
Sequential Circuit Verification Using
Symbolic Model Checki:ng

J. R. Burch 13. M. Clarke K. L. McMillan
Carnegie Mellon University

David L. Dill
St anford University

Abstract

The temporal logic model checking algorithm devel-
oped by Clarke, Emerson, and Sistla [9] is modified to
represent a state graph using Binary decision diagrams
(BDD’s) [4]. B ecause this representation captures some
of the regularity in the state space of sequential circuits
with data path logic, we are able to verify circuits with
an extremely large number of states. We demonstrate
this new technique on a synchronous pipelined design
with approximately 5 x 10zo states. Our model checking
algorithm handles full CTL with fairness constraints.
Consequently, we are able to handle a number of im-
portant liveness and fairness properties, which would
otherwise not be expressible in CTL. We give empirical
results on the performance of the algorithm applied to
both synchronous and asynchronous circuits with data
path logic.

1 Introduction

Bugs found late in the design phase of a digital circuit
are a major cause of unexpected delays in the realiza-
tion of the circuit in hardware. This has stimulated
interest in formal verification techniques for hardware
designs. A number of different techniques have been
proposed, but nearly all can be classified in terms of the
natural division between the data paths and the con-
trolling circuitry in digital devices. The most success-
ful methods to date for verifying data path logic treat
only functional behavior, without considering sequen-
tial behavior. These methods are frequently based on
the use of automatic theorem provers or proof checkers
and may require considerable assistance from the user
in constructing a correctness proof. The most effective
techniques for reasoning about sequential behavior (we

This research was sponsored in part by the Defense Ad-
vanced Research Projects Agency (DOD), ARPA Order No. 4976.
The National Science Foundation also sponsored this research
effort under contract numbers CC%8722633 and MIP-8858807.
The third author is supported by an AT&T Bell Laboratories
Ph.D. Scholarship. The fourth author is supported by a CIS Seed
Research Grant.

use the term sequential behavior to include the behav-
iors of concurrent systems, as well) on the other hand,
usually require a complete exploration of the state space
of the circuit. The state enumeration techniques are at-
tractive, because they are highly automatic: the user
simply provides a description of the circuit implemen-
tation and its specification; the system does the rest.
In the case of a single controller, the approach is often
quite practical, since the number of states tends not to
be excessively large. The approach has not been very
useful with data path circuits, since the number of states
is almost always too large to permit explicit enumera-
tion. In order to reason about the complex interaction
between controllers and data paths, however, we need
techniques that are able to handle both types of circuits.

In this paper, we show how a technique for reason-
ing about sequential circuits, called tenlporal logic model
checking [S, 91, can modified to represent a state graph
using binary decision diagrams (BDD’s) [4]. Because
this representation captures some of the regularity in
the state space determined by the data path logic, we
are able to verify sequential circuits with an extremely
large number of states. The algorithm is based on com-
puting fixed points of functions from sets of states to sets
of states (predicate transformers). We can express both
the sets of states and the transition relations in terms of
BDD’s. Thus, we are able to avoid explicitly construct-
ing the state graph of the circuit. We have tested the
performance of the algorithm on both synchronous and
asynchronous (self-timed) circuits with data path logic.

Previously, most of the applications of BDD’s have
been to the verification of combinational circuits. How-
ever, there have been some recent applications to se-
quential circuits. Bryant [5] uses a symbolic switch-level
simulator, in which a sequence of operations is simulated
with symbolic inputs. The use of symbolic inputs allows
one to verify that certain pre- and post-conditions are
satisfied independently of the actual input values ap-
plied. A second approach due to Bose and Fisher [2]
verifies a pipeline circuit with respect to a simpler ab-
stract model by means of a representation function, in
analogy to abstract data type verification.

