURIBUS system. The system is composed of the three
different types of buses (processor, memory, and [/O) joined
together by special bus couplers which permit units on one bus
to access units on another. Each processor bus contains some
number of processors together with their associated local
memory. The memory buses contain the pages of common
memory that are accessible to all processors; thus, each pro-
cessor bus is connected to every memory bus. The I/O buses

are used to provide an interface with various I/O devices and .

will not be considered in our model. We distinguish three
possible types of failures for such a configuration.

1) An individual processor can die or a processor bus can
fail.

2) Several pages of common memory or perhaps an entire
memory bus can fail.

3) A bus coupler connecting a processor bus and a memory
bus can fail.

In each case the effect of the failure is to change the set of
common memory pages that can be accessed by some set of
processors. We assume that each failure type can be detected

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

by some combination of hardware and software. A failed
memory bus, for example, will cause a hardware trap when a
processor attempts to access some word in a memory page on
the bus.

Consider a multiprocessor system where P = {p;, - -, p,}
is the set of processors with cardinality p,and M = {my,- -,
m,,} is the set of common pages with cardinality m. The sys-
tem-map or P-M graph is the binary relation

S = {(pi, m;)/pi accesses page m;}

that specifies which pages of memory can be accessed by each
processor. We will use a bipartite graph representation for the
relation S (see Fig. 2).

In order to describe groups of processors that can com-
municate with each other through one or more common pages
we also introduce the P-graph (see Fig. 3) which is defined by
the relation:

P= ‘(pia p])/

processors pj and p; can both access some page my}.

Let (P, My), -+, (Px, M}) be the bipartite connected
components of the P-M graph after a system failure has oc-
curred. In order for the processors to reach a consensus on an
appropriate configuration of the system, a communication
page ¢; must be selected for each component (P;, M;). In the
reconfigured system the bipartite connected components
(P;, M) will satisfy the following conditions.

1) Every processor in P; can access c;.

2) Every page in M; is accessible by all processors in P;.

Note that the second condition forces (P;, M;) to be a
complete bipartite graph.

Every processor of the multiprocessor system is assumed to
execute an infinite loop, alternating between application and
reliability code. Moreover, when a processor detects a failure,
it immediately starts executing the reliability code:

repeat

on error goto reliability code;
run application code;
run reliability code;

forever

We assume that the execution time of the application code
is much greater than the execution time of the reliability code.
Thus, it is reasonable to assume that all faults occur during
execution of the application code.

The reliability algorithms presented in the following sections
are implemented as Pascal programs. Each processor will
contain a copy of the relevant program in its local memory. In
order to distinguish between those data structures stored in
local and common memory we introduce the data types com-
monmemory:

type commonmemory = array [1..m] of commonpage;
and localmemory

type localmemory = array [1..p] of local page;

Both commonpage and localpage are ‘“‘records” in the
Pascal sense. They contain the information that is used by the
algorithm under consideration and are thus defined differently
in different sections of the paper. CM and LM are instances
of commonmemory and localmemory respectively; LM [i]

CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

represents the local memory of the ith processor and CM[i]
is the ith common page. '

Finally, we assume, as in PLURIBUS, the existence of a
global clock, which is reliable and can be reliably read by all
processors.

III. THE ALGORITHM USED IN PLURIBUS

Management of system configuration and recovery func-
tions on PLURIBUS is handled by the STAGE operating
system [5]. The routines of the operating system are organized
in levels or stages. The lowest level, or stage, is activated pe-
riodically, or when an error is detected. Each successive stage
is enabled to run only if all earlier stages have successfully
completed their system checks.

At one of the lowest stages of STAGE, a page in common
memory has to be designated, through which the processors
will communicate. The view taken by the PLURIBUS de-
signers is that common memory is a more valuable resource
than processors, since most applications require large global
data structures. Thus they permit the extreme case, where all
but one processor is turned off, as that one processor can access
most of the common memory.

We consider what happens when the stage which establishes
the communication page is activated. If a failure has occurred,
different processors may now access different parts of common

memory. A communications page ¢; must be selected for each:

bipartite connected component (P;, M;) of the P-M graph. The
PLURIBUS designers use the lowest indexed page in M; as
the communication page. The sets P; M in the reconfigured
system are then derived by the conditions in Section II.

We present below the algorithm used by PLURIBUS and
prove that it does indeed determine the communication page,
as defined above. We then present an example showing that,
in the case of multiple faults, the system reconfiguration in-
duced by this algorithm does not follow either of the first two
optimization criteria discussed in Section I.

Using the conventions described in Section I we define the
local and global data structures used by the algorithm. Let p
be the number of processors and m be the number of common
memory pages.

Common memory pages will have the following struc-
ture:

773

Seven processor busses

\V 3'
l] |

Two I/0 busses

Fig. 1. The PLURIBUS architecture.

monptr on all pages that it can access, then it repeats the first
phase of the algorithm a sufficiently large number of times to
prevent the disagreeing processors from changing common-
test.

The second phase of the algorithm is executed by each
processor that wants to change the value of commonptr in some
common page. The processor waits (sleeps) for some time
(approximately one minute in PLURIBUS). Then it examines
the associated value of commontest. If it is still true, the pro-
cessor unilaterally corrects the value of commonptr in this
page, provided that commonptr has not already been changed
to a lower value. A processor executing the second phase will
loop a sufficiently large number of times to make sure that it

type commonpage = record commonptr: integer;
commontest: array [1..p] of boolean

.end;

commonptr is a pointer to the communication page. com-
montest is a Boolean array whose jth entry is set to true if
processor j wants to change the value of commonptr and is set
to false if processor j agrees with the current value of com-
monptr.

During the first phase of the algorithm, each processor first
determines as its candidate communications page, the lowest
indexed common page that it can access. If processor i dis-
agrees with the value of commonptr on a certain page, it sets
the ith bit of commontest to true and goes to the second phase.
If it agrees with the value of commonptr, it sets the whole
commontest array to false. If it agrees with the value of com-

does not disagree with the value eventually assigned to com-
monptr. In Appendix I, we prove the correctness of the PLU-
RIBUS algorithm under timing constraints which relate the
number of iterations of the first and second phases of the al-
gorithm to the execution times of these phases.

