
Verification by Network Decomposition�

Edmund Clarke1, Muralidhar Talupur1, Tayssir Touili1, and Helmut Veith2

1 Carnegie Mellon University
2 Technische Universität München

Abstract. We describe a new method to verify networks of homoge-
neous processes which communicate by token passing. Given an arbitrary
network graph and an indexed LTL \ X property, we show how to de-
compose the network graph into multiple constant size networks, thereby
reducing one model checking call on a large network to several calls on
small networks. We thus obtain cut-offs for arbitrary classes of networks,
adding to previous work by Emerson and Namjoshi on the ring topology.
Our results on LTL \ X are complemented by a negative result which
precludes the existence of reductions for CTL \ X on general networks.

1 Introduction

Despite the big success of model checking in hardware and software verification,
the classical approach to model checking can handle only finite state systems.
Consequently, applying model checking techniques to systems involving unlim-
ited concurrency, unlimited memory, or unlimited domain sizes, is a major chal-
lenge. Researchers have sought to address these issues by different verification
methods including, among others, abstraction, regular model checking, static
analysis and theorem proving.

Many software and hardware systems however are described in terms of nat-
ural parameters, and for each concrete value of the parameters, the systems
have finite state space. A system model involving such parameters is called a
parameterized system. Verifying a property of a parameterized system amounts
to verifying this property for all values of the parameters. Examples of param-
eterized systems include, mutual exclusion protocols, cache coherence protocols
and multi-threaded systems.

� This research was sponsored by the Semiconductor Research Corporation (SRC) un-
der contract no. 99-TJ-684, the National Science Foundation (NSF) under grants no.
CCR-9803774 and CCR-0121547, the Office of Naval Research (ONR) and the Naval
Research Laboratory (NRL) under contract no. N00014-01-1-0796, and the Army Re-
search Office (ARO) under contract no. DAAD19-01-1-0485 and by the European
Community Research Training Network GAMES. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of SRC, NSF, ONR,
NRL, ARO, the U.S. Government or any other entity.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 276–291, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verification by Network Decomposition 277

In a seminal paper, Emerson and Namjoshi [17] consider systems composed
of identical asynchronous processes which are arranged in a ring topology and
communicate by passing a boolean token. For several classes of indexed CTL∗\X
properties [9] they provide cutoffs, i.e., reductions to single systems of constant
small size. Consequently, CTL∗ \X properties over an infinite class of networks
can be reduced to a single model checking call.

In this paper, we extend the results of Emerson and Namjoshi from rings
to arbitrary classes of networks. There are two modifications, however: first,
our results hold true only for LTL\X, and second, we introduce a more refined
notion of cut-offs. The first restriction is necessary: We show in Section 4 that
with CTL \X it is impossible to obtain cut-offs for arbitrary networks.

The second modification actually provides an interesting new view on the
notion of cut-offs: in order to verify the parametrized system, we are allowed to
model check a constant number c of small systems whose network graphs have
sizes bounded by a constant s. Then, the verification result for the parametrized
system is a Boolean combination of the collected results for the small systems.
We call such a reduction to a finite case distinction a (c, s)-bounded reduction.

Our main results can be summarized as follows:

– Verification by Network Decomposition: Verifying systems with fixed
large network graphs G (e.g., concrete instantiations of a parametrized sys-
tem) can be as challenging as verifying parameterized systems. Note that
when |Q| is the state space of the individual processes, then the state space
of the whole network can be as high as |Q|n, where n is the number of
nodes. We show that the verification of an indexed LTL\X property ϕ for a
system with network graph G can be achieved by an efficiently computable
(c, s)-bounded reduction. For the important case of 2-indexed properties, it
is sufficient to model check at most 36 networks of size 4.

– Offline Verification: In a scenario where ϕ is known in advance and the
network G can change for different applications, we can first verify a constant
number of small systems offline. Later, when we get to know the network
graph G, the correctness of G with respect to specification ϕ can be verified
online by simply evaluating a constant size Boolean function, regardless of
the size of the processes.
Again, for 2-indexed properties, the offline computation involves at most 36
calls to the model checker for networks of size 4.

– Cut-Offs: For every class of networks T and k-indexed LTL\X property ϕ
one can verify if ϕ holds on all networks in T by a (c, s)-bounded reduction,
where c and s depend only on k.
Depending on the complexity of the networks in T, finding a suitable (c, s)-
bounded reduction will in general still involve manual algorithm design.
Similar to famous results about linear time algorithms for bounded tree-
width [11], our proofs just guarantee the existence of small reductions.

This paper is organized as follows: this section concludes with related work.
In Section 2, we describe the system model in detail. Section 3 contains the main

278 E. Clarke et al.

results of the paper. Section 4 describes the impossibility of cut-offs for CTL \
X. Finally, the conclusion in Section 5 briefly considers further performance
enhancements for practical applications of our method.

