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Abstract 

The temporal logic model checking algorithm devel- 
oped by Clarke, Emerson, and Sistla [9] is modified to 
represent a state graph using Binary decision diagrams 
(BDD’s) [4]. B ecause this representation captures some 
of the regularity in the state space of sequential circuits 
with data path logic, we are able to verify circuits with 
an extremely large number of states. We demonstrate 
this new technique on a synchronous pipelined design 
with approximately 5 x 10zo states. Our model checking 
algorithm handles full CTL with fairness constraints. 
Consequently, we are able to handle a number of im- 
portant liveness and fairness properties, which would 
otherwise not be expressible in CTL. We give empirical 
results on the performance of the algorithm applied to 
both synchronous and asynchronous circuits with data 
path logic. 

1 Introduction 

Bugs found late in the design phase of a digital circuit 
are a major cause of unexpected delays in the realiza- 
tion of the circuit in hardware. This has stimulated 
interest in formal verification techniques for hardware 
designs. A number of different techniques have been 
proposed, but nearly all can be classified in terms of the 
natural division between the data paths and the con- 
trolling circuitry in digital devices. The most success- 
ful methods to date for verifying data path logic treat 
only functional behavior, without considering sequen- 
tial behavior. These methods are frequently based on 
the use of automatic theorem provers or proof checkers 
and may require considerable assistance from the user 
in constructing a correctness proof. The most effective 
techniques for reasoning about sequential behavior (we 
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use the term sequential behavior to include the behav- 
iors of concurrent systems, as well) on the other hand, 
usually require a complete exploration of the state space 
of the circuit. The state enumeration techniques are at- 
tractive, because they are highly automatic: the user 
simply provides a description of the circuit implemen- 
tation and its specification; the system does the rest. 
In the case of a single controller, the approach is often 
quite practical, since the number of states tends not to 
be excessively large. The approach has not been very 
useful with data path circuits, since the number of states 
is almost always too large to permit explicit enumera- 
tion. In order to reason about the complex interaction 
between controllers and data paths, however, we need 
techniques that are able to handle both types of circuits. 

In this paper, we show how a technique for reason- 
ing about sequential circuits, called tenlporal logic model 
checking [S, 91, can modified to represent a state graph 
using binary decision diagrams (BDD’s) [4]. Because 
this representation captures some of the regularity in 
the state space determined by the data path logic, we 
are able to verify sequential circuits with an extremely 
large number of states. The algorithm is based on com- 
puting fixed points of functions from sets of states to sets 
of states (predicate transformers). We can express both 
the sets of states and the transition relations in terms of 
BDD’s. Thus, we are able to avoid explicitly construct- 
ing the state graph of the circuit. We have tested the 
performance of the algorithm on both synchronous and 
asynchronous (self-timed) circuits with data path logic. 

Previously, most of the applications of BDD’s have 
been to the verification of combinational circuits. How- 
ever, there have been some recent applications to se- 
quential circuits. Bryant [5] uses a symbolic switch-level 
simulator, in which a sequence of operations is simulated 
with symbolic inputs. The use of symbolic inputs allows 
one to verify that certain pre- and post-conditions are 
satisfied independently of the actual input values ap- 
plied. A second approach due to Bose and Fisher [2] 
verifies a pipeline circuit with respect to a simpler ab- 
stract model by means of a representation function, in 
analogy to abstract data type verification. 

While both of these approaches are quite powerful for 
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reasoning about certain classes of circuits, they clearly 
require much more effort from the user than state enu- 
meration methods. In each of these approaches, the 
user must give a step-by-step specification using pre- 
condition, post-condition notation, instead of describ- 
ing the behavior over time with a single temporal for- 
mula. The method of Bose and Fisher also requires 
that the user provide the analog of a data type invari- 
ant. An even more serious drawback stems from the 
limited expressive power of ordinary propositional logic 
for this type of application. Since they are unable to 
express unbounded execution histories in propositional 
logic, their techniques cannot be easily extended to sys- 
tems of controllers that operate concurrently, nor can 
they deal with liveness properties, which state that an 
event must occur at some point in the future but do 
not provide an explicit time bound on when the event 
should occur. 