An obvious question is whether the algorithm maximizes
the utilization of the two resources, processors and common
memory, or any combination of them. The reader can easily
verify that in the case of a single fault (a single bus or bus
coupler fails) the number of common pages is maximized.
The following example shows, however, that this is not true in
the case of multiple faults. Consider the memory configuration

774

M-set
P-set

5 \O
Fig.2. A P-M graph.

1

a 3
Fig. 3. Associated P-graph.
shown in Fig. 4: clearly, processors 1 and 2 have mycandi-
date = 3, while processors 3-7 have mycandidate = 5. The
algorithm turns off processors 3-7. Neither pages nor pro-
cessors are maximized. Maximization of the number of pro-
cessors would result, if only the second bus were used by all
processors. Common memory, on the other hand, would be
maximized by turning off processors 1 and 2.

IV. GENERAL ALGORITHM FOR PROPAGATING
INFORMATION IN RELIABLE SHARED MEMORY
MULTIPROCESSOR

A. Description of the Algorithm

In this section we present an algorithm for propagating local
information associated with a particular processor to all other
processors in the same connected component of the P-graph.
In subsequent sections this algorithm is used to distribute in-
formation about the establishment of a communication page
or system map. Our algorithm is conceptually similar to the
algorithm for propagating local information regarding changes
in the topology of a packet switching network that is discussed
in [6]. However, in our model the synchronization of individual
processors is considerably more complicated, since no message
passing primitives are available prior to establishment of the
communication page. In fact, an individual processor may not
even know the identity of its neighbors in the P-graph. We
assume that each processor has stored in its local memory an
item of information that it would like to distribute to all the
other processors; this item might be a list of the common pages
that the processor can access or information about the com-
munication page of a group of processors (see Section V).

In Appendix II, we describe the detailed structure of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

Three common busses

1| not accessible 5 9

accessible by

accessible by
processors 3---7

all processors 1---7 10

a

2| not accessible

accessible by
processors 1,2

4 8 12

Fig. 4. See example.

data types localpage and commonpage that are used by our
item propagation algorithm. Each localpage must provide
storage for all the items of all processors. Initially, it contains
only the item of its associated processor. Each commonpage
must also provide temporary storage for all items; in addition,
each will contain the variable proc__num, which gives the
number of processors that can access the page and two syn-
chronization variables count! and count2. Let CM and LM
be instances of common and local memory, respectively.

We next give a description of the distributed algorithm run
by each processor. Every processor loops through four phases,
labeled PI through P4, copying information from local
memory to common memory and vice versa until no more
items are copied in from the common memory. Finally, the
processor announces termination by incrementing the value
of a counter in all common pages that it can access.

initialize;

repeat

P1I: copy from local to common;

P2: wait for all neighbors in the P-graph to finish PI;

P3: copy from common to local;

P4: wait for all neighbors in the P-graph to finish P3;
until finished;

announce termination;

Fig. 5 shows a possible execution of the algorithm for a
multiprocessor system with four processors and six common
pages. During the initialization phase, each processor incre-
ments the value of proc__num and count2, and zeros count1
in all common pages that it can access. Thus, at the end of the
initialization phase, in each common page the proc__num
component will give the number of processors that can access
the page, countl will be zero and count2 will be equal to
proc__num. After a timeout to ensure that each processor has
finished, the processors begin copying information from local
to common memory and then from common to local memory.
The code for the four phases is given in Appendix II; an in-
formal description is given as follows.

PI1) Copy all new items to all accessible common pages;
increase count! by one in all accessible common pages.

P2) Wait until in all accessible common pages j,
CM{j]. countl = CM[j].proc__num; in all accessible com-
mon pages in which count? is still equal to proc___num, set
count?2 to zero.

P3) Copy all new items from all accessible common pages;
increase count2 by one in all accessible common pages.

P4) Wait until in all accessible common pages j,
CM[j]. count2 = CM{j].proc_nums; in all accessible com-

CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

Processors

775

Common Pages

ITERATION 1
COPY FROM LOCAL TO COMMON

4(eJeJe]se

Processors

Common Pages

ITERATION 1
COPY FROM COMMON TO LOCAL

Processors

ITERATION 2

Processors

Common Pages
ITERATION 2

COPY FROM LOCAL TO COMMON

Common Pages

COPY FROM COMMON TO LOCAL

Fig. 5.

Example execution of the general information propagation

algorithm.

mon pages in which count! is still equal to proc__num, set
count?2 to zero.

Phases PI through P4 are repeatedly executed until no new
items are brought in from the common memory in P3.

B. Analysis of the Algorithm

We use a global time frame to define the three functions
iteration, phase, and stage. Function iteration(p;, t) keeps track
of how many times the repeat loop has been executed (see
Section IV-A) by processor p; at time ¢. phase(p;, t) = PI, P2,
P3, or P4 depending on whether processor p; is executing code
in P1, P2, P3, or P4 at time ¢. Finally, we define stage to be
the function:

stage(p;,)=
case

iteration(pj, t) =i A phase(p;j,t) =P1 then4i —3
iteration(pj, t) =i A phase(p;,t) =p2 thendi—2
iteration(pj, t) =i A phase(p;j,t) = P3 then4i — 1
iteration(pj, t) =1 A phase(p;,t) = P4 then 4i

endcase
Lemma 1: Assume that processors p; and py can both access
some common page my,. Then, for all t,

|stage(pj, t) — stage(py,t)| <3

Moreover, when processor p; begins stage 4i + 3, processor
Pk must have finished stage 4i + 1.

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

This lemma shows that processors which are neighbors in
the P-graph can drift apart by at most three phases. Processors
which are not neighbors in the P-graph may be considerably
further out of phase.

The next lemma shows that the repeat-loops in phases P2
and P4 always terminate. Since these loops are the only places
where a processor waits, this lemma effectively establishes the
absence of deadlock.

Lemma 2: If processor p; can access common page my and
phase(p;, t) = P2(P4), with

CM[h).proc_num > CM[h].count] (CM[h].proc__num
> CM|[h].count2)

then there will be a time t' > t such that

CM|[h].proc_num = CM[h].count] (CM[h]).proc_num
= CM]|h].count?2)

and phase(p;, ') = P3(PI).
Proof: Given in Appendix I1.

