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Abstract—As a first step, most model checkers used in the
hardware industry convert a high-level register transfer level
(RT-level/RTL) design into a netlist. However, algorithms that
operate at the netlist level are unable to exploit the structure
of the higher abstraction levels, and thus, are less scalable. The
RT-level of a hardware description language such as Verilog is
similar to a software program with special features for hardware
design such as bit-vector arithmetic and concurrency.

This paper uses predicate abstraction, a software verification
technique, for verifying RTL Verilog. There are two challenges
when applying predicate abstraction to circuits: 1) The compu-
tation of the abstract model in presence of a large number of
predicates, and 2) the discovery of suitable word-level predicates
for abstraction refinement. We address the first problem using a
technique called predicate clustering. We address the second prob-
lem by computing weakest preconditions of Verilog statements in
order to obtain new word-level predicates during abstraction
refinement. We compare the performance of our technique with
localization reduction, a netlist level abstraction technique, and
report significant improvements on a set of benchmarks.

Index Terms—Register transfer level (RTL), verification, model
checking, predicate abstraction, refinement, satisfiability (SAT).

I. INTRODUCTION

OST new hardware designs are implemented at a high

level of abstraction, e.g., using the register transfer
level (RT-level/RTL), or even at the system level. The RT-level
of a hardware description language such as Verilog is very
similar to a software program in ANSI-C, and offers special
features for hardware designers such as bit-vector arithmetic
and concurrency. However, most formal verification tools used
in the hardware industry still operate on a low-level design
representation called a netlist. This is due to lack of automated
verification techniques at the RT-level. Converting a high-
level RTL design into a netlist results in a significant loss
of structure present at the RT-level. This makes verification at
the netlist level less scalable.
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A. Model Checking and Abstraction

Model checking [12], [14] is an automatic technique for
the verification of concurrent systems. It has been used
successfully in practice to verify complex circuit designs
and communication protocols. Model checking systematically
explores the state space of a given design and checks that
each reachable state satisfies the property of interest. When
the design fails to satisfy a desired property, the process of
model checking produces a counterexample that demonstrates
a behavior which falsifies the property. The properties (formal
specifications) are usually described in linear temporal logic
(LTL) or computational tree logic (CTL). By making use
of symbolic algorithms [9], [5] based on Binary Decision
Diagrams (BDDs) [8] and fast satisfiability solvers (SAT
solvers) [30], [33], [32], current model checkers can handle
many industrial designs.

The number of states in industrial hardware designs is
extremely large. This often results in exorbitant resource re-
quirements during model checking even when symbolic model
checking algorithms are used. One principal method for state
space reduction is abstraction. Abstraction techniques reduce
the state space by mapping the set of states of the actual,
concrete system to an abstract, and smaller, set of states in a
way that preserves the relevant behaviors of the system.

We focus on abstraction techniques that produce a con-
servative over-approximation of the concrete system. This
implies that if the abstraction satisfies a given property, the
property also holds on the original concrete system. When
model checking of the abstraction fails, it produces an abstract
counterexample. The drawback of the conservative abstraction
is that an abstract counterexample may not correspond to any
concrete counterexample (real error). This is usually called a
spurious counterexample [10].

In order to check if an abstract counterexample is spurious,
the abstract counterexample is simulated on the concrete
machine. This is called the simulation step. As in bounded
model checking (BMC) [5], the concrete transition relation
for the design and the given property are jointly unwound to
obtain a Boolean formula. The number of unwinding steps
is given by the length of the abstract counterexample. The
Boolean formula is then checked for satisfiability using a SAT
procedure such as MiniSat [32]. If the instance is satisfiable,
the counterexample is real and the procedure terminates. If
the instance is unsatisfiable, the abstract counterexample is
spurious, and abstraction refinement has to be performed.

The basic idea of abstraction refinement techniques is to
create a new abstract model that contains more detail in
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order to prevent the spurious counterexample [28], [10], [3].
This process is iterated until the property is either proved
or disproved. It is known as the Counterexample Guided
Abstraction Refinement framework, or CEGAR for short [10].