Coudert, Berthet, and Madre describe a BDD-based 
system for showing equivalence between deterministic 
finite automata [lo]. Their system performs a symbolic 
breadth-first execution the state space determined by of 
the product of the two automata. The set of reachable 
states is represented using a BDD, and in this sense, 
their method is closely related to our own. However, un- 
like the technique described in this paper, their method 
does not deal with indeterminate computations, asyn- 
chronous circuits or liveness properties. 

Fujita and Fujisawa [12] describe a verification proce- 
dure based on linear temporal logic that uses binary de- 
cision diagrams to represent the transition conditions in 
automata derived from temporal logic formulas. How- 
ever, their technique still suffers from a form of the state 
explosion problem, because they represent states explic- 
itly in automata derived from temporal formulas. In our 
work, as in the work by Coudert, Berthet and Madre, 
boolean decision diagrams are used to represent both 
the transition relation of the model and subsets of the 
state space, so that the state graph is never explicitly 
constructed. 

Recently, Fisher and Bose [l] have described a BDD 
based algorithm for CTL model checking that is appli- 
cable to synchronous circuits. However, their algorithm 
does not support fairness constraints [9], so it is of lim- 
ited use in proving liveness properties. Also, they do 
not provide empirical results on the algorithm’s perfor- 
mance. 

2 CTL and Model Checking 

The logic that we use to specify circuits is a proposi- 
tional temporal logic of branching time, called CTL or 
Computation Tree Logic [9]. The formulas of the logic 
describe properties of computation paths. For our pur- 
poses, a computation path is the infinite sequence of 
states encountered by a circuit during some sequential 

execution. In addition to the usual logical connectives 1 
and A, the logic has four operators for expressing tem- 
poral relationships. The next time operator X indicates 
a condition that holds in the next state of a computa- 
tion. Thus, if f if a formula in CTL, then the formula 
Xf holds of a computation path p if f holds in the im- 
mediate successor of the first state in p. The G operator 
denotes a property that holds globally in all states of a 
computation path. The F operator denotes a property 
that holds sometime in the future. The until operator 
fug holds of a computation path p if there exists a 
state s on p where g holds, and if f holds in all the 
states preceding s. 

In general, more than one possible computation path 
may begin at a given state. When a temporal operator is 
prefixed by the universal path quantifier A, it indicates 
that the temporal property must hold over all possi- 
ble computation paths beginning in the current state. 
Thus, AXf holds in a state if f holds in all possible 
next states, while AGf holds in a state if f holds glob- 
ally along all possible computation paths beginning with 
that state. The existential path quantifier E indicates 
that the condition expressed by the operator it prefixes 
holds along some computation path beginning with the 
current state. Formulas involving the universal path 
quantifier can be expressed using the existential path 
quantifier and vice versa. For example, AXf is equiva- 
lent to -EX-, f. 

For the purpose of analyzing digital circuits, it is con- 
venient to assume that the state of a computation is 
given by a vector of binary state variables @,. Each 
of these variables corresponds to an atomic proposition 
in the logic. So for example, if v is a state variable 
in Gs, then EXv is true true of a state s if and only 
if the value of v is 1 in some immediate successor of 
s. Given a binary transition relation on states, there is 
an efficient algorithm for determining whether a given 
formula holds in a given state which is linear in the 
number of states, and in the length of the formula [9]. 
However, in the worst case the number of states that 
can be reached may be 2”, where n is the number of 
state variables, hence the procedure may be impractical 
for circuits with a large number of state variables. 

3 Binary Decision Diagrams 

This section gives a short description of Bryant’s [4] Bi- 
nary Decision Diagrams (BDD’s). The rooted, directed 
acyclic graph in Figure 3 is an example of a BDD rep- 
resenting a boolean function f (a, b, c, d). The following 
rule can used to see that f(l,O, 1,1) = 1: trace a path 
from the root of the diagram to a leaf, at every node 
choose the branch dictated by the value of the corre- 
sponding variable. This rule can be used to completely 
determine the function represented by a BDD. 

A given function can be represented by many differ- 
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Figure 1: A Binary Decision Diagram 

ent DAG’s. Bryant placed restrictions on the form of 
BDD’s so that any function has exactly one canonical 
BDD. One of these restrictions is that a total ordering 
is given for the variables in the Boolean function.. The 
variable ordering in Figure 3 is a < b < c < d. The or- 
dering of the variables down any path from the root of 
the BDD to a leaf must be consistent with this ordering. 
Altering the variable order can have a major impact on 
the size of the BDD needed to represent a given func- 
tion. BDD’s can be implemented in such a way that 
checking if two BDD’s represent the same function can 
be done in constant time. 