The next theorem assures that at the end of the /th iteration,
processor p; will know the items of all processors within dis-
tance / in the P-graph.

Theorem I: If at time t stage(pj, t) = 4i, then processor p;
will know (i.e., have stored in its local memory) all items of
all processors py in the same connected component of the
P-graph such that the distance (i.e., the shortest path) be-
tween p; and py is less than or equal to i.

Proof: We will prove the theorem by induction on the
number of iterations.

Basis: iteration(p;, t) = I and stage(p;, 1) = 4. Att' <
t, when stage(p;, ') = 3, all neighbors of p; will have stored
in the common pages that they can access their private items.
Hence, at time ¢, p; will have stored in its local memory all
items of processors at distance /.

Induction Step: Assume that at time ¢, stage(p;, t) = 4i.
By the inductive hypothesis processor p; knows the items of
all processors at a distance / from p;. By Lemma 2 there will
be a time ¢/ < ¢, when processor p; begins execution of stage
4i + 3. By Lemma 1 all neighbors p; of p; will have finished
stage 4i + 1. Hence, for each p; there will be a time ¢, < ¢’/
when stage(py, tx) = 4i. By the induction hypothesis px must
know at time ¢, the items of all processors within distance i.
Thus, at time ¢’ each p; will have copied these values into
common memory. At time ¢;, when stage(p;, t;) = 4i + 4, p;
will have copied all new items from common memory and
therefore know all items within distance i + /. Q.E.D.

Theorem 2: Let C = {p\, -, pi} be processors forming a
connected component in the P-graph and vy, - -+, vy their
private values (items). Then, upon termination of the algo-
rithm the set {vy, - - -, v} is stored in the local memories of all
P Pk

Proof: Suppose that the until-clause evaluates to true at
the end of the jth iteration. By -inspection of P/ we note that
at its end the whole local update array is set to false. Fur-
thermore, at P3, for each mew item copied from common to
local (i.e., for each item k such that the local already[k] is

false), the corresponding update bit is set to true. Now, the only
way that the until-clause can evaluate to true is for all of the
bits of the update array to be false. It follows that during the
Jjth iteration no new items have been copied from the common
to the local memory of processors p;. Hence, using Theorem
1, we can deduce that there are no processors at distance j from
pi, and thus p; knows the items of all processors in C.
Q.E.D.

C. Complexity Issues

Because of Theorem 2, every processor p; terminates its copy
of the algorithm after p’ ,, iterations, where p‘ ,, is the max-
imum length of all shortest paths between p; and all other
processors in the same connected component of the P-graph.
It follows that there can be at most d iterations of the algo-
rithm, where d is the diameter of (a connected component of)
the P-graph. The next theorem specifies the minimum number
of failures (memory, processor, or bus coupler) necessary to
establish a P-graph with diameter 4. It assumes that the P-
vertices of the P-M graph represent processor buses and that -
the M-vertices of the P-M graph represent common memory
buses. Each common memory bus consists of several common
pages. An M-vertex is only deleted from the P-M graph when
the associated common memory bus fails or when all common
pages on the bus become inaccessible. Similarly, a P-vertex
is deleted when either the bus fails or all processors on the bus
die.

Theorem 3: Consider a complete P-M graph with p P-
vertices and m M-vertices. Let f,,;, be the minimum number
of faults required to achieve a P-graph of diameter d. Then
Smin(p, m, d)= -)

ifd =2 then m

elseif 2 <d < min(m,p — 1)thenm +p+d2—3d — 1.

Proof: Given in Appendix II.

It is clear from the above that even to augment the diameter
from 1 to 2, a considerable number of faults is required (for
p = l4and m = 10, we need 10 coupler faults to get d = 2 and
23 faults to get 4 = 3!). We can thus realistically assume that
no processor will have to iterate through the two copying
phases of the algorithm more than once or twice. Assuming
no contention when accessing common memory pages, we
observe that the time complexity of the two copying phases is

O(pm).

V. ESTABLISHING A COMMUNICATION PAGE

In this section we investigate optimal algorithms for deter-
mining a communication page. In Section V-A we present an
algorithm which maximizes the number of processors in the
reconfigured system. In Section V-B we describe an algorithm
which maximizes the number of common pages that can be
accessed by each processor in the reconfigured system. We
show in Section V-C that the general problem of optimizing
the value of an arbitrary performance function of both pro-
cessors and pages is NP-complete, and in Section V-D we de-
velop a probabilistic algorithm which yields a system config-

‘CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

uration approximating the maximum for a special performance
function.

A. Maximizing the Number of Processors

An obvious algorithm for maximizing the number of pro-
cessors is to use the item propagation algorithm from Section
IV to build a copy of the system map in the local memory of
each processor. An individual processor will use the system
map to determine the optimal choice for a communication page
and shut itself off if it cannot access that page. This approach
is inefficient for large multiprocessors where the system map
would have to be represented by a large bit array. In the al-
gorithm that we present below, it is only necessary to propagate
the values of two integers.

Let C = {py, -, px} denote the set of processors in some
connected component of the P-graph and let M be the set of
pages accessible by the processors in C. Define PA; to be the
set of processors that can access common page m; € M. The

cardinality of PA; will be denoted by |PA;|. Our goal is to

determine a common page m; € M for which | P4;| is maxi-
mum. If there is more than one page for which this is true, we
select the lowest indexed one.

Our algorithm is a straightforward application of the in-
formation propagation algorithm. After the initialization phase
and before starting iterating through the copying phases, every
processor determines the page, among those that it can access,
with the highest value of proc__num (proc__num again de-
notes, as in Section IV, the number of processors that can ac-
cess a particular common page). This value together with the
associated index of the common page is stored as the private
item of every processor. After termination of the information
propagation algorithm, every processor in C will have all the
information needed to determine the page m; € M for which
| PA;| is maximum. For example, in Fig. 6 processors py, pa,
D3, and p4 will propagate the pair (2, 4) as their private item
while processors ps, ps, and p; will propagate the pair (4, 3).
If a processor’s own item is different from (Mmax, | PAmax|)
(where my,,y is the lowest indexed common page for which
| PApax| is maximum), the processor will shut down. All
agreeing processors will be included in the reconfigured system.
Common memory of the reconfigured system will consist of
those pages accessible by all of the agreeing processors.