While both of these approaches are quite powerful for

Paper 3.2
46

27th ACM/IEEE Design Automation Conference@

Q 1990 IEEE 0738-l 00X/90/0006/0046 $1 .OO

reasoning about certain classes of circuits, they clearly
require much more effort from the user than state enu-
meration methods. In each of these approaches, the
user must give a step-by-step specification using pre-
condition, post-condition notation, instead of describ-
ing the behavior over time with a single temporal for-
mula. The method of Bose and Fisher also requires
that the user provide the analog of a data type invari-
ant. An even more serious drawback stems from the
limited expressive power of ordinary propositional logic
for this type of application. Since they are unable to
express unbounded execution histories in propositional
logic, their techniques cannot be easily extended to sys-
tems of controllers that operate concurrently, nor can
they deal with liveness properties, which state that an
event must occur at some point in the future but do
not provide an explicit time bound on when the event
should occur.

Coudert, Berthet, and Madre describe a BDD-based
system for showing equivalence between deterministic
finite automata [lo]. Their system performs a symbolic
breadth-first execution the state space determined by of
the product of the two automata. The set of reachable
states is represented using a BDD, and in this sense,
their method is closely related to our own. However, un-
like the technique described in this paper, their method
does not deal with indeterminate computations, asyn-
chronous circuits or liveness properties.

Fujita and Fujisawa [12] describe a verification proce-
dure based on linear temporal logic that uses binary de-
cision diagrams to represent the transition conditions in
automata derived from temporal logic formulas. How-
ever, their technique still suffers from a form of the state
explosion problem, because they represent states explic-
itly in automata derived from temporal formulas. In our
work, as in the work by Coudert, Berthet and Madre,
boolean decision diagrams are used to represent both
the transition relation of the model and subsets of the
state space, so that the state graph is never explicitly
constructed.

Recently, Fisher and Bose [l] have described a BDD
based algorithm for CTL model checking that is appli-
cable to synchronous circuits. However, their algorithm
does not support fairness constraints [9], so it is of lim-
ited use in proving liveness properties. Also, they do
not provide empirical results on the algorithm’s perfor-
mance.

2 CTL and Model Checking

The logic that we use to specify circuits is a proposi-
tional temporal logic of branching time, called CTL or
Computation Tree Logic [9]. The formulas of the logic
describe properties of computation paths. For our pur-
poses, a computation path is the infinite sequence of
states encountered by a circuit during some sequential

execution. In addition to the usual logical connectives 1
and A, the logic has four operators for expressing tem-
poral relationships. The next time operator X indicates
a condition that holds in the next state of a computa-
tion. Thus, if f if a formula in CTL, then the formula
Xf holds of a computation path p if f holds in the im-
mediate successor of the first state in p. The G operator
denotes a property that holds globally in all states of a
computation path. The F operator denotes a property
that holds sometime in the future. The until operator
fug holds of a computation path p if there exists a
state s on p where g holds, and if f holds in all the
states preceding s.

In general, more than one possible computation path
may begin at a given state. When a temporal operator is
prefixed by the universal path quantifier A, it indicates
that the temporal property must hold over all possi-
ble computation paths beginning in the current state.
Thus, AXf holds in a state if f holds in all possible
next states, while AGf holds in a state if f holds glob-
ally along all possible computation paths beginning with
that state. The existential path quantifier E indicates
that the condition expressed by the operator it prefixes
holds along some computation path beginning with the
current state. Formulas involving the universal path
quantifier can be expressed using the existential path
quantifier and vice versa. For example, AXf is equiva-
lent to -EX-, f.

For the purpose of analyzing digital circuits, it is con-
venient to assume that the state of a computation is
given by a vector of binary state variables @,. Each
of these variables corresponds to an atomic proposition
in the logic. So for example, if v is a state variable
in Gs, then EXv is true true of a state s if and only
if the value of v is 1 in some immediate successor of
s. Given a binary transition relation on states, there is
an efficient algorithm for determining whether a given
formula holds in a given state which is linear in the
number of states, and in the length of the formula [9].
However, in the worst case the number of states that
can be reached may be 2”, where n is the number of
state variables, hence the procedure may be impractical
for circuits with a large number of state variables.

