Verification of All Circuits in a Floating-Point
Unit Using Word-Level Model Checking

Yirng-An Chen*, Edmund Clarke*, Pei-Hsin Ho**, Yatin Hoskote**,
Timothy Kam**, Manpreet Khaira**, John O’Leary**, Xudong Zhao**

Abstract This paper presents the formal verification of all sub-circuits in a
floating-point arithmetic unit (FPU) from an Intel microprocessor using a word-
level model checker. This work represents the first large-scale application of
word-level model checking techniques. The FPU can perform addition, subtrac-
tion, multiplication, square root, division, remainder, and rounding operations;
verifying such a broad range of functionality required coupling the model checker
with a number of other techniques, such as property decomposition, property-
specific model extraction, and latch removal. We will illustrate our verification
techniques using the Weitek WTL3170/3171 Sparc floating point coprocessor as
an example. The principal contribution of this paper is a practical verification
methodology explaining what techniques to apply (and where to apply them)
when verifying floating-point arithmetic circuits. We have applied our methods
to the floating-point unit of a state-of-the-art Intel microprocessor, which is ca-
pable of extended precision (64-bit mantissa) computa- tion. The success of this
effort demonstrates that word-level model checking, with the help of other verifi-
cation techniques, can verify arithmetic circuits of the size and complexity found
in industry.

1 Introduction

The floating-point division flaw [SB94, Coe95] in Intel Corp.’s Pentium under-
scores how hard the task of verifying a floating-point arithmetic unit is, and how
high the cost of a floating-point arithmetic bug can be. About one trillion test
vectors were used and none uncovered the bug. The recall and replacement of
the chips in the field cost Intel $470 million. Since the Pentium processor flaw
came to light, there has naturally been new interest in improved methods for
functional verification of arithmetic hardware - especially in formal methods,
which provide exhaustive coverage of the implementation’s behavior. This paper
describes the formal verification of a complete floating-point unit, described at
the structural level in a hardware description language, using word-level model
checking techniques and gives verification results for a recent Intel microproces-
sor. We have verified the correct implementation of the addition, subtraction,
multiplication, square root, division, remainder, and rounding operations. This
work is the first large-scale application of word-level model checking techniques.

* School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
** Intel Development Labs, 5200 NE Elam Young Parkway, M/S JFT-102, Hillsboro,
OR 97124-6497 USA

The principal contribution of this paper is to demonstrate how word-level
model checking can be applied to practically and efficiently verify arithmetic
circuits in state-of-the-art microprocessors. We will focus on the techniques we
found useful for various classes of circuits, rather than the details of the model
checking algorithm itself which are covered in [CKZ96]. We illustrate our tech-
niques with respect to the design of the Weitek WTL3170/3171 floating-point
coprocessors. We chose the Weitek part because substantial detail has been pub-
lished about its architecture and algorithms[BSC*90], though we think it is sim-
pler than the Intel design we actually verified. However, we emphasize that the
verification methodology we propose is very general and our techniques are ap-
plicable to other floating-point and integer arithmetic circuits as well. We will
report the results of verifying the FPU from an Intel microprocessor using these
techniques in a separate section.

Previous work in formally verifying arithmetic hardware has either used
BDD-based algorithms [Bry91, Bry95], or theorem proving techniques [VCM94],
or a combination of both [KL93]. The first approach has the disadvantage that it
requires extremely detailed, bit-level specifications that are difficult to formulate
correctly. Moreover, the bit-level specifications of operations like multiplication
can be exponentially complex. The latter two approaches are relatively laborious
and require users with substantial special training to guide the proof. However,
they allow specifications to be written cleanly, in terms of the usual arithmetic
operations upon arbitrary-precision integers. Our work demonstrates that word-
level model checking algorithms combine the best of both worlds, admitting a
high degree of automation while allowing very abstract specifications.

The remainder of this paper is organized as follows. Section 2 contains a
brief introduction to the word-level model checking techniques we used in veri-
fying the FPU. Section 3 describes the functional units in the Weitek FPU and
the techniques that can be used to verify them. In particular, we will discuss
property decomposition, property-specific model extraction, latch removal, and
verification by invariants. Section 4 presents results obtained in applying these
techniques to a floating-point unit from an Intel microprocessor.