B. Maximizing the Number of Common Pages

Let C = {p,, - - -, px} be the set of processors in some con-
nected component of the P-graph. For every processor p; €
C, let M A; be the set of common pages that p; can access. In
order to maximize shared memory we must select a processor
pr € C,such that | MA}| is maximal. If there is more than one
such processor, we select the lowest indexed one.

The algorithm for determining pj is fairly simple. Each
processor p; determines the number of pages that it can access
and propagates this number to each of the other processors
using the item propagation algorithm. Processor p; will now
be able to realize that | M Ay | is maximum. To ensure that no
processor which can access all pages in M A}, is shut off, pro-

777

Processors

Pages

Fig. 6. Example interconnection for the algorithm 5.1.

cessor py, sequentially numbers all pages in M Ay. The highest
numbered page is indicated by a special marker. After waiting
for a reasonable amount of time, the other processors will shut
down, if they cannot see all of the numbered pages in MA4j. By
convention, the lowest indexed page in M A, will be designated
as the communications page. The code for this distributed
algorithm is straightforward and will be left to the reader. In
the example of Section V-A, our algorithm will correctly select
page 5 as the communication page. The reconfigured system
will consist of pages 5-12 and processors 3-7.

C. Maximizing a General Performance Function

- The algorithms in Sections V-A and V-B may result in un-
reasonable system configurations. Algorithm 5.1 might force
all processors to run with only one page of memory, and al-
gorithm 5.2 might permit only one processor to run on the
whole common memory. A better tradeoff between compu-
tation speed and memory might be obtained by maximizing
a function f(p, m) which assigns a performance value to each
configuration of p processors and m common pages in which
every processor can access each memory page. Unfortunately,
even if every processor has the system map stored in its local
memory the problem of determining the optimal configuration,
using a sequential algorithm, will probably require exponential
time.

Theorem 4: The following problem is NP-complete.
“Given a P-M graph, a table defined function f and a con-
stant c, is there a configuration with p processors and m
common pages such that f(p, m) > ¢?”
Proof: The balanced complete bipartite subgraph
(BCBS) problem [2].

“Given a bipartite graph G = (V, E) and a positive inte-
ger k < | V], are there two disjoint subsets V3, Vo, = V

778

such that | V1| = |V,| = k and suchthatu € V,v € V>
implies that {u, v} € E”

is NP-complete and can be reduced to our problem.

To reduce the BCBS to our problem, consider a graph G and
a positive integer k. Consider also a function (| V1], | V2|) such
that

Sqnil, 1vah=
if |Vi| = |Va| =k thena > ¢

elseb <c

where a and b are fixed integers and c is the constant in our
problem. An algorithm to solve our problem for P-M graph
G, performance function f and constant ¢, would solve the
BCBS for graph G and constant k. Since this transformation
can be made in polynomial time and our problem is in NP, it
follows that our problem is NP-complete. Q.E.D.

D. A Probabilistic Algorithm for a Special Performance
Function

A realistic assumption about the performance function is
that it favors configurations (i.e., complete bipartite subgraphs
of the P-M graph), where the ratio of the number of processors
to the number of common pages is approximately equal to p/m
where p is the number of processors and m is the number of
common pages.

We show how the probabilistic algorithm proposed in [3]
for finding cliques in general graphs can be modified to find
complete bipartite subgraphs in a large P-M graph, which on
the average enjoy the aforementioned property. The modified
algorithm assumes that each processor has access to the entire
system map. The algorithm in [3] works as follows.

Let G be the input graph and let {/1, I, - - -} be a set of distinct
labels. We randomly number the vertices of G and associate
label /; with vertex 1. We examine the remaining vertices in
increasing order, associating label / /; with vertex i (2 <i < n)
if j is the least integer such that all vertices labeled /; are joined
(in G) toi. The output of the algorithm is one of the resulting
cliques (for example, the biggest one) and can be expected to
be half the size of the maximal clique [3].

The P-M graph cannot be directly used as input for the al-
gorithm since a bipartite graph does not have any cliques
(except for trivial 2-vertex ones). By adding dummy edges it
is possible to temporarily mask this property of the P-M graph
from the algorithm, while, at the same time, maintaining the
random graph model used for the analysis of the algorithm in
[3]. A random graph, as defined in [3], is a graph G with vertex
set{l,2, -, n}and asetof edges E such that the probability
that an edge connects any two vertices of G is g and is inde-
pendent of the probability that any other pair of vertices is
connected with an edge. Let g be the probability with which
a processor is connected to a page in the P-M graph. We
connect the P-vertices with each other and the M-vertices with
each other with probability g, thus obtaining a random graph
R. The algorithm can now be applied to'R, to obtain a clique
C. By deleting the dummy edges from C a complete bipartite
subgraph of the P-M graph will be obtained. '

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

Theorem 5: Let C be the clique formed by the algorithm on
input graph R. Let s be the number of P-vertices and t be the
number of M-vertices in C. Also, let \ = p/m where p is the
number of P-vertices and m is the number of M-vertices, in
the original P-M graph. Then

E(s)/E(t) = Aand o(s)/a(z) = 1

Proof: s and t are random variables following the hyp-
ergeometric distribution (see Drake [1]). Thus, we have

E(s) =p(s+1)/(p+m)
E@)=m(s+t)/(p+m)

So,
E(s)/E(t) = p/m = .
Also
o(s) = a(?)
=pm@+t)p+m—s—0)/(p+m(p+m-1)
So,

a(s)/a(t) = 1. Q.E.D.

Note that the independence assumption in [1] will be vio-
lated by failure of an entire memory bus. In order for our
analysis to be realistic, the probability of a memory bus failure
must be negligible. Alternatively, the algorithm could be ap-
plied to a P-M graph in which the M-vertices correspond to
memory buses rather that individual memory pages.