3 Binary Decision Diagrams

This section gives a short description of Bryant’s [4] Bi-
nary Decision Diagrams (BDD’s). The rooted, directed
acyclic graph in Figure 3 is an example of a BDD rep-
resenting a boolean function f (a, b, c, d). The following
rule can used to see that f(l,O, 1,1) = 1: trace a path
from the root of the diagram to a leaf, at every node
choose the branch dictated by the value of the corre-
sponding variable. This rule can be used to completely
determine the function represented by a BDD.

A given function can be represented by many differ-

Paper 3.2

47

Figure 1: A Binary Decision Diagram

ent DAG’s. Bryant placed restrictions on the form of
BDD’s so that any function has exactly one canonical
BDD. One of these restrictions is that a total ordering
is given for the variables in the Boolean function.. The
variable ordering in Figure 3 is a < b < c < d. The or-
dering of the variables down any path from the root of
the BDD to a leaf must be consistent with this ordering.
Altering the variable order can have a major impact on
the size of the BDD needed to represent a given func-
tion. BDD’s can be implemented in such a way that
checking if two BDD’s represent the same function can
be done in constant time.

Bryant described algorithms for doing basic opera-
tions on BDD’s such as boolean connectives (A, L’, etc.)
and functional composition. An algorithm for comput-
ing restrictions of functions is also given. The restriction
of the function f(a, b, c, d) to a = 0 (written fla=s) is
the 3-ary function g(b, c, d) = f(0, b, c, d). It is also pos-
sible to quantify over boolean variables. For example,
the formula 3a f(a, b, c, d) is equal to

f(a, 4 c, d>la=O V f(a, b, c, d)L=l-

4 Symbolic Model Checking

Model checking means determining whether a given for-
mula f is satisfied in a state given a transition relation
R. In this section, we present a model checking algo-
rithm for CTL which uses BDD’s as its internal repre-
sentation, in order to avoid enumerating the elements of
the model. The algorithm is defined by a function BDD
which recurses over the structure of the formula. The
function BDD takes two arguments: a formula f and a
representation R of the transition relation. It returns a
BDD with the foilowing property: BDD(~, R) is true in

a given state if and only if the formula .f is true in that
state.

The representation of the transition relation is a BDD
R(ci, ef), where iii is the state before the transition, and
Zlf is the state after the transition. Tlhe state c-f is a
successor of 6i whenever the BDD is satisfied.

Assume that we have computed the BDD representing
a subformula .f, and wish to compute the BDD repre-
senting EXf. This formula is true in a state if and only
if there exists a successor of that state which satisfies
f. .In other words, if the current state is Vi, there exists
a truth assignment to the variables in 6f which sat-
isfies BDD(~, R) such that R(&, iif) is satisfied. Using
boolean quantification, we can express this condition as:

BDD(EX~, Ii!) G 3Vf [R(Ci, Gj) A BDD(~, R)(c~)].

In practice, we first relabel BDD(~, R) to use the vari-
ables of et. Next the logical “and” operation and the
existential quantification operation are performed in the
same pass over the BDD’s. This is done to reduce the
storage required for the intermediate results.

Recall that the condition E[fUg] means that there is
a computaion beginning in the current state in which g
is true sometime in the future, and f is true in all the
preceding states. This means that either g is true in the
current state, or f is true in the current, state and there
exists a successor state in which E[fUg] is true. More
formally, it is the least fixed point of condition 2 in the
expression

Z=gv[fr\EXZ].

This fixed point can be evaluated iteratively, using the
BDD representations for f and g. We set Z initially to
false, then repeatedly evaluate the above expression, us-
ing the BDD logical operations and the EX procedure
described above, until a fixed point is reached. Detect-
ing the fixed point is easy, since testing equivalence of
BDD’s is a constant time operation. Th.is algorithm can
be thought of as finding the set of states which satisfy
g, calling it Z, then augmenting this set by adding the
set of states which satisfy f and have successors in Z,
and repeating this procedure until the set is unchanged.