Bryant described algorithms for doing basic opera- 
tions on BDD’s such as boolean connectives (A, L’, etc.) 
and functional composition. An algorithm for comput- 
ing restrictions of functions is also given. The restriction 
of the function f(a, b, c, d) to a = 0 (written fla=s) is 
the 3-ary function g(b, c, d) = f(0, b, c, d). It is also pos- 
sible to quantify over boolean variables. For example, 
the formula 3a f(a, b, c, d) is equal to 

f(a, 4 c, d>la=O V f(a, b, c, d)L=l- 

4 Symbolic Model Checking 

Model checking means determining whether a given for- 
mula f is satisfied in a state given a transition relation 
R. In this section, we present a model checking algo- 
rithm for CTL which uses BDD’s as its internal repre- 
sentation, in order to avoid enumerating the elements of 
the model. The algorithm is defined by a function BDD 
which recurses over the structure of the formula. The 
function BDD takes two arguments: a formula f and a 
representation R of the transition relation. It returns a 
BDD with the foilowing property: BDD(~, R) is true in 

a given state if and only if the formula .f is true in that 
state. 

The representation of the transition relation is a BDD 
R(ci, ef), where iii is the state before the transition, and 
Zlf is the state after the transition. Tlhe state c-f is a 
successor of 6i whenever the BDD is satisfied. 

Assume that we have computed the BDD representing 
a subformula .f, and wish to compute the BDD repre- 
senting EXf. This formula is true in a state if and only 
if there exists a successor of that state which satisfies 
f. .In other words, if the current state is Vi, there exists 
a truth assignment to the variables in 6f which sat- 
isfies BDD(~, R) such that R(&, iif) is satisfied. Using 
boolean quantification, we can express this condition as: 

BDD(EX~, Ii!) G 3Vf [R(Ci, Gj) A BDD(~, R)(c~)]. 

In practice, we first relabel BDD(~, R) to use the vari- 
ables of et. Next the logical “and” operation and the 
existential quantification operation are performed in the 
same pass over the BDD’s. This is done to reduce the 
storage required for the intermediate results. 

Recall that the condition E[fUg] means that there is 
a computaion beginning in the current state in which g 
is true sometime in the future, and f is true in all the 
preceding states. This means that either g is true in the 
current state, or f is true in the current, state and there 
exists a successor state in which E[fUg] is true. More 
formally, it is the least fixed point of condition 2 in the 
expression 

Z=gv[fr\EXZ]. 

This fixed point can be evaluated iteratively, using the 
BDD representations for f and g. We set Z initially to 
false, then repeatedly evaluate the above expression, us- 
ing the BDD logical operations and the EX procedure 
described above, until a fixed point is reached. Detect- 
ing the fixed point is easy, since testing equivalence of 
BDD’s is a constant time operation. Th.is algorithm can 
be thought of as finding the set of states which satisfy 
g, calling it Z, then augmenting this set by adding the 
set of states which satisfy f and have successors in Z, 
and repeating this procedure until the set is unchanged. 

The formula EGf states that there exists a compu- 
tation beginning with the current state in which f is 
globally true. This means that f is true in the current 
state, and EGf is true in some successor state. This 
condition is the greatest fixed point of Z in the expres- 
sion 

Z=fAEXZ. 

The BDD representing this fixed point can be computed 
by setting Z to the BDD constant true and repeatedly 
evaluating the above expression until a fixed point is 
reached. Intuitively, this is equivalent to beginning with 
the set of states in which f is true, then removing all 
those states which have no successors in the set until 
the set is unchanged. 
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Finally, in the case of formulas of the form fvg or lf, 
the logical operations on BDD’s can be used to compute 
BDD’s which are true if and only if the formula is true. 
Since AXf, AtfUg] and AGf can all be rewritten us- 
ing just the above operators, the above procedure covers 
the entire logic. 