2 Word-Level Model Checking

Symbolic model checking [McM93] is a very efficient technique for verifying the
correctness of sequential circuits. It is based on binary decision diagrams (BDDs)
and has been very successful in verifying the control logic of industrial circuits.
However, BDDs are sometimes unable to represent the data path of circuits
efficiently (e.g. multipliers and shifters), preventing their wide-spread use in the
verification of arithmetic circuits. Recently, data structures that allow such an
efficient representation have been derived from BDDs, such as binary moment
diagrams (BMD) [BC95] and multi-terminal BDDs (MTBDD) [CMZ%93]. These
representations have further been combined to form hybrid decision diagrams
(HDDs) [CFZ95].

2.1 Hybrid Decision Diagrams

A BDD is a directed acyclic graph with a total order on the occurrence of vari-
ables from root to leaf. Multi-terminal BDDs have a similar structure. However,
BDDs have Boolean leaves, while MTBDDs have integer leaves and therefore
represent functions from Booleans to integers. Functions from integers to inte-
gers can also be represented when the input is encoded in binary form. Efficient
algorithms exist that compute common arithmetic operations when operands
are given in this form. A BMD is another representation for functions that map
Boolean vectors to integers. This representation is more compact for some useful
arithmetic functions which have exponential size if represented using MTBDDs.

Both BMDs and MTBDDs have been integrated into the verification system
at Intel through the use of hybrid decision diagrams (HDDs). In particular, for
state variables in the circuit corresponding to data bits, this hybrid representa-
tion behaves like a BMD; while for the state variables corresponding to control
signals, it behaves like a MTBDD. By using HDDs in this manner, this system
is able to handle complex circuits containing both complex control logic and
wide data paths. The reader is referred to [BC95, CMZ193, CFZ95] for detailed
descriptions of BDDs, BMDs and HDDs.

2.2 Specifying Word-Level Properties

The HDD-based verification system allows the expression of properties involving
relationships among data variables. Unlike a BDD-based system where properties
can only reason about state variables, the HDD-based system allows properties
involving relations between the values of data variables called words. A word is
an array or bit vector of state variables. The value of the word is the value of the
unsigned integer represented by that bit vector. An arithmetic expression can
be constructed from words in the circuit, constants and arithmetic operations
on words. In our word-level extended CTL, any Boolean combination of strict or
nonstrict inequalities of integer expressions with arithmetic operations such as
addition, subtraction, multiplication can be specified. For example, the property

AG((p<0) = AX((p=(-2-0+3-71) Ap>0))

specifies that it is always the case that if p is negative, then in the next clock

phase the value of p is equal to —2- b+ 3 - r and p becomes non-negative.
Extended CTL allows a wide range of abstract specifications on data vari-

ables, which are not expressible in a system using a Boolean representation.

2.3 Model Checking with Word-Level Properties

Model checking is a technique that, given a state-transition graph and a temporal
logic formula, determines which states satisfy the formula. In symbolic model
checking systems [McM93], BDDs are used to represent the transition relations
and sets of states. The model checking process is performed iteratively on these

BDDs. Symbolic model checking has dramatically increased the size of circuits
that can be formally verified. However, model checking algorithms cannot be
used directly for verifying arithmetic circuits. Expressions that involve variables
with integer values cannot be handled in a clean and efficient manner. Word-level
model checking overcomes this problem by extending the original algorithms to
evaluate arithmetic expressions using hybrid decision diagrams [CKZ96].

In word-level model checking, the transition relation and formulas not in-
volving words are implemented using BDDs as in the original algorithm. HDDs
are used only to compute word-level expressions. The BDD representing the set
of variable assignments that make an algebraic relation true is built using the
HDD representations of the expressions within the algebraic relation. After the
BDDs for atomic formulas have been computed, the BDDs for temporal formu-
las are computed in the same way as in standard model checking. The iterative
computations are exactly the same in both cases. The power of this extended
system will be evident from the verification results presented in this paper.