The formula EGf states that there exists a compu-
tation beginning with the current state in which f is
globally true. This means that f is true in the current
state, and EGf is true in some successor state. This
condition is the greatest fixed point of Z in the expres-
sion

Z=fAEXZ.

The BDD representing this fixed point can be computed
by setting Z to the BDD constant true and repeatedly
evaluating the above expression until a fixed point is
reached. Intuitively, this is equivalent to beginning with
the set of states in which f is true, then removing all
those states which have no successors in the set until
the set is unchanged.

Paper 3.2
48

Finally, in the case of formulas of the form fvg or lf,
the logical operations on BDD’s can be used to compute
BDD’s which are true if and only if the formula is true.
Since AXf, AtfUg] and AGf can all be rewritten us-
ing just the above operators, the above procedure covers
the entire logic.

4.1 Fairness Constraints

Next, we consider the issue of fairness. In many cases,
we are only interested in the correctness along fair com-
putation paths. For example, we may wish to consider
only those computations in which some resource that
is continuously requested by a process will eventually
be granted to the process. This type of property can-
not be expressed directly in CTL. In order to handle
such properties we must modify the semantics of CTL
slightly. A fairness constraint can be an arbitrary for-
mula of the logic. A path is said to be fair with respect
to a set of fairness constraints if each constraint holds
infinitely often along the path. The path quantifiers in
CTL formulas are now restricted to fair paths. In the
remainder of this section we describe how to modify the
new algorithm to handle fairness constraints. For sim-
plicity, we only consider the case where there is a singIe
fairness constraint B.

Now first reconsider the formula EGf given a fairness
constraint B. This means that there exists a computa-
tion beginning with the current state in which f holds
globally, and B holds infinitely often. The set of such
states is the largest set characterized by the following
two properties:

1. All of the states satisfy f, and

2. all of the states have a path inside the set to a state
satisfying B, of length one or greater.

It is easy to show that if these conditions hold, each
state in the set is the beginning of an infinite compu-
tatinal path on which f is always true, and B holds
infinitely often. The second condition can be expressed
as EX(E[ZU(Z A B)]), where Z is the condition that
the current state falls within the set. This gives us a
characterization of EGf as the greatest fixed point of
Z in the expression

Z = f A EX(E[ZU(Z A B)]).

This fixed point can be evaluated in the same manner
as before. The main difference is that in this case, each
time the above expression is evaluated, it causes an EU
subformula to be evaluated, which itself involves com-
puting a fixed point.

The cases of EXf and E[fUg] under fairness con-
straints are a bit simpler. The set of all states which
are on some fair computation is Fair = EGtrue, us-
ing the above definition of EG. Under the fairness con-
straint, EXf is just EX(f A Fair), while E[f Ug] is
E[fU(g A Fair)].

c Addr
Data Aaar +

Register File
c Aaar Data C-

- Data

Read Port B

Control

c
Register Bypass Path

Figure 2: Block diagram of simple pipeline design

Computing fixed points in the above algorithms can
be made more efficient in some cases by using the ilera-
tive squaring technique [6, 71. A fixed point that would
otherwise require n iterations to compute can poten-
tially be computed in [lg(n)] iterations using this tech-
nique.

5 Synchronous Pipeline

As an example, we use a very simple pipeline that per-
forms three-address logical and arithmetic operations
on a register file with a three stage pipe. In the first
stage, the operands are read from the register file, in
the second stage an ALU operation is performed, and
in the third stage the result is written back to the reg-
ister file. The ALU has a register bypass path, which
allows the result of an ALU operation to be used im-
mediately as an operand on the next clock cycle, as is
typical in RISC instruction pipelines. The inputs to the
circuits are an instruction code, containing the register
addresses of the source and destination operands, and
a STALL signal, which indicates that the instruction
stream is stalled. When this occurs, a “no-operation”
is propagated through the pipe, A functional block dia-
gram of a typical pipeline is given in Figure 2. A BDD
representing the transition relation of this system was
extracted from a set of logic equations describing the
design. Given a MOS transistor circuit implementing
the design, it would also be possible to extract the logic
equations using Bryant’s method of symbolic simula-
tion [5].