Related Work. Verification of parameterized systems is well known to be un-
decidable [2, 25]. Many interesting approaches to this problem have been devel-
oped over the years, including the use of symbolic automata-based techniques
[22, 6, 26, 7, 1, 4], network invariants [3, 24], predicate abstraction [23], or sym-
metry [10, 16, 20, 18, 19]. In [5], cut-offs were used for the verification of systems
sharing common resources, where the access to the resources is managed accord-
ing to a FIFO-based policy.

In addition to [17] mentioned above, Emerson et al. have shown a large
number of fundamental results involving cut-offs. The paper [13] by Emerson
and Kahlon also considers LTL\X cut-offs for arbitrary network topologies with
multiple tokens, but each of them is confined to two processes which renders
their model incomparable to ours. Other previous work by Emerson and Kahlon
[12, 15, 14] consider other restricted forms of process interaction. [21] considers
the verification of single index properties for systems with multiple synchronous
processes.

Indexed temporal logic was introduced in [9]. This paper also considers iden-
tical processes arranged in ring topology.

The work that is closest in spirit to our negative results on CTL∗ \X logic
is the work by Browne, Clarke and Grumberg in [8] which shows how to charac-
terize Kripke structures up to bisimilarity using fragments of CTL�. Our results
show that even CTL∗ \X with only two atomic propositions is sufficient to de-
scribe an infinite class of Kripke structures which are not bisimilar to each other.
In other words, bisimilarity over the class of Kripke structures with two labels
gives rise to an infinite number of equivalence classes.

2 Computation Model

Network Topologies. A network graph is a finite directed graph G = (S,C)
without self-loops, where S is the set of sites, and C is the set of connec-
tions. Without loss of generality we assume that the sites are numbers, i.e.,
S = {1, 2, . . . , |S|}. A (network) topology T is a class of network graphs.

Token Passing Process. A single token passing process P (process) is a labeled
transition system (Q,Σ, δ, I) such that:

– Q = ̂Q×B, where ̂Q is a finite, nonempty set and B = {0, 1}. Elements of Q
will be called local states. The boolean component of a local state indicates
the possession of the token. We say that a local state (q, b) holds the token
if b = 1.

– Σ = Σf ∪Σd ∪ {rcv, snd} is the set of actions. The actions in Σd are token
dependent actions, those of Σf are called token independent actions, and
{rcv, snd} are actions to receive and send the token. The sets Σf , Σd are
mutually exclusive.

Verification by Network Decomposition 279

– δ ⊆ Q×Σ ×Q is a transition relation, such that every ((q, b), a, (q′, b′)) ∈ δ
fulfills the following conditions:
(a) A free transition does not change token possession: a ∈ Σf ⇒ b = b′

(b) A dependent transition can execute only if the process possesses the
token: a ∈ Σd ⇒ b = b′ = 1

(c) A receive establishes possession of token: a = rcv ⇒ b = 0, b′ = 1
(d) A send revokes the possession of token: a = snd ⇒ b = 1, b′ = 0

– I ⊆ Q is the set of initial states.

Topological Composition. Let G = (S,C) be a network graph and P =
(Q,Σ, δ, I) be a single token process. Then PG denotes the concurrent system
containing n = |S| instances of P denoted by Ps, s ∈ S. The only synchronization
mechanism between the processes is the passage of a token according to the
network graph G. Formally, the system PG is associated with a transition system
(Q, ∆, I) defined as follows:

– Q = {(q1, . . . , qn) ∈ Qn | exactly one of the qi holds the token}.
– ∆ ⊆ Q2n is defined as follows: a transition (q1, q2, . . . , qn) → (q′

1, q
′
2, . . . , q

′
n)

is in ∆ in one of two cases:
(a) Asynchronous Transition: there exist an index j ∈ {1, . . . , n} and an

action a ∈ Σf ∪ Σd such that (qj , a, q′
j) ∈ δ, and for all indices i �= j

we have qi = q′
i. In other words, only process Pj makes a transition

(different from a send or receive).
(b) Token Transition: there exist a network connection (j, k) ∈ C in the

network graph, such that (qj , snd, q′
j) ∈ δ, (qk, rcv, q′

k) ∈ δ, and qi = q′
i

for all indices i different from j, k.
– I = {(q1, . . . , qn) ∈ In | exactly one of the qi holds the token}.

An execution path is considered fair if and only if every process Pi receives
and sends the token infinitely often. We assume that every system PG that we
consider has fair paths. An immediate consequence of the fairness condition is
that a system PG can have fair paths only if G is strongly connected.

We shall use indexed temporal logics, which can refer explicitly to the atomic
propositions of each process Pi, to specify properties of the compound systems.
For each local state q in Q we introduce propositional variables q(1), . . . , q(n).
The atomic proposition q(i) says that process Pi is in state q. Thus, for a global
state g we define

g |= q(i) iff in global state g, process Pi is in state q.