B. Abstraction Techniques for Software Verification

In the software domain, predicate abstraction [22] has
emerged as a successful technique for verifying large systems.
It abstracts data by only keeping track of certain predicates on
the data. Each predicate is represented by a Boolean variable
in the abstract program, while the original data variables are
eliminated. Predicate abstraction of ANSI-C programs in com-
bination with counterexample guided abstraction refinement
was introduced by Ball and Rajamani [3] and promoted by
the success of the SLAM project. The goal of SLAM is to
verify that Windows device drivers obey API conventions. The
abstraction is computed using a theorem prover.

C. Abstraction Techniques for Hardware Verification

Most model checkers used in hardware verification operate
on a very low level design, usually a netlist. At the netlist level,
the most commonly used abstraction technique is localization
reduction (28], [40], [23]. The abstract model is created from
the given circuit by removing a large number of latches to-
gether with the logic required to compute their next state. The
latches that are removed are called the invisible latches. The
latches remaining in the abstract model are called the visible
latches. The initial abstract model is created by making the
latches present in the property visible, and the rest invisible.
The refinement is done by moving more latches from the set
of invisible latches to the set of visible latches.

Clarke et al. [16] introduce a SAT-based technique for
predicate abstraction of netlist level circuits. The use of a SAT
solver like zChaff [33] in order to perform the abstraction
allows precise modeling of bit-vector semantics. However,
their approach suffers from two drawbacks. 1) Each transition
in the abstract model is computed by a separate run of the SAT
solver. Thus, the learning done by a SAT solver in the form
of conflict clauses is lost when computing other transitions in
the abstract model. 2) If refinement becomes necessary, only
bit-level predicates are introduced. This method of refinement
closely resembles refinement techniques for localization re-
duction.

While localization reduction is a special case of predicate
abstraction, predicate abstraction can result in a much smaller
abstract model. As an example, assume a circuit contains two
registers, each encoding a number. Predicate abstraction can
keep track of a numerical relation between the two numbers
using a single predicate, and thus, using a single state bit in
the abstract model. In contrast, localization reduction typically
turns all bits of the two registers into visible latches, and thus,
the abstraction is identical to the original model.

Predicate abstraction is only effective if the predicates can
cover the relationship between multiple latches. This typically
requires a word-level model given in RT-level of a hardware
description language. RT-level models are similar to programs

written in a language, such as ANSI-C. We apply predicate
abstraction to word-level models given in RTL Verilog.

Software verification tools use theorem provers for com-
puting the predicate abstraction. Theorem provers model the
variables using unbounded integers. Overflow or bit-wise
operators are not modeled. However, hardware description
languages like Verilog provide an extensive set of bit-wise
operators. For hardware designs, the use of these bit-level
constructs is ubiquitous. As in [13], we use a bit-level SAT
solver to compute the abstract transition relation. This allows
us to precisely model the bit-vector semantics of hardware
designs during abstraction computation.

We view our technique as a word-level verification tech-
nique since the predicates that are used for computing the
abstraction are at the word-level. The abstract model contains
the relationships between the word-level predicates and not
the individual latches. The use of a bit-level SAT solver as
a decision procedure can be replaced by a word-level solver.
Such a solver eliminates or reduces the need to flatten a given
formula to the bit-level. However, existing word-level solvers
for hardware description languages are not yet competitive
with bit-level SAT solvers.

D. Contribution

This paper applies predicate abstraction and refinement
for verifying circuits given in RTL Verilog. Two problems
arise when applying predicate abstraction to circuits: 1) The
computation of the abstract model in presence of a large
number of predicates, and 2) the discovery of suitable word-
level predicates for abstraction refinement.

In order to address the first problem, we divide the set of
predicates into clusters of related predicates. The abstraction
is computed separately with respect to the predicates in each
cluster. Since each cluster contains only a small number of
predicates, the computation of the abstraction becomes more
efficient. We refer to this technique as predicate clustering.
This technique allows us to tune the abstraction step between
the two extremes of eager abstraction [13] and lazy abstrac-
tion [25]. The eager technique refers to the case when all
predicates are within a single cluster, while lazy abstraction
corresponds to the case in which many clusters of small
cardinality (size) are used for computing the abstraction.