Using the operators of CTL, we can specify the cor-

Paper 3.2
49

rect behavior of the pipeline, taking into account the
pipe latency. When an instruction is input to the
pipeline, it is implicit that that the results of t:he op-
eration will not affect the register file until three clocks
cycles in the future. Likewise, the source operands will
be drawn from the results of the previous operation,
which will be in the register file two cycles in t#he fu-
ture. This observation alows us to specify the correct
temporal and functional relationship between instruc-
tions and operands in the register file, although space
considerations do not allow a specification in temporal
logic to be described here. The CTL formulas for these
properties will be provided in [6].

Table 1 summarizes the results we obtained in veri-
fying a variety of pipelines of this type. The most com-
plex pipeline we verified was an adder pipeline with four
$-bit registers. It had approximately 5 x 1020, states,
which puts it far outside the range of model checkers
like the one reported in [3]. It required a BDD with
79,986 nodes to represent the transition relation, and
approximately an hour to verify on a Sun 3 worksta-
tion. The most interesting result is that the number of
nodes in the transition relation BDD increases I:ineorly
in the number of bits per register, although the number
of states increases exponentially. This results from the
structure of communication within the pipeline, and the
ordering chosen for the state variables in the BDD. The
variables were ordered with the control state first, fol-
lowed by the all the state bits for the bit 0 slice, then all
the state bits for the bit 1 slice, etc. Traversing the BDD
from the root to a leaf, there are a fixed number of ways
to go from bit slice n to bit slice n + 1. Each of these
paths corresponds to a particular configuration of the
control bits and the carry bit out of slice n in the ALU.
Consequently, the number of nodes in the BDD grows
in simple proportion to the width of the data path.

It is also interesting to note that adding an exclusive-
or operation to the addition pipeline roughly doubles the
number of nodes in the transition relation characteristic
function. This results from the addition of a bit to the
control information that must be passed down through
the data path levels of the BDD, effectively doubling
the number of control states. The complexity of control
would therefore seem to be a crucial factor in the size
of the BDD representation.

6 Asynchronous Stack

This section describes the verification of an asyn-
chronous stack circuit due to Martin [13]. The circuit
uses a variant of the standard e-phase protocol for com-
municating with its environment. We verified the cir-
cuit by composing it with a “most general” environment
that obeys this protocol, and checking that the result-
ing circuit had no hazards. Dill [ll] has shown that
this method is adequate to verify safety properties of

rm:der of I BDD -verification]

4 3 bits 4 22276 179
+ 4 bits 4 33818 492
+ 8 bits 4 79986 3709

+, @ 2 bits 4 18429 188
+, @ 3 bits 4 36239 690
+, @ 4 bits 4 53924 El 1706

Table 1: Performance of I3DD model checking algorithm
on simple pipelines

asynchronous circuits.

The algorithm searches the set of states reachable
from the initial state. The circuit is correct if and only
if no hazard can occur in any reachab1.e state. If S,, is
the set of states reachable in n or fewer transitions, then
the states reachable in tz + 1 or fewer transitions is the
set of v such that

S”(6) v 3i@,(a) A N(i& c)].

The algorithm consists of evaluating the above expres-
sion iteratively until a fixed point is reached, or until a
hazard state is found. A more detailed description of
the algorithm can be found in [6].