3 Verifying a Floating-Point Arithmetic Unit

3.1 Weitek Floating-Point Coprocessor

In this section we present a typical FPU, the Weitek WTL3170/3171 Sparc
floating-point coprocessor [BSC*90], and the techniques we have found useful
to verify each type of circuit found in the coprocessor. The verification method-
ology we use for floating-point arithmetic circuits is very general and our tech-
niques are applicable to other arithmetic circuits as well. In section 4, we shall
report verification results specific to an Intel FPU design. We will focus on the
mantissa computations, as they pose the most interesting verification challenges.
The exponent unit., which is shared among several of the FPU’s functions, is
relatively simple to verify.

Figure 1 shows a block diagram of the Weitek FPU. It consists of circuits per-
forming addition/subtraction, multiplication, square root, division and round-
ing. The verification methodology presented here does not follow this structural
decomposition, but rather verifies one arithmetic operation at a time. The expo-
nent operation for all units but the ALU are verified separately. The rounding
operation and exponent adjustment during rounding is quite difficult to specify
as part of the preceding arithmetic operation and is also verified separately. The
FPU takes two floating-point operands (M, E1) and (Ma, Es) and generates a
result floating-point number (M,yt, Eout). In the following, we assume the man-
tissas to be ks bits wide, where kps is the internal precision of the machine. The
verification of arithmetic operations is described in detail in the sequel. However,
all the verification tasks follow a general methodology which is described here.

One general technique to tackle complex verification tasks is property de-
composition, which is applicable at different levels of description. The task of
verifying the correctness of the FPU is decomposed into properties asserting
that individual FP sub-circuits compute the correct arithmetic functions. At a

1

M. c o A —
subtract
El
E2 M M out
L, divide/ = ’ E
M, compare/ E ou
M, square root

Fig. 1. Block Diagram for WEITEK Co-processor

lower level, the property of the circuit is often further decomposed into arith-
metic properties relating the mantissas and other properties of the exponents.

An FPU can be divided into a number of sub-circuits, each computing a
particular arithmetic function on the operands. Depending on the machine in-
struction or micro-operation, different sub-circuits may be activated while others
irrelevant to the operation are not used. Thus the model to be verified can be
simplified with respect to the property being verified. For example, to verify
the division circuit, only the division and the exponent sub-circuits need to be
included into the model. In addition, for each sub-circuit and for each property
to be verified with respect to the sub-circuit, a property-specific model extraction
can be performed on the sub-circuit to simplify away the parts of the sub-circuit
that is irrelevant to the property. The property-specific model extraction is done
by an automatic tool that was independently developed at Intel. The tool seems
to be very similar to the per-function reduction in [BBDEL96].

Several of the arithmetic algorithms used in the FPU are inherently iterative.
For example, the square root and division computations begin by generating
an initial result consisting of a few high order bits, then refining the initial
result in successive iterations by computing lower-order bits until the desired
precision is achieved. Iterative algorithms in general can be verified by proving
an invariant, a technique borrowed from software verification. An invariant is a
property relating the registers used in the computation during each iteration.
The proof of an invariant has two parts: a proof that the initialization phase of
the circuit causes the invariant to hold, and a proof that if the invariant holds
before an iteration of the algorithm, then it continues to hold after the iteration.
From these two results we can conclude that the invariant always holds, subject
to the precision limitations of the physical registers.

To improve performance, floating-point circuits are often heavily pipelined.
Verification of sequential hardware is in general more complicated than that for

combinational ones. We can verify pipelined designs in two steps: combinational
verification of their functionality and sequential verification of their pipeline
control. For the former, we can remove the pipeline latches and treat the whole
circuit as a single combinational block. Latch removal results in simpler specifi-
cations as well as more efficient verification. When we verify the pipeline control,
we can abstract away the datapath as we are interested only in the sequential
behavior of the control signals. For each pipeline latch, latch removal takes away
the latch and its clock signal, and then reexpresses the latch output as a logic
function of its inputs and its enable and reset signals. Note that latch removal
can result in incorrect verification if the arithmetic circuit is inherently sequential
or iterative in nature, as are division and square root.