V1. CONCLUSION AND OPEN PROBLEMS

Algorithms have been presented in this chapter for recon-
figuring shared memory multiprocessor systems under various
optimization criteria. We are currently developing an ana-
lytical model for the behavior of the item propagation algo-
rithm which will permit accurate estimates of execution time
as a function of system parameters such as number of pro-
cessors and number of pages of common memory.

Another area of current research is the development of ap-
propriate optimization criteria for various classes of multi-
processor applications. It seems likely that either processors
alone or memory alone will be insufficient for most applica-
tions. The results of Sections V-C and V-D show that ap-
proximate or probabilistic algorithms will be useful in finding
optimal system configurations whenever the performance
criterion is nontrivial. Finally, we are attempting to extend our
algorithms, using techniques similar to those discussed in [4],
so that malfunction (i.e., erratic behavior) of processors and/or
common memory is allowed.

APPENDIX I
ANALYSIS OF THE PLURIBUS ALGORITHM

Processor i maintains the following variables in its local
memory.

1) A Boolean array called mycmmap[i] whose jth entry
is true if processor i can access the jth common page and is
false otherwise.

CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

2) An integer variable mycandidate which is assigned the
minimum page index among all indexes of pages which can be
accessed by processor i:

mycandidate = min{j/mycmmap|j] = true},

3) A Boolean variable next which is initially false and be-
comes true iff processor i wants to execute the second phase
of the algorithm.

4) An integer variable oldcommonptr which is assigned the
old value of commonptr, whenever processor i wants to change
the value of commonptr.

Thus local pages have the structure

type local page = record mycmmap:
array [1..m] of boolean;
mycandidate: integer;
next: boolean;
oldcommonptr: integer;
end;

As in Section I1 let CM and LM be instances of type com-
monmemory and localmemory, respectively:

first__phase: with LM[me] do

begin next := false;
for k := 1.. num__iterations1 do
begin
forall i := mycandidate..m
such that mycmmap[i] do
begin with CM{i] do
if commonptr = mycandidate
then for j:= 1..pdo
commontest[j] := false
else begin
oldcommonptr := commonptr;
commontest[me] := true;

next := true;
end;
if next then goto second__phase;
end;

“end.
Some notation in the code above needs explanation; in order
to shorten notation and increase readability we introduce the
control structure:

forall {index-var) := (expl)..{exp2)
such that (boolean exp) do (for-body);

with. the following semantics: for every value of the index
variable starting from {exp!) with increments of 1, the value
of the Boolean expression is evaluated. If the result is true, then
the (for-body) is executed. If the result if false, then the
(for-body) is not executed for this value of the index vari-
able.

We assume that assignment statements are indivisible
atomic actions. We use the notation “{compound statement)”
to indicate that “compound statement” is indivisible and must
be executed without interruption:
second__phase: sleep(time);

with LM[me] do
for j := 1..num__iterations2 do
forall i := mycandidate..m

779

such that mycmmapli] do
with CM[i] do
(if commontest[me]
and :
((oldcommonptr = commonptr)
or
((oldcommonptr # commonptr)
and
(mycandidate < commonptr)))
then commonptr := mycandidate
else turnoff(me));

The indivisibility of the conditional in the code above, is
required to avoid a race condition, where two processors with
different values of mycandidate (both different from old-
commonptr) both alter the value of commonptr, but neither
is turned off. This can be easily implemented as a test-and-set
operation on the vaiables commontest[me] and com-
monptr.

In order to prove the correctness of the algorithm and ana-
lyze its performance we make the following assumptions.

1) When the algorithm begins executing, the values of
commonptr in all pages are consistent, i.e., they all point to the
same page. This page may not be accessible by some or all
processors, however.

2) The following time constants have been accurately de-
termined from empirical data.

a) Dty max is the time required by each processor to run the
first phase of the algorithm ence (in general, the first phase can
be executed num__iterationsI times). Observe that D?| pax
is difficult to determine, as there may be several processors
executing the first phase. These processors will compete for
use of the common pages and will consequently be delayed
while waiting for each other. Hence Dt ,,,x can best be
thought of, as the maximum time for a single processor to
execute the first phase once, under worst case scheduling
conditions. Dt;,,,, is similarly defined for the second
phase.

b) Dt} min is defined to be the minimum time required by
a single processor to execute the first phase once, assuming the
best possible scheduling conditions (i.e., the processor never
waited while trying to access a common page). D5 i is
similarly defined.

¢) D.is the maximum initial delay for each processor before
starting the execution of the algorithm, given that at least one
processor started.

d) Finally, time is the sleeping time of each processor
waiting to execute the second phase of the algorithm.

Call a processor an agreeing processor, if it agrees with the
values of commonptrs on all pages it can access; otherwise call
it a disagreeing processor. Now, define the following relation
on the set of processors P = {p1,- -, pn}

R = {(phpj)/

the values of mycandidate are equal for p; and p;}.

R is an equivalence relation. Let Cy, - - -, Ck be its equiva-
lence classes. By convention we assume that if { < j the value
of mycandidate for all processors in C; will be less than the
corresponding value for all processors in C;. Cy will be the

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

equivalence class of all agreeing processors (if any). Let
Ny, -+, Ni be sets defined as follows:

N; = {j/common page j can be seen by some processor in
Cil

The equivalence classes C, - - -, Ci correspond to cliques
in the P-graph, since for any two processors p; and p; in Cj,
there is at least one page that they can both access, namely the
one pointed to by mycandidate. When processor p; is turned
off a new P-graph is formed such that node p; is deleted as well
as all edges incident to it. Thus, the algorithm reduces the
equivalence classes Cy, - - -, Cx to new sets Cp, - - -, C, some
of which may be empty.

Theorem 6: Assume that prior to the execution of the al-
gorithm

1) the values of all commonptrs are consistent in all
common pages, i.e., they all point to the same common page,
and

2) all memory faults have already occurred, and no faults
will occur during execution of the algorithm

num__iterations1 = (D + Dt ;105)/Dt1 min
D + Dty jox < Dty pin + time
num__iterations2 =

(D + Dtl,max - Dtl,min + Dt2,max)/Dt2,min-

Then, after execution of the algorithm:

1) if a processor p; € C; was connected in the P-graph to
some p; € Cj such that j < i, then p; will be turned off,
and

2) inevery N;such that C;is nonempty, all pages have the
same value for commonptr.