For asynchronous circuits, the next state relation is
often too large to store if it is represented with a single
BDD. So, we represent the transition relation as a list
of BDD’s, one corresponding to each component of the
circuit. The next state relation is the disjunction of
these BDD’s. Each of the BDD’s is processed separately
as the state space is searched. We also made use of a
technique of Coudert, Berthet, and Madre in [lo] for
simplifying a boolean function under a constraint, in
order to reduce the size of the BDD’s used in the state
space search.

The performance of the BDD-based verifier on an
asynchronous stack element is summarized in Table 2.
The figure given for the size of the BDD representing the
reached state set is the largest for any iteration. This
does not in general correspond to the final (and hence
largest) set of reached states, since the complexity of
the BDD representation is not directly related to the
cardinality of the set.

Paper 3.2
50

Table 2: Performance of BDD algorithm for asyn-
chronous stack element

7 Conclusions

Our examples show that the state-explosion problem
can sometimes be circumvented by using a symbolic rep-
resentation for state graphs. When the representation
captures the right structural uniformities in the graph,
it is much smaller than an explicit table of all of the
states. The method presented here is not necessarily a
replacement for brute-force state-enumeration methods,
but an alternative that may work efficiently when the
brute force methods fail.

Our method is not especially dependent upon the
properties of binary decision diagrams. Any repre-
sentation of boolean functions that has algorithms for
boolean connectives, restriction and equality testing can
be used. Although we have concentrated on temporal-
logic model checking, BDD’s can be used in other
formalisms for reasoning about large state transition

graphs, such as observational equivalence and automata
on infinite sequences [7].

References

[I] S. Bose and A. Fisher. Automatic verification of syn-
chronous circuits using symbolic logic simulation and
temporal logic. In IMEC-IFIP International Workshop
on Applied Formal Methods FOF Correct VLSI Design,
1989.

[2] S. Bose and A. Fisher. Verifying pipelined hardware
using symbolic logic simulation. In IEEE International
Conference on Computer Design, 1989.

[3] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra.
Automatic verification of sequential circuits using tem-
poral logic. IEEE Trans. Comput., C-35(12):1035-
1044, 1986.

[s] R. E. Bryant. Verifying a static ram design by logic
simulation. In 3. Allen and F. T. Leighton, editors,
Aduanoed Research in VLSI: Proceedings of the Fifth
MIT Confemnce, pages 335-349. MIT Press, 1988.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L.
Dill. Sequential circuit verification using symbolic
model checking. Technical report, Carnegie Mellon Uni-
versity, School of Computer Science, 1990. In Prepara-
tion.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and J. Hwang. Symbolic model checking: 10” states
and beyond. In Proceedings of the Fifth Annual Sym-
posium on Logic in Computer Science, June 1990. To
Appear.

[8] E. M. Clarke and E. A. Emerson. Synthesis of synchro-
nization skeletons for branching time temporal logic.
In Proceedings of the Workshop on Logic of Programs,
volume 131 of Lecture Notes in Computer Science.
Springer-Verlag, 1981.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans. Prog.
Lang. Syst., 8(2):244-263, 1986.

[lo] 0. Coudert, C. Berthet, and J. C. Madre. Verification
of synchronous sequential machines based on symbolic
execution. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, International Work-
uhop, Grenoble, France, volume 407 of Lecture Notes in
Computer Science. Springer-Verlag, June 1989.

[ll] D. L. Dill. Trace theory for automatic hierarchical ver-
ification of speed-independent circuits. In Jonathan
Allen and F. Thomson Leighton, editor, Advanced Re-
search in VLSI: Proceedings of the Fifth MIT Confer-
ence. MIT Press, 1988.

[12] M. Fujita and H. Fujisawa. Specification, verification,
and synthesis on control circuits with propositional
temporal logic. In Ninth International Symposium on
Computer Hardware Description Languages and their
Applications. North-Holland, June 1989.

[13] A. J. Martin. A synthesis method for self-timed VLSI
circuits. In Proceedings of the IEEE International Con-
ference on Computer Design, 1987.

[4] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Comput., C-35(8),
1986.

Paper 3.2

51