Starting from this definition for atomic propositions, we can easily define
common temporal logics such as CTL or LTL in a canonical way. Throughout
this paper, we will assume that the path quantifiers A and E quantify over fair
paths. Further we assume that LTL formulas are implicitly quantified by E. This
restriction simplifies our proofs but does not restrict generality.

Example 1. The formula G(q(1) ⇒ Fq(2)) says that whenever process P1 is in
state q then process P2 will be in state q sometime in the future.

280 E. Clarke et al.

For increased expressibility we permit that in an atomic formula q(x) the
process index x is a variable (called index variable) which can take any value
from 1 to |S|, the total number of processes. Thus, x can refer to arbitrary
processes. We shall write ϕ(x1, . . . , xn) to indicate that the temporal formula ϕ
depends on the index variables x1, . . . xn. We can substitute the index variables
in a formula ϕ(x1, . . . , xk) by integer values i1, . . . , ik in the natural way, and
denote the resulting formula by ϕ(i1, . . . , ik).

In addition to substitution by constants, we can also quantify over the index
variables x1, . . . xn using a prefix of existential and universal quantifiers with
the natural semantics. Such formulas are called quantified temporal formulas.
For example, the formula ∀x∃y.ϕ(x, y) means “For all processes x there exists
a process y, such that the temporal formula ϕ(x, y) holds.” A formula without
quantifier prefix is called quantifier-free. If all index variables in a formula are
bound by quantifiers we say that the formula is closed, and open otherwise. The
quantifier-free part of a quantified formula is called the matrix of a formula.

Example 2. The formula ∃x, y.G(q(x) ⇒ Fq(y)) says that there exist two pro-
cesses Px and Py, such that whenever process Px is in state q then process Py
will be in state q some time in future.

The formal semantics of this logic is straightforward and is omitted for the
sake of brevity.

Definition 1 (k-Indexed Temporal Formula). Let L be a temporal logic.
A k-indexed temporal formula is a formula whose matrix refers to at most k
different processes, i.e., there are at most k different constant indices and index
variables.

3 Reductions for Indexed LTL\X Specifications

In this section, we will show how to reduce the model checking question PG |= ϕ
to a series of model checking questions on smaller systems PGi ’s where we can
bound the size of the network graphs Gi as well as the number of the Gi’s. For
the sake of simplicity, we will start with the special case of 2-indexed existential
LTL\X specifications, which can be readily generalized to the full case.

In this section we show how to verify simple 2-indexed LTL\X properties of the
form ∃i, j.ϕ(i, j), where i �= j. We will use the combinatorial insights we obtain
from this case to obtain the more general results later on.

Recall that 2-indexed properties are concerned only with properties of two
processes in a given system. Our process communication model implies that two
processes Pi and Pj can only affect each other by passing or receiving a token.
Consequently, the synchronization between Pi and Pj crucially depends on the
paths between sites i and j in the network graph. The following example is
crucial to understanding the intuition behind our approach:

3.1 Existential 2-Indexed LTL \ X Specifications

Verification by Network Decomposition 281

Example 3. The Figure below shows one path π = i, a, b, i, j, b, c, i, c, j, . . . in a
network graph.

Φ→(i, j)

Φ�(j, i) Φ�(i, j)Φ�(i, j)

a b b c ci i j i j

Suppose that we are only interested in properties concerning the processes
Pi and Pj , but not in processes Pa, Pb, Pc. Then only the sequence of the i’s
and j’s in the path are of interest. Looking at π from left to right, we see four
possibilities for what can happen between i and j: (1) Pi sends a token, and
receives it back without Pj seeing it (formally, we will write Φ�(i, j) to denote
this); (2) Pi passes the token directly to Pj (Φ→(i, j)); (3) Pj sends the token to Pi
through several intermediate sites (Φ�(j, i)); and (4) Pi sends the token back to
Pj through several intermediate sites (Φ�(i, j)). There are two more possibilities
which do not occur in π: (5) Φ→(j, i) and (6) Φ�(j, i). The important insight is
the following: If we know which of these 6 cases can occur in a network
graph G, then we have all information needed to reason about the
communication between Pi and Pj.

We will later construct small network graphs with 4 nodes where the sites i
and j are represented by two distinguished nodes site1 and site2, while all other
sites are represented by two “hub” nodes hub1 and hub2.

This example motivates the following definitions:

Definition 2 (Free Path). Let I be a set of indices, and π be a path in a
network graph G. We say that π is I-free, if π does not contain a site from I.

We now define three kinds of path types which will be shown to capture all
relevant token paths between two processes Pi and Pj .