Proof:

1) Consider a processor p; € C; connected in the P-graph -

to a processor p; € C;, such that j < i. We distinguish two
cases.

Case 1: Assume p; is an agreeing processor, i.e., C; = C\.
Then p; will start looping on the first phase of the algorithm
for a num__iterations! times, while p; will exit the first phase
(as next becomes true) and sleep for time units of time. We
have to make sure that the following two events never
occur:

a) p;, being very fast, immediately starts executing the
first phase, sleeps for a while, and then executes the second
phase, without giving p; a chance to execute the first phase.
To ensure that this does not happen, it should be the case
that '

D+ Dtl,max < Dtl,min + time

which is an assumption of the theorem.

b) p;:, being very slow, begins execution of the algorithm
with a delay of D units of time, executes the first phase in
Dt pmax units of time and then goes to sleep. However, p;,
which entered immediately, looped through the first phase for
less than D + Dt 45 units of time, thus not being able to reset
the jth bit of commontest, set by p;. To avoid this event, it
should be the case that ‘

num__iterationsl X Dty ;uin 2 D + Dt} y0x

which is an assumption of the theorem.

Case 2: p; is not connected to an agreeing processor in the
P-graph. It will thus execute the second phase and will try to
change the value of commonptrs. However, p; is connected to
a pj in the P-graph such that j <i. Hence we must prove that
pi will eventually turn itself off, or equivalently that the fol-
lowing two events will never occur:

a) pj, being too fast, will first change the value of com-
monptr. In this case, however, p; will turn itself off, as the
condition in the second phase of the algorithm is evaluated to
false.

b) pj, being too slow, will change the value of commonptr
after p; stops looking on the second phase. For this event not
to occur, it should be the case that

D + Dty pyax + TIME + Dt} pyox
=< Dty min + TIME + num__iterations2 X Dty pn

which reduces to the last assumed inequality of the the-
orem.

2) Suppose that there were a page r in INV; whose value
of the commonptr is not equal to that of mycandidate for all
processors in C;, where C; is nonempty. Call the former value
v; and the latter v,. We distinguish two cases.

Case 1: vy < ;. Then, there should be a processor p; with
mycandidate = vy which is connected in the P-graph with a
processor p; in C; that can access r. This processor belongs to
a class C} such thatj < i and by the first part of the theorem,
it should have turned processor p; off, a contradiction.

Case 2: v; > v,. Again, a processor py should exist with
mycandidate = v; which is connected in the P-graph with a
processor p; in C; that can access r. This processor belongs to
a class C; such that j > i. By the first part of the theorem py
should have been turned off by p;. By inspection of the code
for the second phase, it is clear that p; will turn itself off, only
if it disagrees with the value of commonptr in page r, a con-
tradiction. Q.E.D.

APPENDIX II

PROOFS RELATED TO THE INFORMATION
PROPAGATION ALGORITHM OF SECTION IV

A common memory page is here defined as follows:

type commonpage = record info: array [1..p]
of item;
update: array [1..p]
of boolean;
‘proc__num: integer;
countl: integer;
count2: integer;
termcount: integer;

end;

Entry info[i] stores the item local to processor i; item might
be a list of the common pages that a particular processor can
access or information about the communication page of a
group of processors (see Section V). The update component
is introduced for efficiency reasons: a processor will never need

CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

to copy to local memory any entry in the info array for which
the corresponding update bit is false. The number of processors
that can access the page is stored in proc__num and is deter-
mined during the initialization phase of the algorithm. Finally,
countl and count2 are synchronization variables and term-
count is a counter used to announce termination.

Local pages will have the following structure:

type local page = record info: ' array [1..p]
of item;

already: array [1..p]}

of boolean;’

update: array [1..p]

of boolean;

mycmmap: array [1..m]

of boolean;

done: boolean;

finished: boolean;

end;

Here, the info and update components are used as in a
commonpage. The bits of already are set whenever an item
is received in the local memory. The Boolean array mycmmap
has its ith bit set if the processor owning the localpage can
access the ith common page. The Boolean done is used to
signal the end of a copying phase and the Boolean finished
signals the end of all copying phases.

Let CM and LM be instances of common and local memory,
respectively.

During the initialization phase the system function setup
sets the bits of the mycmmap array corresponding to pages
accessible to processor “me.” Function initialize puts the
private item in the local info array. The number of active
processors able to access a particular page is assigned to
proc__num. Every processor increments the value of
proc__num and of count?2 (initial values are zero; at the end
of the algorithm they are reset to zero), and it zeros countl,
for all pages it can see and then waits for a reasonable time
until all processors finish. Finally, the appropriate bit of the
update array is set to true to indicate that local info[me]
contains new information which has to be copied to common
memory:

with LM[me] do
begin
setup (mycmmap); initialize (info[me]);
forall j := 1..m such that mycmmaplj] do
with CM[j] do
begin
proc__num := proc__num + 1;
countl := 0; count2 := count2 + 1;
_end;
sleep(time);
update[me] := true; already[me] := true;
end;

Next, every processor begins copying information from local
to common memory and then from common to local

memory.
In Phase P!, information is copied from the local to the

781

common memory, finished is tentatively set to true; but it
becomes false in P3 if new items are copied into local memory.
Every processor selects the next page to access in a random
manner so as to minimize contention with other processors.
This random selection is implemented through the two (local)
functions empty and getnext. empty is a Boolean function
which returns true if the calling processor still has pages to
access. getnext is a function returning the index of the next
page to be accessed. This page is randomly selected among
those pages which are accessible but have not yet been accessed
by the calling processor. After selecting a page the processor
copies from local to common memory all new items in its local
memory, and increases the value of the synchronizaiton vari-
able countl by one:

“copy from local to common” stands for

PI: LM[me].finished := true;

while not (empty(me)) do
begin
current := getnext(me);
with CM|[current] do
begin
forall k := 1..p such that
LM[me].update[k] do
begin
info[k] := LM[me].info[k];
update[k] := true;
end;
countl := countl + 1;
end;
endwhile;
clear (LM[me].update);