When refining the abstract model using a spurious coun-
terexample, we distinguish between two cases of spurious
behavior [16]: Spurious transitions are abstract transitions
that do not have any corresponding concrete transitions. By
definition, spurious transitions cannot appear in the most
precise predicate abstraction, which is computed by the ea-
ger approach. However, predicate clustering usually produces
coarse abstractions, which can give rise to spurious transitions.
Spurious prefixes are prefixes of a spurious counterexample
that do not have a corresponding concrete path. This happens
when the set of predicates is not rich enough to capture the
relevant behaviors of the concrete system, even for the most
precise abstraction.

When a spurious counterexample is encountered, we first
check whether each transition in the counterexample can be
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Fig. 1. Abstraction Refinement (CEGAR) Loop in this paper.

simulated on the original program. This is done by creating
a SAT instance for the simulation of each abstract transition.
If the SAT instance for an abstract transition is unsatisfiable,
then the abstract transition is spurious. In this case, we refine
the abstraction by adding constraints to the abstract transition
relation, which eliminate the spurious transition. We make use
of the proof of unsatisfiability of the SAT instance to identify a
small subset of the existing predicates that cause the transition
to be spurious. The fewer predicates that are found, the more
spurious transitions that are eliminated in one step.

When all SAT instances for the simulation of abstract
transitions are satisfiable, it means that none of the abstract
transitions is spurious due to the clustering. The immediate
conclusion is that the spurious counterexample is due to the
fact that the predicates used for computing the abstraction
were insufficient. For this case, we use the idea of weakest
precondition from software model checking [34], [3]. We
compute the weakest precondition of the property (or existing
predicates) with respect to the transition function given by the
circuit to obtain new word-level predicates. To the best of our
knowledge, syntactic weakest precondition based refinement
has not been used before for verifying circuits. We present
a technique to avoid the blowup in the size of weakest
preconditions when computing new predicates. The overall
flow of the various techniques described above is shown in
Fig. 1.

E. Further Related Work

Wang [41] proposes a combination of localization reduction
and predicate abstraction at the netlist level. This is useful in
some cases, for example, when we need to track the value of
an n bit counter ¢ in an abstract model precisely. In this case
it is inefficient to introduce 2" predicates of the form ¢ = v,
where 0 < v <2"—1. In localization reduction the value ¢ can
be tracked precisely by making each bit in ¢ a visible latch. It
is possible to get the benefits of localization reduction in our
technique as well by adding c[i] as a predicate.

Andraus et al. [2] present a scheme for automatic abstraction
of behavioral RTL Verilog to the CLU language [7]. The
CLU language allows modeling using terms, uninterpreted
functions, equality, lambda expressions, and counters. In order
to remove spurious behaviors from the abstract model a
refinement procedure is described in [1]. The techniques in
[2], [1] were shown to be useful in context of microprocessor
correspondence checking. The techniques described in this

paper are different from those in [2], [1] and are geared
towards property (assertion) checking of hardware designs.

Predicate discovery for abstraction refinement is still an
open area of research. We use weakest preconditions for
discovering new predicates. This is sufficient for ensuring that
the abstraction refinement loop makes progress. An alternative
technique for discovering new predicates is based on interpola-
tion [31]. In order to apply this idea to circuits, an interpolating
theorem prover for bit-vector logic is required. At present, it
is not known how to build such a prover for bit-vector logic.

A Pre-image computation generates a set of states from
which it is possible to reach a given set of states with
one transition. It is a basic operation in model checking
[12] and target enlargement approaches [4]. The idea of
computing a pre-image is the same as computing the weakest
precondition of a given set of states, although the latter
term is more commonly used in software verification. Most
existing hardware model checkers compute the pre-image at
the netlist level and represent it symbolically using BDDs.
As in software verification our use of weakest preconditions
or pre-images is at the word (expression) level.

Outline: We describe our way of modeling circuits in Sec-
tion II. Section III describes SAT-based predicate abstraction
with the help of an example. Techniques for clustering the
given set of predicates are presented in Section IV. We discuss
techniques for abstraction refinement in Section V. We report
experimental results in Section VI.