Definition 3 (Connectivity, Characteristic Vectors). Let i, j be indices in
a network graph G. We define three connectivity properties of the indices i, j:

G |= Φ�(i, j) “There is a {j}-free path from i to itself.”
G |= Φ�(i, j) “There is a path from i to j via a third node not in {i, j}.”
G |= Φ→(i, j) “There is a direct edge from i to j.”

Using the connectivity properties, we define an equivalence relation ∼2 on net-
work graphs: Given two network graphs G1 and G2 along with two pairs of indices
a1, b1 and a2, b2, we define

(G1, a1, b1) ∼2 (G2, a2, b2)

iff for every Φ ∈ {Φ�, Φ�, Φ→},
G1 |= Φ(a1, b1) ⇐⇒ G2 |= Φ(a2, b2) and
G1 |= Φ(b1, a1) ⇐⇒ G2 |= Φ(b2, a2)

282 E. Clarke et al.

If (G1, a1, b1) ∼2 (G2, a2, b2) we say that the indices a1, b1 in G1 have the
same connectivity as the indices a2, b2 in G2.

The characteristic vector v(G1, a1, b1) is the 6-tuple containing the truth val-
ues of G1 |= Φ�(a1, b1), G1 |= Φ�(a1, b1), G1 |= Φ→(a1, b1) G1 |= Φ�(b1, a1),
G1 |= Φ→(b1, a1), and G1 |= Φ�(b1, a1).

By definition it holds that (G1, a1, b1) ∼2 (G2, a2, b2) iff they have the same
characteristic vectors, i.e., v(G1, a1, b1) = v(G2, a2, b2). Since the number of
characteristic vectors is constant, it follows that ∼2 has finite index. The char-
acteristic vectors can be viewed as representatives of the equivalence classes.

site1

hub1

site2

hub2

site1

hub1

site2

hub2

Fig. 1. Network Graphs A, B, realizing two different characteristic vectors

Example 4. Consider the network graphs A,B of Figure 1. It is easy to see that
(A, site1, site2) has characteristic vector (1, 1, 1, 1, 1, 1), i.e.,

A |= Φ�(site1, site2) ∧ Φ�(site1, site2) ∧ Φ→(site1, site2) ∧
Φ�(site2, site1) ∧ Φ�(site2, site1) ∧ Φ→(site2, site1)

and (B, site1, site2) has characteristic vector (0, 1, 0, 1, 1, 0), i.e.,

B |= ¬Φ�(site1, site2) ∧ Φ�(site1, site2) ∧ ¬Φ→(site1, site2) ∧
Φ�(site2, site1) ∧ Φ�(site2, site1) ∧ ¬Φ→(site2, site1).

Note that a network graph will in general have several characteristic vectors
depending on the indices we consider. The set of characteristic vectors of a graph
G can be efficiently computed from G in quadratic time. The crucial insight in
our proof is that for two processes Pi and Pj , the connectivity between their
indices i, j in the network graph determines the satisfaction of quantifier-free
LTL\X properties ϕ(i, j) over PG:

Lemma 1 (2-Index Reduction Lemma). Let G1, G2 be network graphs, P
a process, and ϕ(x, y) a 2-indexed quantifier-free LTL\X property. Let a1, b1 be
a pair of indices on G1, and a2, b2 a pair of indices on G2. The following are
equivalent:

(a) (G1, a1, b1) ∼2 (G2, a2, b2), i.e., a1, b1 and a2, b2 have the same connectivity.
(b) PG1 |= ϕ(a1, b1) iff PG2 |= ϕ(a2, b2).

Verification by Network Decomposition 283

The lemma motivates the following model checking strategy: Given a (possi-
bly complicated) network graph G1 and two of its sites i, j, we can try to obtain
a simpler network G2 := G(i,j), with two special nodes site1 and site2 that have
the same connectivity in G2 as the indices i and j in G1, and thus satisfies con-
dition (a) of the lemma. For the case of two indices, we can always find such a
network graph G(i,j) with at most 4 sites.

Proposition 1. For each graph G and indices i, j there exists a 4-node graph
G(i,j) called the connection topology of i, j, having two special sites site1 and
site2 such that

(G, i, j) ∼2 (G(i,j), site1, site2).

In other words, the indices i and j in G have the same connectivity as the
indices site1 and site2 in G(i,j).

Since G(i,j) satisfies condition (a) of Lemma 1, we obtain the following im-
portant consequence:

Corollary 1. Let ϕ(i, j) be a 2-indexed quantifier-free LTL\X property. Then

PG |= ϕ(i, j) iff PG(i,j) |= ϕ(site1, site2).

Thus, we have achieved a reduction from a potentially large network graph
G to a 4-node network graph G(i,j). We will now show how to actually construct
the connection topology G(i,j).