4.1 Fairness Constraints 

Next, we consider the issue of fairness. In many cases, 
we are only interested in the correctness along fair com- 
putation paths. For example, we may wish to consider 
only those computations in which some resource that 
is continuously requested by a process will eventually 
be granted to the process. This type of property can- 
not be expressed directly in CTL. In order to handle 
such properties we must modify the semantics of CTL 
slightly. A fairness constraint can be an arbitrary for- 
mula of the logic. A path is said to be fair with respect 
to a set of fairness constraints if each constraint holds 
infinitely often along the path. The path quantifiers in 
CTL formulas are now restricted to fair paths. In the 
remainder of this section we describe how to modify the 
new algorithm to handle fairness constraints. For sim- 
plicity, we only consider the case where there is a singIe 
fairness constraint B. 

Now first reconsider the formula EGf given a fairness 
constraint B. This means that there exists a computa- 
tion beginning with the current state in which f holds 
globally, and B holds infinitely often. The set of such 
states is the largest set characterized by the following 
two properties: 

1. All of the states satisfy f, and 

2. all of the states have a path inside the set to a state 
satisfying B, of length one or greater. 

It is easy to show that if these conditions hold, each 
state in the set is the beginning of an infinite compu- 
tatinal path on which f is always true, and B holds 
infinitely often. The second condition can be expressed 
as EX(E[ZU(Z A B)]), where Z is the condition that 
the current state falls within the set. This gives us a 
characterization of EGf as the greatest fixed point of 
Z in the expression 

Z = f A EX(E[ZU(Z A B)]). 

This fixed point can be evaluated in the same manner 
as before. The main difference is that in this case, each 
time the above expression is evaluated, it causes an EU 
subformula to be evaluated, which itself involves com- 
puting a fixed point. 

The cases of EXf and E[fUg] under fairness con- 
straints are a bit simpler. The set of all states which 
are on some fair computation is Fair = EGtrue, us- 
ing the above definition of EG. Under the fairness con- 
straint, EXf is just EX(f A Fair), while E[f Ug] is 
E[fU(g A Fair)]. 

c Addr 
Data Aaar + 

Register File 
c Aaar Data C- 

- Data 

Read Port B 

Control 

c 
Register Bypass Path 

Figure 2: Block diagram of simple pipeline design 

Computing fixed points in the above algorithms can 
be made more efficient in some cases by using the ilera- 
tive squaring technique [6, 71. A fixed point that would 
otherwise require n iterations to compute can poten- 
tially be computed in [lg(n)] iterations using this tech- 
nique. 

5 Synchronous Pipeline 

As an example, we use a very simple pipeline that per- 
forms three-address logical and arithmetic operations 
on a register file with a three stage pipe. In the first 
stage, the operands are read from the register file, in 
the second stage an ALU operation is performed, and 
in the third stage the result is written back to the reg- 
ister file. The ALU has a register bypass path, which 
allows the result of an ALU operation to be used im- 
mediately as an operand on the next clock cycle, as is 
typical in RISC instruction pipelines. The inputs to the 
circuits are an instruction code, containing the register 
addresses of the source and destination operands, and 
a STALL signal, which indicates that the instruction 
stream is stalled. When this occurs, a “no-operation” 
is propagated through the pipe, A functional block dia- 
gram of a typical pipeline is given in Figure 2. A BDD 
representing the transition relation of this system was 
extracted from a set of logic equations describing the 
design. Given a MOS transistor circuit implementing 
the design, it would also be possible to extract the logic 
equations using Bryant’s method of symbolic simula- 
tion [5]. 

Using the operators of CTL, we can specify the cor- 
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rect behavior of the pipeline, taking into account the 
pipe latency. When an instruction is input to the 
pipeline, it is implicit that that the results of t:he op- 
eration will not affect the register file until three clocks 
cycles in the future. Likewise, the source operands will 
be drawn from the results of the previous operation, 
which will be in the register file two cycles in t#he fu- 
ture. This observation alows us to specify the correct 
temporal and functional relationship between instruc- 
tions and operands in the register file, although space 
considerations do not allow a specification in temporal 
logic to be described here. The CTL formulas for these 
properties will be provided in [6]. 