II. WORD-LEVEL TRANSITION FUNCTIONS

Let R ={ri,...,r,} denote the set of registers and external
inputs in a given Verilog program. For example, the state of
the Verilog program in Fig. 2 is defined by the value of the
registers x and y, and each of them has a storage capacity of 8
bits. Let S denote the set of states for a given Verilog program.
Let Q C R denote the set of registers. We denote the next-
state function of a register r; € Q by fi(r1,...,r), or fi(F)
using vector notation, where 7 = (ry,...,r,). The value of r;
in the next state is given by f;(F) as a function of the current
state. We use the next-state functions to define the transition
relation R(7,7). It relates the current state 7 € S to the next
state 7 € S and is defined as follows:

N\ (i = fi(7))

ri€Q

R(F,F) =

The values of the external inputs (R \ Q) are not constrained
by the transition relation. The next-state function for the
register x in Fig. 2 is given as follows: if the value of x in
the current state is less than 100, then the value of x in the
next state is equal to the sum of current values of x and y,
that is x+y. If the value of x is greater than or equal to 100,
then the value of x in the next state remains unchanged. The
value of y in the next state is equal to the value of x in the
current state. We use the ternary choice operator c?g : h to
denote a function that evaluates to g if the condition c is true,
and otherwise to h. We denote the next-state functions of x
and y by fi(x,y) and f;(x,y), respectively, and the transition
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module main(clk);
input clk;
reg [7:0] x,y;

1;
0;

initial x
initial y

always @ (posedge clk) begin
y <=X;
if (x<100) x<=y+x;
end
endmodule

Fig. 2. A Verilog program used as a running example.

relation by R(x,y,x’,y").

fa(x,y) ((x<100) ? (x+y) @ x)
fy(xvy) = X
R(x,y,x',y") (o = ((x<100) ? (x+y) : x))A(Y =x)

In a netlist level representation there is a next-state function
for each bit in the registers x,y. In contrast, we have a
next-state function for the whole registers x, y and not for
the individual bits in x,y. We represent the circuit using
register-level or word-level next-state functions. We formalize
the semantics of the subset of Verilog that we handle in a
technical report [15].

Example: We use the Verilog program in Fig. 2 as a running
example. We wish to show that the value of x is always less
than 200. That is, we want to prove that the given program
satisfies the safety property G(x < 200), where G is an
LTL operator [12] that stands for globally. The property holds
because the value of x follows a sequence starting from 1 to
144. Upon reaching the value 144, the guard in the next-state
function for x becomes false, and its value remains unchanged.
The values of x and y in each state are shown in Fig. 3.

We follow the counterexample guided abstraction refine-
ment (CEGAR) framework in order to (dis)prove a given
property. The first step of the CEGAR loop is to obtain an
abstraction of the given program.

III. PREDICATE ABSTRACTION

Let S denote the set of all possible valuations of the program
variables. In predicate abstraction [22], the variables of the
concrete program are replaced by Boolean variables. Each
Boolean variable corresponds to a predicate on the variables
in the concrete program. Predicates are functions that map
concrete states 7 € S to a Boolean value. Let B = {m;,...,m}
be the set of predicates. When applying all predicates to a
specific concrete state, one obtains a vector of Boolean values,
which represents an abstract state b. We denote this function
by o). It maps a concrete state into an abstract state and is
therefore called an abstraction function.

We construct an existential abstraction [11], i.e., the abstract
model can make a transition from an abstract state b to b’ iff
there is a transition from 7 to 7 in the concrete model and 7 is
abstracted to b and 7 is abstracted to b’. We call the abstract

. L (x=1AA | /x=144
y=89 y=144,

Fig. 3. The state transition graph of the Verilog program in Fig. 2.

machine T, and we denote the transition relation of T by R.
R :={(b,0)|3r, 7 €S: a(F)=bAR(F,F) A 0

o(F) =10}

We refer to a set and its Boolean representation interchange-

ably. For example, in the above equation R denotes a set

of abstract transitions. A Boolean (characteristic) function

representing this set is denoted as R(b, D).