Construction of G(i,j). We construct the reduction graphs as follows. G(i,j)
has four sites: site1, site2, hub1, and hub2. The sites site1 and site2 are called
primary sites. They represent the sites of interest i and j. The other sites are
called hubs, and they represent the other nodes of the graph G. Let us describe in
more detail the role of these different nodes. Recall that to satisfy Proposition 1,
the sites site1 and site2 in G(i,j) should have the same connectivity as i, j in G.
Therefore:

– If Φ�(i, j) holds in G (i.e., there exists a path from i to j in G that goes
through a third node), then Φ�(site1, site2) has also to hold in G(i,j), i.e.,
there should exist in G(i,j) a path from site1 to site2 that goes through a
third node. The site hub1 will play the role of this “third node”. Therefore,
in this case, G(i,j) contains an edge from site1 to hub1, and from hub1 to
site2.

– In the same manner, if Φ�(i, j) holds in G (i.e., there exists a path from i
to itself in G that does not go through j), then Φ�(site1, site2) should also
be true in G(i,j). As previously, this is ensured by considering the following
edges: (site1, hub1) and (hub1, site1).

– Finally, if Φ→(i, j) holds in G (i.e., there exists a direct edge in G from i to
j), then G(i,j) should also contain the edge (site1, site2).

– The paths from j to i are treated in a symmetrical way.

284 E. Clarke et al.

For example, let H be a graph having as sites i, j, k, and l (among others),
such that v(H, i, j) = (1, 1, 1, 1, 1, 1), and v(H, k, l) = (0, 1, 0, 1, 1, 0); then the
graphs A and B of Example 4 correspond respectively to the reduction graphs
H(i,j) and H(k,l).

Since our fairness assumption implies that the network is strongly connected,
not all characteristic vectors actually occur in practice. A closer analysis yields
the following bound:

Proposition 2. For 2 indices, there exist at most 36 connection topologies.

Proof. By our fairness assumption, every connection topology must be strongly
connected. This implies that the following conditions must hold:

– At least one of Φ→(i, j) or Φ�(i, j) must be true.
– At least one of Φ→(j, i) or Φ�(j, i) must be true.

Consequently a detailed counting shows that the number of different possible
characteristic vectors is 3 × 3 × 4 = 36. �

Let us now return to the question of verifying properties of the form
∃x, y.ϕ(x, y). Note that Corollary 1 only provides us with a way to verify one
quantifier-free formula ϕ(i, j). Given a system PG, we define its 2-topology, de-
noted by T2(G), as the collection of all different connection topologies appearing
in G. Formally,

Definition 4. Given a network graph G = (S,C) the 2-topology of G is given
by

T2(G) = {G(i,j) | i, j ∈ S, i �= j}.

By Proposition 2, we know that |T2(G)| ≤ 36. Since we can express
∃x, y.ϕ(x, y) as a disjunction

∨

i,j∈S ϕ(i, j) we obtain the following result as
a consequence of Corollary 1:

Theorem 1. The following are equivalent:

(i) PG |= ∃x, y.ϕ(x, y)
(ii) There exists a connection topology T ∈ T2(G), such that PT |=

ϕ(site1, site2).

Thus, we obtain the following reduction algorithm for model checking PG |=
∃x, y.ϕ(x, y):

1: Determine T2(G).
2: For each T ∈ T2(G), model check PT |= ϕ(site1, site2).
3: If one of the model checking calls is successful then output “true” else output

“false”.

Verification by Network Decomposition 285

3.2 Existential k-Indexed LTL\X Specifications

We will now show how to generalize the results of the previous section to k-
indexed properties. Throughout this section, we will write expressions such as ī
to denote k-tuples of indices, and x̄ to denote k-tuples of variables. We will first
adapt the notion of connectivity as follows. Let ī = i1, i2 . . . ik be a sequence
of indices, and I = {i1, i2 . . . ik}. Then we define the following connectivity
properties:

G |= Φ�(x, I) “There is an (I \ {x})-free path from x to itself.”
G |= Φ�(x, y, I) “There is a path from x to y via a third node not in I.”
G |= Φ→(x, y) “There is a direct edge from x to y.”

By instantiating the variables x and y by the indices i1, . . . , ik in all possible
ways, we obtain a finite number of different conditions which will describe all
possible connectivities between the indices i1, . . . , ik.

As in the previous section, we can define an equivalence relation ∼k, where
(G1, ī) ∼k (G2, j̄) iff the indices ī have the same connectivity in G1 as the indices
j̄ in G2. Since the number of conditions is bounded, ∼k is an equivalence relation
of finite index, and we can describe each equivalence class by a characteristic vec-
tor v(G, v̄). Like in the previous section, we define the k-connection topologies,
G(i1,i2...ik) of the processes Pi1 , Pi2 . . . Pik in G as the smallest graphs that pre-
serve all the connectivity properties between the processes Pi1 , Pi2 . . . Pik . The
construction of the topology graphs is illustrated in Figure 2.