Dynamic variable reordering is sometimes useful in verifying arithmetic cir-
cuits, especially for iterative circuits that contain a non-trivial control part. We
have generalized Rudell’s dynamic variable reordering algorithm [Rud93] to work
on HDDs and incorporated it into our verification system.

A significant portion of the verification effort involved the user familiarizing
himself/herself with the actual circuit description so as to be able to state prop-
erties correctly in terms of appropriate circuit signals, be able to ignore irrelevant
parts of the circuit and be able to formulate the properties in a manner so as to
best manage verification complexity.

3.2 Square Root

This section describes the verification of the mantissa computation for the square
root operation. The Weitek paper states that the square root and division op-
erations share a common datapath, but it leaves the details of the square root
operation - for example, radix, unspecified [BSC*90]. For illustration, we con-
sider here a non-restoring, radix-2 algorithm that is commonly found in the
literature [BV85, OLHA95], and is implemented on a separate datapath.

The algorithm proceeds iteratively, as follows. The partial square root proot
contains all the root mantissa bits computed thus far, and is used in each iter-
ation to guess what the next partial root should be. The guess is always twice
the partial square root plus the guess bit. The partial remainder prem contains
the difference between the radicand mantissa and the previous guess squared. If
the partial remainder is positive in a given cycle, then the square of the previ-
ous guess was less than the radicand, hence the most recently guessed bit was
correctly presumed to be 1. If the partial remainder is negative, then the square
of the previous guess was greater than the radicand, and so the most recently
guessed bit was incorrectly assumed to be 1, and the partial root must be cor-
rected accordingly. The guess bit b is initially 22°*» and is shifted right two bits
every cycle.

Because the square root algorithm is iterative in nature, we verify it by
proving a loop invariant. In particular, we prove that the partially constructed
root proot, the partial remainder prem, and the guess bit b have the following
relationship at each iteration 4:

prem; <0 — =2 - proot; + b; < prem;

prem; > 0 — 2 - proot; + b; > prem,

We denote the conjunction of the above properties by INV ;. It can be proved
mathematically that if the loop invariant is true at each iteration, when the
algorithm terminates, the result is correct [OLHA95].

We prove the invariant by induction on the number kj; of iterations. Ac-
cording to the algorithm, in the 0’th iteration the registers are initialized as
follows.

premgy = radicand
prooty =0
b = 2%hm

The radicand is positive and less than 22*¥ so INV should hold.
In subsequent iterations the algorithm updates the registers as follows.

~ _ | prem; — proot; — b, 0 < prem;
premiyy = {premi + proot; — b;, prem; >0

proot;, , = (proot; +2-b;)/2, 0 < prem,;
i+1 (proot; —2-b;)/2, prem; > 0

biy1 = bi/4

For these later iterations we have to verify that if INV; is true in a given
clock cycle, and the registers are updated as above, then INV;;; will be true
in the subsequent clock cycle. That is, we use the word-level model checker to
verify the following assertion.

INV; = INV ;41

These two results (the invariant holds initially, and is preserved by the register
updates) prove that the invariant always holds.

Because the extended CTL used in the model-checking tool supports Boolean
combinations of integer inequalities with subtractions, additions and multipli-
cations, the invariant INV; can be formulated ”as is” for the model checker.
To verify the properties, we must first automatically obtain a property-specific
extraction of the model. In addition, to relate the values of variables in iteration
i and i + 1, we can introduce a set of "history” variables into the abstracted
model that store the previous values of prem, proot, and b.