Table 1 summarizes the results we obtained in veri- 
fying a variety of pipelines of this type. The most com- 
plex pipeline we verified was an adder pipeline with four 
$-bit registers. It had approximately 5 x 1020, states, 
which puts it far outside the range of model checkers 
like the one reported in [3]. It required a BDD with 
79,986 nodes to represent the transition relation, and 
approximately an hour to verify on a Sun 3 worksta- 
tion. The most interesting result is that the number of 
nodes in the transition relation BDD increases I:ineorly 
in the number of bits per register, although the number 
of states increases exponentially. This results from the 
structure of communication within the pipeline, and the 
ordering chosen for the state variables in the BDD. The 
variables were ordered with the control state first, fol- 
lowed by the all the state bits for the bit 0 slice, then all 
the state bits for the bit 1 slice, etc. Traversing the BDD 
from the root to a leaf, there are a fixed number of ways 
to go from bit slice n to bit slice n + 1. Each of these 
paths corresponds to a particular configuration of the 
control bits and the carry bit out of slice n in the ALU. 
Consequently, the number of nodes in the BDD grows 
in simple proportion to the width of the data path. 

It is also interesting to note that adding an exclusive- 
or operation to the addition pipeline roughly doubles the 
number of nodes in the transition relation characteristic 
function. This results from the addition of a bit to the 
control information that must be passed down through 
the data path levels of the BDD, effectively doubling 
the number of control states. The complexity of control 
would therefore seem to be a crucial factor in the size 
of the BDD representation. 

6 Asynchronous Stack 

This section describes the verification of an asyn- 
chronous stack circuit due to Martin [13]. The circuit 
uses a variant of the standard e-phase protocol for com- 
municating with its environment. We verified the cir- 
cuit by composing it with a “most general” environment 
that obeys this protocol, and checking that the result- 
ing circuit had no hazards. Dill [ll] has shown that 
this method is adequate to verify safety properties of 

rm:der of I BDD -verification] 

4 3 bits 4 22276 179 
+ 4 bits 4 33818 492 
+ 8 bits 4 79986 3709 

+, @ 2 bits 4 18429 188 
+, @ 3 bits 4 36239 690 
+, @ 4 bits 4 53924 El 1706 

Table 1: Performance of I3DD model checking algorithm 
on simple pipelines 

asynchronous circuits. 

The algorithm searches the set of states reachable 
from the initial state. The circuit is correct if and only 
if no hazard can occur in any reachab1.e state. If S,, is 
the set of states reachable in n or fewer transitions, then 
the states reachable in tz + 1 or fewer transitions is the 
set of v such that 

S”(6) v 3i@,(a) A N(i& c)]. 

The algorithm consists of evaluating the above expres- 
sion iteratively until a fixed point is reached, or until a 
hazard state is found. A more detailed description of 
the algorithm can be found in [6]. 

For asynchronous circuits, the next state relation is 
often too large to store if it is represented with a single 
BDD. So, we represent the transition relation as a list 
of BDD’s, one corresponding to each component of the 
circuit. The next state relation is the disjunction of 
these BDD’s. Each of the BDD’s is processed separately 
as the state space is searched. We also made use of a 
technique of Coudert, Berthet, and Madre in [lo] for 
simplifying a boolean function under a constraint, in 
order to reduce the size of the BDD’s used in the state 
space search. 

The performance of the BDD-based verifier on an 
asynchronous stack element is summarized in Table 2. 
The figure given for the size of the BDD representing the 
reached state set is the largest for any iteration. This 
does not in general correspond to the final (and hence 
largest) set of reached states, since the complexity of 
the BDD representation is not directly related to the 
cardinality of the set. 
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Table 2: Performance of BDD algorithm for asyn- 
chronous stack element 

7 Conclusions 

Our examples show that the state-explosion problem 
can sometimes be circumvented by using a symbolic rep- 
resentation for state graphs. When the representation 
captures the right structural uniformities in the graph, 
it is much smaller than an explicit table of all of the 
states. The method presented here is not necessarily a 
replacement for brute-force state-enumeration methods, 
but an alternative that may work efficiently when the 
brute force methods fail. 

Our method is not especially dependent upon the 
properties of binary decision diagrams. Any repre- 
sentation of boolean functions that has algorithms for 
boolean connectives, restriction and equality testing can 
be used. Although we have concentrated on temporal- 
logic model checking, BDD’s can be used in other 
formalisms for reasoning about large state transition 

graphs, such as observational equivalence and automata 
on infinite sequences [7]. 
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