The unfilled nodes site1, . . . , sitek in the graph are the primary sites. There
is a hub site associated with each primary site. Moreover, there is an edge from
each hub hubj back to its primary sitej if there is an (I \ {ij})-free path from ij
to itself. There is an edge from hubj to sitel if there is a path from ij to il in G
via a third node not in I, and there is an edge from sitej to sitel if there exists
a direct edge (ij , il) in G.

hub1site1

site2

site3

site4

site5

hub2

hub3

hub4

hub5

Fig. 2. An example of a 5-index connection topology

286 E. Clarke et al.

Analogous to the bounds on 2-connection topologies it can be shown that
each k-connection topology has at most 2k processes and that there are at most
3k(k−1)2k distinct k-connection topologies. By an argument analogous to that
of the previous section, we obtain the following corollary

Corollary 2. Let ϕ(x̄) be a k-indexed quantifier-free LTL\X property. Then

PG |= ϕ(̄i) iff PG(ī) |= ϕ(site1, site2, . . . , sitek).

The notion of k-topology is also defined completely analogously:

Definition 5. Given a network graph G = (S,C) the k-topology of G is given
by

Tk(G) = {G(̄i) | ī ∈ Sk, all indices in ī are distinct}.
Consequently, we obtain a model checking procedure from the following the-

orem, similar to the case of 2-indices:

Theorem 2. The following are equivalent:

(i) PG |= ∃x̄.ϕ(x̄)
(ii) There exists a connection topology T ∈ Tk(G), such that PT |=

ϕ(site1, site2, . . . , sitek).

As mentioned before |Tk(G)| ≤ 3k(k−1)2k.

3.3 Specifications with General Quantifier Prefixes

In this section we will show how to obtain reductions for k-indexed specifications
with first order prefixes.

Let us for simplicity consider the 2-indexed formula Φ := ∀x∃y.ϕ(x, y).
Over a network graph G = (S,C), |S| = n it is clear that Φ is equivalent to
∧1≤i≤n ∨1≤j≤n ϕ(i, j). A naive application of Corollary 2 would therefore re-
quire n2 calls to the model checker which may be expensive for practical values
of n. In practice, however, we can bound the number of model checker calls by
|T2(G)| since this is the maximum number of different connection topologies. We
conclude that the n2 model checker calls must contain repetitions. In the pro-
gram, we can make sure that at most 36 calls to the model checker are needed.
We obtain the following algorithm:

1: Determine T2(G).
2: For each T ∈ T2(G)
3: model check PT |= ϕ(site1, site2)
4: g[T] := 1 iff model checking successful, and 0 otherwise
5: Output

∧

1≤i≤n
∨

1≤j≤n g[G(i,j)].

By simplifying the formula in line 5, we may further increase performance.
The algorithm can be adapted for k indices in the obvious way. To state the main
theorem of this section, we define (c, s)-bounded reductions, where c bounds the
number of calls to the model checker, and s bounds the size of the network
graph.

Verification by Network Decomposition 287

Definition 6 ((c, s)-Bounded Reduction). Let G, P be as above, and ϕ a
closed k-indexed formula with matrix ϕ′(x1, . . . , xk). Let Ψ denote a property of
interest (e.g., the model checking property ′′PG |= ϕ′′). A (c, s)-bounded reduc-
tion of property Ψ is given by:

– a sequence of c reduced network graphs Gi = (Si, Ci), 1 ≤ i ≤ c such that
|Si| ≤ s. called reduction graphs.

– a boolean function B over c variables g1, . . . , gc, such that

Ψ iff B(g1, . . . , gc) = 1 where gi := 1 iff GPi |= ϕ′(site1, . . . , sitek)

In other words, property Ψ is decided by c calls to the model checker, where
in each call the network graph is bounded by s.

Further, we say that a class L of specifications has (c, s) bounded reduction if
for all network graphs G and any ϕ ∈ L, the property PG |= ϕ has (c, s)-bounded
reduction. We can now state our main result:

Theorem 3. Let ϕ be any k-indexed LTL\X specification. Then the model
checking problem “PG |= ϕ” has polynomial-time1 computable (3k(k−1)2k, 2k)-
bounded reductions.

In fact, the sequence of reduced network graphs is just the different k-
connection topologies occurring in G. This implies that given k and network
graph G, all k-indexed LTL\X specifications have the same reduction. Stated
another way, LTL\X has (3k(k−1)2k, 2k)-bounded reduction.

3.4 Cut-Offs for Network Topologies

In this section, we prove the existence of cutoffs for network topologies, i.e.,
(infinite) classes of network graphs. We say that a class of network graphs has
cutoff (c, s), if the question whether all the network graphs in this topology
satisfy the specification has a (c, s)-bounded reduction.

Definition 7 (Cut-Off). Let T be a network topology, and L a class of speci-
fications. T has a cut-off (c, s) for L if for all specifications ϕ ∈ L the property

Ψ := “ ∀G ∈ T . PG |= ϕ ”

has a (c, s)-bounded reduction.