3.3 Division

In this section, we discuss the verification of floating-point division. Weitek
WTL3170/3171 uses a radix-4 SRT division algorithm. The similar algorithms
can also be found in [Fri61, Atk68]. Since the SRT division algorithm is also iter-
ative, the loop invariant verification technique introduced in the previous section
also applies here. Several published papers [CKZ96, BC95] have also shown how
to verify radix-4 SRT division circuits using model checking techniques and thus

our description here is brief. Given the mantissa d (from M; in Figure 1) of the
dividend and the mantissa b (from M in Figure 1), the radix-4 SRT division
algorithm iteratively computes a partial remainder r; and a quotient digit g;.
The partial remainder r¢ is initialized to d/4 and the quotient digit go is initial-
ized to zero. Each iteration the algorithm gets the quotient digit from a lookup
table and subtracts ¢; - b from the partial remainder r; that has been shifted
left by 2 bits. In other words, r;11 = 4 -r; — ¢; - b. The algorithm terminates
when enough quotient bits have been computed. Suppose that the quotient dig-
its are within the range {—n,—n+1,...,-1,0,1,...,n—1,n} for some positive
n. Then a radix-4 SRT division algorithm is guaranteed to be correct if both of
the following properties are true in each division loop [Atk68]:

Tit1 =4-1;—¢qi"b

n-b
73] < ——

The loop invariant INV; that we want to verify with our verifier is the
conjunction of the two properties above. We want to verify that the invariant
INV is true initially and also INV; = INV ;1. Since the quotient digits that
WTL3170/3171 uses are {—3,—2,—1,0,1,2,3}, the second property simply be-
comes |r;| < b.

Again, INV ; can be expressed in the extended CTL very easily. Although the
extended CTL does not support the division operator, we can easily transform
some inequalities with divisions to inequalities with only multiplications. For
example, the second property of INV; (for any constant n) can be specified as
follows.

AG((3-r; <n-b)A(=3-1;<n-b))

The property-specific model extraction and variable ordering techniques dis-
cussed previously are also useful here to verify the loop invariant.

3.4 Multiplier

A floating-point multiplier consists of two parts, an integer multiplier and an
exponent unit. This section describes the integer multiplier as shown in Fig-
ure 2. Depending on the precision, Weitek FP multiplier operates actually in
two modes. We first describe the more common multiplier configuration for sin-
gle precision. For double precision, multiplication is accomplished in two passes
using the carry-save adder array. The verification of the double precision case is
a straightforward extension and will not be described here.

As shown in Figure 2, the multiplier input M; is first encoded through the
Booth encoder. The value 3 - M is produced by the 3X generator. Second, the
multiplier selects which multiple (1X or 3X) of the multiplicand is used for each
partial product. This step is called partial product selection. Third, the carry-
save adder array adds all partial products to produce two numbers. Finally, an
adder produces the final product. Note that for single precision, the multiplexer

3 ; register

Booth
encoder > carry save adder array

Fig. 2. Block Diagram of FP multiplier

is controlled so that the output of the CSA array is not fed back as one of its
inputs.

The overall property to verify the mantissa part of the multiplier is M =
My - M2. To reduce the size of the HDDs required for this word-level model
checking, a few decomposition techniques must be used. The Weitek multiplier
is pipelined, so the pipeline latches must first be removed so that the multiplier
circuit can be considered as a combinational function.

Even with word-level model checking, one has to be careful during the con-
struction of BMDs to make sure that no intermediate computation results in
an exponential representation. A simple-minded way of constructing the output
BMD function M starts from the inputs and progressively builds the interme-
diate Boolean functions as BDDs. Once the BDD functions for each output bit
are obtained, they are collected and composed into a word BMD function. This
method unfortunately will not work on wide multipliers as there is no compact
BDD representation of the output bits of a multiplier. This problem can be
overcome by the following approach.

Hamaguchi et. al in [HMY95] proposed a backward construction method for
obtaining a *BMD function. A cut is first defined across the output(s) and is
swept towards the inputs by iteratively moving one gate across the cut at a
time. A *BMD representing the function from the cut to the output is always
maintained during the backward substitution. We improve on this method by

not evaluating a new BMD function for each gate in the circuit. Instead we
introduce the notion of auxiliary variables to mark multiple cuts on the circuit.
Small intermediate BDDs are built to represent functions separated by auxiliary
variables. We obtain the BMD representation of the output word M in terms of
the auxiliary variables that are the immediate inputs of M. Then we backward
substitute the next intermediate function into the output BMD function, and
continue until the latter is formulated in terms of primary inputs M; and Ms.
This process is fully automatic. The simple M = Mj - M, property can be verified
directly on the circuit after unlatching and specification of auxiliary variables.