In phase P2, the processor waits until all processors which
access at least one of the pages it can access, are finished with
phase PI. It then initializes the second synchronization vari-
able count? to zero, provided that no other processor has al-
ready done so. Note that this must be an indivisible test-and-set
operation to avoid the situation where two processors realize
that CM{j].proc__num = CM{[j].count2, one of them sets
count? to zero, proceeds to P3, increases count2 by one, and
then the other processor wakes up and incorrectly resets count2
to zero:

P2: with LM[me] do

begin
repeat
done := true;
forall j := 1..m such that mycmmap[j] do
done := done and
(CM{j].countl = CM[j].proc__num);
until done;
forall j := 1..m such that mycmmap[j] do
(if CM[j].proc__num = CM[j].count2
then CM{[j].countl := 0);
end;

In phase P3, copying from common to local memory is
performed. This phase is symmetric to P1, except for the fact
that the processor does not recopy into its local memory items,
which were already there:

“copy from common to local” stands for

P3: while not (empty(me)) do

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

begin
current ;= getnext(me);
with CM[current] do
begin
fork:=1.pdo
if update[k] and not :
(LM[me].already[k]) then
begin
LM|[me].info[k] := info[k];
LM[me].update[k] := true;
LM|[me].already[k] := true;
LM[me].finished := false;
end;
count2 := count2 + 1;
end;
endwhile;

Finally phase P4 is similar to phase P2. Processor i waits
until all other processors accessing common pages that i can
access, have finished copying:

P4: with LM [me] do

begin
repeat
done := true;
forall j := 1..m such that mycmmap[j] do
done := done and
(CM[j].count2 = CM[j].proc__num);
until done;
forall j := 1..m such that mycmmapl[j] do
begin
(if CM[j].proc__num = CM[j].countl
then CM{[j].countl := 0);
clear (CM[j].update);
end;
end;

Phases P! through P4 are repeatedly executed until the
Boolean variable finished remains true throughout execution
of P1, P2, P3, P4, i.e., until no new items are brought in from
the common memory in P3. A termination phase is then exe-
cuted, where the processor increases the value of the counter
termcount in all accessible common pages. It then waits until
the value of termcount becomes equal to proc__num in all
accessible common pages. Finally it clears the parts of local
and common memory that are used by the information prop-
agation algorithm.

while not empty(me)) do

begin
current := getnext(me);
with CM[current] do termcount := termcount + 1;

end;
with LM[me] do
repeat
done := true;

forall j := 1..m such that mycmmap[j] do
done := done and
(CM[j].countl = CM[j].proc__num);
until done;
clear(LM[me]); clear(CM);
Proof of Lemma 2: Assume the contrary, i.e., assume that
at all times ¢’ 2 ¢, phase(p;, t’) = P2(P4) and

CM|[h].proc__num > CM[h].count] (CMth].proc__num-
> CM[h].count2)

Let stage(p;, t’) = 4i — 2(4i). As processor p; cannot start
stage 4i — 1(4i + 1) (or equivalently phase P3(PI) of the
i(i + I)th iteration), there must exist, by Lemma 1 at least one
processor p; which has not yet finished stage 4i — 3 (4i — 1)
‘(or equivalently phase PI(P3) of the ith iteration). If processor
Pk is already in stage 4i — 3 (4i — 1), nothing will prevent it
finishing it, thereby increasing the value of count! (count2)
by one and making it equal to proc__num in page my. Thus,
Pk must be waiting in stage 4/ — 4 (4i — 2), because, in some
page my,

CMn].proc__num > CM[n].count2 (CM|[n).proc_num
> CM|[n].countl)

Moreover, m, must be different from m;,; if they were equal,
pj could not possibly have progressed to a higher stage than
Pk, contrary to our hypothesis. By a similar argument, we can
find another processor p,, waiting in stage 4i — 6 (4i — 4), for
which py, is waiting. We can thus construct a chain of (pairwise
distinct) processors (p; =)pi,pi," * * Pi and a chain of (pairwise
distinct) common memory pages (my, =)mjimjz - - - mj; such
that for all ¢/ > t:

stage(pi,, t') = 4i — 2n (stage(p;,, t')
=4i—-2(n—1)),n=1

CM{j,).proc__num > CM|[j,].countl
(CM|j,).proc__num > CM|[j,).count2)

for r odd, and

CM{j,).proc—num > CM|j,].count?2
(CMTj,).proc—num > CM|j,].countl)

for r even.

Observe, however, that these two chains must be finite. In
fact, both chains cannot be longer than 2{(2i + 1) since for all
ij processor p;;,, is waiting at a stage, which is two stages lower
than the stage where p;; is waiting. Thus, we distinguish three
cases.

1) min(p, m, 2i —1) = p: Processor p;, does not have to
wait for any processor and can proceed—a contradiction.

2) min(p, m, 2i — 1) = m: The length of the chain of
common memory pages must be less than m, since the pages
in the chain are distinct. Thus p;, will be able to proceed—a
contradiction as in the first case.

3) min(p,m, 2i — 1) = 2i — 1: Processor p;, is just starting
execution of the algorithm and does not have to wait—also a
contradiction.

In each case, we conclude that our initial assumption was
false and that there is a time ¢’ > ¢ such that

CM|h].proc_num = CM|[h].countl
(CM|[h].proc_num = CM|j].count2)

Q.E.D.

CLARK AND NIKOLAOU: STRATEGIES FOR MULTIPROCESSOR SYSTEMS

783

Qq

Fig. 7.

Proof of Theorem 3: Let Q be the P-graph of diameter
d, obtained from the original complete P-graph by the minimal
number of faults. Let r be a processor bus which is at distance
d from some other processor bus in the graph. Let Q;(0 <i <
d) be the set of processer buses at distance i from r and let g;
be the cardinality of Q; (thus, Q¢ = {r} and go = 1). By our
assumption on the minimality of faults we see that every pro-
cessor bus in Q; should be connected to all processor buses in
Qi+1 for O < i =d — 1. Let G be the P-M graph corre-
sponding to Q and let B;(I < i < d) be the set of common
memory buses connecting Q;—; and Q; in G (see Fig. 7). De-
note the cardinality of B; by b;. By the same minimality
argument, each common memory bus in B; must be connected
to such processor bus in Q;—; and Q;.