It is not hard to prove that a (c, s)-bounded reduction for a network graph
translates to a cut-off for a network topology:

Theorem 4. For k-indexed specifications, all network topologies T have
(2k, 3k(k−1)2k)-bounded reductions.

Note that the theorem does not provide us with an effective means to find
the reduction; it does however guarantee that at least in principle we can always
find a cutoff by investigating the topology T.

1 In the size of the network graph G.

288 E. Clarke et al.

In this section, we show that indexed CTL\ X formulas over two indices don’t
have (c, s)-bounded reductions. We will first show the following generic result
about CTL\ X:

Theorem 5. For each number i there exists an CTL\ X formula ϕi with the
following properties:

– ϕi is satisfiable (and has a finite model).
– ϕi uses only two atomic propositions l and r.
– Every Kripke structure K where ϕi is true has at least i states.
– ϕi has the form EFϕ′

i.

The result is true even when the Kripke structure is required to have a strongly
connected transition relation.

Proof. Our goal is to describe a formula ϕi using atomic propositions l and r
whose models must have at least i states. We will construct a large conjunction
∧

ψ∈Γ ψ, and describe which formulas to put in Γ . The idea is simple: Γ needs
to contain i CTL\X formulas which describe the existence of i different states.
Then the formula EF

∧

ψ∈Γ ψ will be the sought for ϕi.

L

R

Level 0Level 1Auxilliary Node Level 2

Fig. 3. The Kripke structure K, constructed for three levels. The dashed lines indicate
the connections necessary to achieve a strongly connected graph

4 Bounded Reductions for CTL \ X Are Impossible

Verification by Network Decomposition 289

Consider a Kripke structure K as in Figure 3:

– In Level 0, it contains two distinct states L,R labelled with l and r respec-
tively. To express the presence of these states, we include the formulas, let
ψ1

0 := (l ∧ ¬r) and ψ2
0 := (r ∧ ¬l), and include EFψ1

0 and EFψ2
0 into Γ .

It is clear that EFψ1
0 and EFψ2

0 express the presence of two mutually ex-
clusive states.

– In Level 1, K contains 22 − 1 = 3 states, such that the first one has {L,R}-
free paths to L and R, the second one an {L,R}-free path only to L, and
the third one an {L,R}-free path only to R. The characteristic properties of
level 1 states are expressed by formulas
ψ1

1 := EF−ψ1
0 ∧ EF−ψ2

0
ψ2

1 := EF−ψ1
0 ∧ ¬EF−ψ2

0
ψ3

1 := ¬EF−ψ1
0 ∧ EF−ψ2

0
where EF−x denotes E(¬l∧¬r)Ux, i.e., a variant of EF which forbids paths
through L and R. To enforce the existence of the Level 1 states in the Kripke
structure, we include EFψ1

1 ,EFψ2
1 ,EFψ3

1 into Γ .
– In general, each Level k has at least 2k+1 − 1 states which differ in their

relationship to the states in Level k − 1. The presence of such states is
expressed by formulas EFψxk .

All these formulas are included into Γ until the requested number i of dif-
ferent states is reached. By construction, all properties required in the theorem
statement are trivially fulfilled. In particular, Figure 3 demonstrates that there
always exists a strongly connected model. �

Remark 1. This result is closely related to early results about characterizing
Kripke structures up to bisimulation in [8]. The results in [8] give rise to the
following proof idea for Theorem 5: Let K1, . . . ,Kn be all Kripke structures with
2 labels of size ≤ i, and let f1, . . . , fn be CTL\ X formulas which characterize
them up to stuttering bisimulation. Consider now the formula ϕi :=

∧

1≤j≤n ¬fj .
By construction every model of ϕi must have > i states. At this point, however,
the proof breaks down, because we do not know from the construction if ϕi is
satisfiable at all. The natural way to show that ϕi has a model would be to prove
that stuttering bisimulation over a 2-symbol alphabet has infinite index. This
property however is a corollary to Theorem 5, and we are not aware of a proof
in the literature.

For properties involving only the presence of the token, a system PG, where
G = (S,C) essentially behaves like a Kripke structure with set of states S and
transition relation C. The proof of this assertion is not given here.

Now we can show by contradiction that indexed CTL\ X cannot have
bounded reductions. Suppose CTL\X did have (c, s)-bounded reduction for some
s. Then, by Theorem 5, we can always find a CTL\X formula Φ such that the
network graph underlying any system that satisfies Φ must have size at least
c + 1. Thus CTL\X does not have bounded reductions. Consequently, we also
have the following corollary:

290 E. Clarke et al.

Corollary 3. There exists a network topology T for which 2-indexed CTL\ X
does not have cut-offs.