3.5 Adder / Subtracter

The block diagram in Figure 3 shows the FP add/subtract circuit from the
Weitek FP coprocessor. Note that it is more complicated than its integer coun-
terpart. Given two floating-point numbers, they must first be aligned before
their mantissas can be added/subtracted. This is done by comparing the rel-
ative magnitude of the two exponents and swapping (M1, E1) and (M2, E;) if
E; < E5. It then shifts the mantissa with a smaller exponent |E; — Es| places
to the right. The larger exponent will become the exponent of the result. The
result of mantissa addition will be within the bound [2, 4). If the sum is greater
than two, the overflow mantissa must be shifted to the right. This is accom-
plished by the rounder circuit. On the other hand, after subtraction, it is possible
that the resulting mantissa has leading zeros. Normalization is accomplished in
such cases by multiple left shifting the mantissa. Let L be the amount of left
shifting performed for normalization. The resulting exponent then must also be
decreased by L. This is done in the add/subtract unit. Thus, the output of the
adder/subtracter is in the range [1,4).

The FP addition and subtraction properties can be decomposed and verified
by case analysis. First, four combinations of signs of the two inputs are grouped
into two cases: true addition and true subtraction. True addition and subtraction
are the actual operations performed by the circuit. True addition includes addi-
tion of two numbers of the same sign, and subtraction between two numbers of
different signs. Similarly, true subtraction refers to subtraction of two numbers
of the same sign, and addition of two numbers of different signs. Furthermore,
we decomposed each case into sub-properties, which are verified, according to
the difference in the exponents.

3.6 Rounding unit

The result from a floating-point operation is finally fed to the rounding unit
to be rounded so that it can be represented by a floating-point number of the
required precision. The Weitek paper does not give the implementation of the
rounding logic. However, it is the specification methodology that is of interest
here and we describe it in this section.

In simple terms, we wish to verify that the output of the rounder is within
one bit of the input. Thus, one approach is to specify the rounding operation

1 | 2 M, M,
L l
swap exponent compare — swap
‘ right
shift
|E1' E2 | #
mantissa add/sub
] i
exponent .
adjustment left shift
E M

Fig. 3. Block diagram of FP adder/subtracter

as a relation between the input and output mantissa and exponents as follows
(shown for single precision):

M-—2"2 < My < M+272

E = Eqyu

This specification has the advantage of being very general and independent of the
specific rounding mode that is used. However, we have to split this specification
into several cases to make the verification tractable. This splitting is most easily
done on the basis of the rounding modes.

Most floating-point systems support four rounding modes for each precision:

round to zero

— round to positive infinity
round to negative infinity
— round to nearest/even.

It is required that the result of an arithmetic operation should be the same
as it would be if it were computed with infinite precision and then rounded using
one of the specified rounding modes. To simulate the effect of infinite precision
in the implementation, the rounding unit extracts a few extra bits from its input
besides the fraction bits and the leading 1 bit (L). These extra bits are called
the round bit (R) and the sticky bit (S). In a normalized input, the R bit is
simply the bit to the right of the least significant bit (Mg) of the mantissa and

the S bit is the OR of all the bits to the right of the R bit. If the input to the
rounder is not normalized, i.e., it is in the range [2,4), it is right shifted by one to
bring it in the range [1,2) and the exponent is incremented before the rounding
operation is carried out. In the following, we assume that the input mantissa is
normalized. The final data format for normalized mantissa in single precision is
shown in Figure 4.

1 MJ R|S

Fig. 4. Input mantissa format for single precision

To specify the relation between the input and output of the rounding unit for
each rounding mode, we compute an increment bit (I) for each rounding mode
from the R and S bits. The relation between the input and output mantissa is
then expressed in terms of the I bit. This enables a natural decomposition of
the basic specification given earlier on the basis of the rounding modes since the
computation of the I bit depends on the rounding mode. The desired behavior
of the rounding unit can then be specified as follows: it adds the I bit to the
My bit of the input mantissa. If this addition causes an overflow, the mantissa,
is shifted right and the exponent is incremented. The data is then chopped to
the desired precision to give the final result mantissa.