Let f,, be the number of common memory bus faults, f,, the
number of processor bus faults and £, the number of bus cou-
pler faults, required to obtain G. The following inequalities
obviously hold:

1t tqa=p—fp—1,
b+t bi=m—fn,

0<fp<p-—-d-1

0<fn<m-—d

We consider first the special case where d = 2. In this
case '

Qtq=p—fr—1, hitbr=m—f,
and the number of bus coupler faults is
Je=b1+ q2bs.

Thus the total number of faults is

S, 6,2) = fo+ fon + fo = fo + fn + b1 + q2bs.

==

For the proof of the complexity theorem.

This expression is minimized for f, = 0, f,, = 0, g = I; thus

fmin(qs b; 2) = b
Next, we consider the case where d > 2. Let

Si=b1+b2+"'+b,'_1+b[+2+"'+bd(1 SlSd)

The number of bus coupler faults required to reduce the
complete P-M graph to G is given by

Je=(b2+---bg) + q1S1+ q2S2+ -+ qa-1Sa-1
+ gab1 + qaSa.

We claim that the following assignment of values minimizes
flg, b, d):

Sm=m-—d, fp=p—d-—1

b1="'=bd=l, q1=---=qd=1‘
With this assignment, the number of bus coupler faults is
fe=dd-1)

and the total number of faults is
Smin(q, b,d) =m+p+d?—3d—1.
Thus, we have to prove that
14, b,d) Z fimin(q, b, d).
First observe that S; = d — 2. Hence,

flg,b,d)=fpo+fm+ /e
Zf;,+fm+b2+"'+bd+qdb1
+@-2)p—fp—1—qa) +qad—2)
2m+pd-—2)—fp(d—3)—(d—2).

784

Since f; < p —d — 1, it follows that

g b 2)=zmtptds—3d—1 Q.E.D.

ACKNOWLEDGMENT

The authors wish to acknowledge the help of O. Shmueli,
J. Reif, J. Robinson, and E. Roberts.

REFERENCES

[1] A. Drake, Fundamentals of Applied Probability Theory. New York:
McGraw-Hill, 1967. .

[2] M.R. Garey and D. S. Johnson, Computers and Interactibility: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1979

[3] G.R.Grimmetand C.J. H. McDiarmid, “On coloring random graphs,”
Proc. Camb. Phil. Soc., vol. 77, p. 313, 1975.

[4] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. Ass. Comput. Mach., vol. 27, p. 2, Apr. 1980.

[5] J. G. Robinson and E. S. Roberts, “Software fault-tolerence in the Plu-
ribus,” in Proc. Nat. Comput. Conf., 1978.

[6] W. D. Tajibnapis, “A correctness proof of a topology information
maintenance network,” Commun. Ass. Comput. Mach., vol. 20, July
1977.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 8, AUGUST 1982

Edmund M. Clarke (M’80) received the B.A. de-
gree in mathematics from the University of Vir-
ginia, Charlottesville, in 1967, the M.A. degree in
mathematics from Duke University, Durham,
NC, in 1968, and the Ph.D. degree in computer
science from Cornell University, Ithaca, NY,
1976.

After leaving Cornell, he taught in the Depart-
ment of Computer Science, Duke University, for
two years. In 1979 he moved to Harvard Universi-
ty, Cambridge, MA, where he is currently an As-
sistant Professor of Computer Science in the Division of Applied Sciences.
His interests include distributed systems, programming language semantics,
and theory of computation.

Dr. Clarke is a member of the Association for Computing Machinery,
Sigma Xi, and Phi Beta Kappa.

Christos N. Nikolaou received the diploma in elec-
trical and mechanical engineering from the Na-
tional Technical University of Athens, Greece, in
1977 and the M.S. and Ph.D. degrees in applied
mathematics and computer science from Harvard
University, Cambridge, MA, in 1979 and 1982 re-
spectively.

In October 1981, he accepted a postdoctoral po-
sition at the IBM T. J. Watson Research Center
where he is currently conducting research on net-
work reliability problems.

Some New Results About the (d, k) Graph
Problem

GERARD MEMMI AND YVES RAILLARD

Abstract—The (d, k) graph problem which is a still open extremal
problem in graph theory, has received very much attention from many
authors due to its theoretic interest, and also due to its possible ap-
plications in communication network design. The problem consists in
maximizing the number of nodes » of an undirected regular graph (d,
k) of degree d and diameter k. In this paper, after a survey of the
known results, we present two new families of graphs, and two methods
of generating graphs given some existing ones, leading to further
substantial improvements of some of the results gathered by Storwick
[21] and recently improved by Arden and Lee [3] and also by Imase and
Itoh [11].

Index Terms—Communication network, diameter minimization,
(d, k) graph, graph generating operations, graph theory, Moore
graph.

Manuscript received February 26, 1980; revised July 20, 1981 and February
1, 1982.

G. Memmi is with the Central Research Laboratory, Thomson-CSF, Orsay
Cedex, France.

Y. Raillard is with Thomson-CSF Telephone, Boulogne-Billaucourt,
France.

I. INTRODUCTION

APID advances in very large scale integrated circuit
technology have stimulated a great interest in micro-
processor networks. In such networks, minimizing the distance
between every couple of microprocessors obviously leads to
more efficient communication networks (reducing delays and
load on the lines). Furthermore, the cost of the interconnection
among the microprocessors increases with the number of
physical lines between two microprocessors in the network.
In graph theoretic terms microprocessors are called nodes;
lines edges and the network are then modeled by an undirected
graph. In this context, the main practical problem to be solved
can be stated as follows: given a number of nodes, interconnect
them minimizing both the number of edges and the distance
between nodes. Conversely, given a maximum degree d (i.c.,
the number of edges incident at a node), and a maximal dis-
tance k find a graph of maximal order. This last formulation
is known as the (d, k) graph problem [6].

0018-9340/82/0800-0784800.75 © 1982 IEEE