5 Conclusion and Future Work

In this paper, we have described a systematic approach for reducing the verifica-
tion of large and parameterized systems to the verification of a sequence of much
smaller systems. The current paper is primarily concerned with the algorithmic
and logical concepts underlying our approach. We will conclude this paper with
further considerations concerning the practical complexity of model checking.

For simplicity, let us again consider the case of 2-indexed properties. Suppose
the processes P in our network have state space |Q|. Then our reduction requires
to model check up to 36 network graphs with 4 sites, resulting in a state space
of |Q|4 . Even this model checking problem may be expensive in practice. By a
close analysis of our proofs, it is however possible to reduce the state space even
further to O(|Q|2).

It is easy to show that Lemma 1 will hold even when the processes at the
hubs are simple dummy processes containing two states whose mere task is to
send and receive the token infinitely often. Consequently, the systems PG(i,j)

will have state space of size 22 × |Q|2.
The results in this paper on LTL\X were derived assuming fairness condition

on the systems. We can obtain similar reductions by removing this assumption.
Doing away with fairness necessitates the consideration of two more path types
other than the ones described in Section 3.1. Consequently, the topology graphs
have more than 4 sites and also the number of different topology graphs increases.
Reductions in non-fair case will be described in a future work.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model-checking
made simple and efficient. In In Proceedings 13th International Conference on
Concurrency Theory (CONCUR), volume 2421 of Lecture Notes in Computer Sci-
ence, pages 116–130. Springer-Verlag, 2002.

2. K. Apt and D. Kozen. Limits for automatic verification of finite state concurrent
systems. Information Processing Letters, 15:307–309, 1986.

3. T. Arons, A. Pnueli, S. Ruah, and L. Zuck. Parameterized verification with auto-
matically computed inductive assertions. In Proc. 13th Intl. Conf. Computer Aided
Verification (CAV), 2001.

4. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In 15th
Intern. Conf. on Computer Aided Verification (CAV’03). LNCS, Springer-Verlag,
2003.

5. A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of Parametric Concur-
rent Systems with Prioritized FIFO Resource Management. In Proceedings of
CONCUR’03, 2003.

Verification by Network Decomposition 291

6. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
12th Intern. Conf. on Computer Aided Verification (CAV’00). LNCS, Springer-
Verlag, 2000.

7. A. Bouajjani and T. Touili. Extrapolating tree transformations. In 14th Intern.
Conf. on Computer Aided Verification (CAV’02). LNCS, Springer-Verlag, 2002.

8. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59:115–131,
1988.

9. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. Information and Computation, 81:13–31,
1989.

10. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal model
checking. In Proc. 5th Intl. Conf. Computer Aided Verification (CAV), 1993.

11. B. Courcelle. Graph rewriting: An algebraic and logic approach. B:459–492, 1990.
12. A. E. Emerson and V. Kahlon. Reducing model checking of the many to the few.

In 17th International Conference on Automated Deduction, pages 236–254, 2000.
13. A. E. Emerson and V. Kahlon. Model checking larage-scale and parameterized re-

source allocation systems. In Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), pages 251–265, 2002.

14. A. E. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 361–370,
2003.

15. A. E. Emerson and V. Kahlon. Rapid parameterized model checking of snoopy
cache protocols. In Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), pages 144–159, 2003.

16. E. A. Emerson, J. Havlicek, and R. Trefler. Virtual symmetry. In LICS, 2000.
17. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In ACM Symposium

on Principles of Programming Languages (POPL’95), 1995.
18. E. A. Emerson and A. Sistla. Utlizing symmetry when model-checking under

fairness assumptions: An automata theoretic approach. TOPLAS, 4, 1997.
19. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Proc. 5th Intl.

Conf. Computer Aided Verification (CAV), 1993.
20. E. A. Emerson and R. Trefler. From asymmetry to full symmetry. In CHARME,

1999.
21. S. M. German and A. P. Sistla. Reasoning about systems with many processes.

Journal of ACM, 39, 1992.
22. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model

checking with rich assertional languages. In O. Grumberg, editor, Proc. CAV’97,
volume 1254 of LNCS, pages 424–435. Springer, June 1997.

23. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification”. In Proc. CAV’04. To appear.

24. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Lecture Notes in Computer Science, 2001.

25. I. Suzuki. Proving properties of a ring of finite state machines. Information Pro-
cessing Letters, 28:213–214, 1988.

26. T. Touili. Widening Techniques for Regular Model Checking. In 1st vepas work-
shop. Volume 50 of Electronic Notes in Theoretical Computer Science, 2001.

	Introduction
	Computation Model
	Reductions for Indexed LTLX Specifications
	Existential 2-Indexed LTL X Specifications
	Existential k-Indexed LTLX Specifications
	Specifications with General Quantifier Prefixes
	Cut-Offs for Network Topologies

	Bounded Reductions for CTLX Are Impossible
	Conclusion and Future Work