The specifications for each mode then take the following form (shown for
single precision), where shift is 1 if the addition of the I bit causes the result
mantissa to be greater than or equal to 2, and 0 otherwise:

Mout — (M +7. 2—23)) 2—3hift

Eout =F + Sh’Lft

The computation of the I bit differs for each rounding mode and also depends
on the sign of the input. Lack of space precludes a more detailed description of
the specifications (see page A-24 in [HP96] for an example of I bit calculation).
It is possible that the implementation also computes a similar I bit to help in the
rounding. It is important that the computation of this I bit in the specification
does not mimic the logic for computation of the I bit in the actual implementa-
tion. This ensures that the specification is at a higher level of abstraction than
the implementation.

The above specifications apply only to normal numbers where the exponent
value falls in the acceptable range. In case of overflow or underflow, the setting of
appropriate exception flags is verified. The actual data output by the rounder in
such cases depends on the implementation. In any event, the above specifications

can be modified for the special cases to appropriately reflect the desired behavior
of the rounding hardware.

4 Experimental Results on an Intel Microprocessor

We applied all techniques discussed above to the FPU of an Intel microprocessor.
The microprocessor performs all the floating-point operations mentioned in the
previous sections in 64-bit extended precision. We are able to verify the entire
floating-point unit of the microprocessor using our word-level symbolic model
checking system. The work shows that our techniques do apply to arithmetic
circuits found in actual industrial microprocessors. The table below summarizes
the figures from the experiments.

No. Of var. in| No. of BDD
Macro- extracted |propertiesMemory| nodes | CPU
Instruction model verifies |required|allocated| time
DIV 287 4 18.8M | 756K | 194s
SQRT 415 16 18.5M | 445K | 239s
REM 369 8 9.8M 246K | 1538s
MUL 1961 2 3.9M | 1923K | 508s
ADD 1251 2 22.1M | 838K | 660s
SUB 1247 9 96.0M | 3947K |38525s
RND 295 80 23.6M | 692K |2034s
EXP 65 4 8.3M 157K 26s

Table 1. Verification results on an FPU from an Intel microprocessor

The experiments were done on an HP 9000 workstation with 256 MB RAM.
REM is a partial remainder circuit that is verified using loop invariant tech-
niques similar to those used in the verification of the division circuit. EXP is
the exponent unit which produces the exponent result for the multiply, divide
and square root operations. The second column shows the number of state vari-
ables in the property-specific extractions of the original designs. The automatic
property-specific extraction of the design drastically reduced the number of state
variables in several models which enabled the verification to succeed. The third
column shows the number of properties verified for each macro-instruction. There
are eighty properties verified for the rounder because several different cases have
to be considered for different modes and precisions and verification of exceptions.
The fourth column shows the maximum memory required for a verification run.
The experiments show that all the verifications can be done on a machine with
about 100MB of memory. The fifth column shows the maximum number of

BDD nodes allocated by the symbolic model checker during the verification of
all properties for the macro-instruction.

The last column shows the CPU time spent on the verification of all proper-
ties for the macro-instruction. All the experiments except the verification of the
subtracter can be done in less than an hour. The subtracter takes more time in
comparison to the adder primarily because there are more cases to be considered.

5 Conclusions

In this paper, we have presented a methodology for the formal verification of
a complete floating-point arithmetic unit and have shown the results of this
methodology applied to a recent Intel microprocessor. In particular, we have
verified the correct implementation of floating-point addition, subtraction, mul-
tiplication, division, remainder, square root and rounding operations in a fairly
efficient and automated fashion. To the best of our knowledge, this is the first
comprehensive effort of this magnitude in the verification of complex floating-
point circuits in a state-of-the-art FPU design. The results presented here are
important evidence of the capability of an automated model checking system.

Our verification uses the technique of word-level model checking. The ex-
perimental results show that it was highly effective in our difficult verification
tasks. Its compact representation and the efficient manipulation of arithmetic
functions is made possible by the word-level HDD representation. From our ex-
perience, word-level model checking can be performed fairly automatically and
the specification is at an appropriate level of abstraction.

Different verification techniques were also discussed, all of which are crucial
to the successful verification of the circuits covered. In this regard, the paper con-
tributed a practical verification methodology for efficient verification of complex
arithmetic circuits.

References

[Atk68] D. E. Atkins. Higher-radix division using estimates of the divisor and
partial remainders. IEEE Transactions on Computers, C-17(10):925-934,
October 1968.

[BBDEL96] R.E. I. Beer, S. Ben-David, C. Eisner, and Avner Landver. Rulebase: an
industry-oriented formal verification tool. In Proceedings of the 38rd De-
sign Automation Conference. IEEE Computer Society Press, June 1996.

[BCY5] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with
binary moment diagrams. In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, pages 535-541. IEEE Computer Society Press,
June 1995.

[Bry91] R. E. Bryant. On the complexity of vlsi implementations and graph repre-
sentations of boolean functions with application to integer multiplication.
IEEE Transactions on Computers, 40(2):205-213, 1991.

[Bry95] R.E. Bryant. Bit-level analysis of an srt divider circuit. Technical report,
Carnegie Mellon University, 1995.

[BSC+90]

[BVS5]

[CFZ95]

[CKZ96]

[CMZ193]

[Coe95]
[Fri61]

[HMY95]

[HP96]

[KL93]

[McM93]

[OLHA95]

[Rud93]

[SBY4]

[VCMO94]

M. Birman, A. Samuels, G. Chu, T. Chuk, L.Hu, J. McLeod, and
J. Barnes. Developing the wtl3170/3171 sparc floating-point coprocessors.
IEEE Micro, pages 5564, February 1990.

J. Bannur and A. Varma. The vlsi implementation of a square root al-
gorithm. In Proceedings of the Tth Symposium on Computer Arithmetic,
pages 159-165. IEEE Computer Society Press, 1985.

E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams — over-
coming the limitations of mtbdds and bmds. In Proceedings of the 1995
Proceedings of the IEEFE International Conference on Computer Aided De-
sign, pages 159-163. IEEE Computer Society Press, November 1995.

E. M. Clarke, M. Khaira, and X. Zhao. Word level symbolic model check-
ing — a new approach for verifying arithmetic circuits. In Proceedings of the
33rd ACM/IEEE Design Automation Conference. IEEE Computer Society
Press, June 1996.

E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral
transforms for large boolean functions with applications to technology
mapping. In Proceedings of the 30th ACM/IEEE Design Automation Con-
ference, pages 54-60. IEEE Computer Society Press, June 1993.

T. Coe. Inside the pentium fdiv bug. Dr. Dobbs Journal, 20(4):129-135,
April 1995.

C. V. Frieman. Statistical analysis of certain arithmetic binary division
algorithms. IRE Transaction, pages 91-103, January 1961.

K. Hamaguchi, A. Morita, and S. Yajima. Efficient construction of binary
moment diagrams for verifying arithmetic circuits. In Proceedings of the
1995 IEEE International Conference on Computer Aided Design, pages
78-82, November 1995.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 1996.

R. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and
beyond. In C. Courcoubetis, editor, Proceedings of the Fifth Workshop on
Computer-Aided Verification, June/July 1993.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

J. O’Leary, M. Leeser, J. Hickey, and M. Aagaard. Non-restoring integer
square root: a case study in design by principled optimization. In Proceed-
ings of the Theorem Provers in Circuit Design 94, volume 901 of Lecture
Notes in Computer Science. Springer-Verlag, 1995.

R. Rudell. Dynamic variable ordering for ordered binary decision dia-
grams. In Intl. Conf. on Computer Aided Design, Santa Clara, Ca., Novem-
ber 1993.

H. P. Sharangpani and M. L. Barton. Statistical analysis of floating point
flaw in the pentium processor(1994). Technical report, Intel Corporation,
November 1994.

D. Verkest, L. Claesen, and H. De Man. A proof of the nonrestoring di-
vision algorithm and its implementation on an alu. Formal Methods in
System Design, 4:5-31, January 1994.

This article was processed using the I#TEX macro package with LLNCS style