The initial state I(F) is abstracted as follows: an abstract
state b is an initial state in the abstract model if there exists
a concrete state 7 that is an initial state in the concrete model
and is abstracted to b.

~

i(b) =

The abstraction of a safety property P(F) is defined as follows:
for the property to hold on an abstract state b, the property
must hold on all states 7 that are abstracted to b.

P(b) =

3FeS: (a(F)=b )N I(F) )

VFeS: (a(F) =b) = P(F) (3)
Thus, if P holds on all reachable states of the abstract model,
P also holds on all reachable states of the concrete model.

The techniques described in the paper can be used to check
any LTL safety property. This is because the spurious coun-
terexamples for LTL safety properties are always finite acyclic
paths [17]. Such spurious counterexamples can be removed
during the refinement phase (Section V). Predicate abstraction
can also be used to verify an arbitrary LTL property, including
liveness properties, if the transition relation is total. However,
this requires removal of counterexamples containing loops and
is left for future research.

A. SAT-based Predicate Abstraction

In [13], a SAT solver is used to compute the abstraction
of a sequential ANSI-C program. This approach supports all
ANSI-C integer operators, including the bit-vector operators.
We use a similar technique for computing the abstraction
of Verilog programs. We describe the computation of the
abstract transition relation R (Egn. 1) in more detail below.

Computing R using SAT: A symbolic variable b; is associated
with each predicate m;. Each concrete state 7 = (ri,...,r,)
maps to an abstract state b = (by,...,b), where b; = m;(F). If
the concrete machine makes a transition from state 7 to state
7 =(r\,...,r}), then the abstract machine makes a transition
from state b to b’ = (b},...,b)), where b} = m;(F). We refer
to m;(7) as a current-state predicate and T;(¥) as a next-state
predicate. For example, if x =y is a current-state predicate,
then the corresponding next-state predicate is x' =y'.

The formula that is passed to the SAT solver directly follows
from the definition of the abstract transition relation R as given
in Eqn. 1:

=
I

: T(F,7,b,b")} , where  (4)
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k k
L(r7.b,b) = Nbism(F)ARFF)A N\ b < mi(F)

i=1 i=1

The set of abstract transitions R is computed by transforming
[(7,7,b,b") into conjunctive normal form (CNF) and passing
the resulting formula to a SAT solver. Suppose the SAT solver
returns 7,7 ,b,b’" as the satisfying assignment. We project out
all variables but b and &’ from this satisfying assignment to
obtain one abstract transition (b,b’). Since we want all the
abstract transitions, we add a blocking clause to the SAT
equation that eliminates all satisfying assignments that assign
the same values to b and »’, and re-start the solver. This process
is continued until the SAT formula becomes unsatisfiable. The
disjunction of the abstract transitions obtained gives us the
abstract transition relation R.

The predicates used for abstraction are arbitrary Boolean
expressions allowed by the Verilog syntax. Thus, the
predicates can involve operators for concatenation,
extraction, and so on. For example, a[3:0]>7 and
ram[{addr, 1’ b0}1==d[9:2] are allowed as predicates.
Predicates can refer to individual bits in a register. For
example, rg[i] is a valid predicate, where rg is a register
and i is an index.

Example: We continue our example based on Fig. 2. Assume
that {x < 200,x < 100,x+y < 200} is the set of predicates.
We associate symbolic variables by, by, b3 with each predicate,
respectively. In order to compute R the following equation is
converted to CNF and passed to a SAT solver:

(b1 & (x<200)) A (by < (x<100)) A
(b3 & (x+y <200)) AR(x,y,x',y') A () < (¥ <200)) A
(b = (X < 100)) A (B < (X +) < 200))

The abstract transition relation obtained is given by the
SMV [18], [35] TRANS statement in Fig. 4. It is a disjunction
of cubes. The cube (bl & !b2 & !b3 & next (bl) &
'next (b2) & !next (b3)) corresponds to the transition
from the abstract state in which by is true and b,, b3 are false
to the same abstract state (100 — 100 for short). Intuitively,
this abstract transition is possible because b, = 0 in the current
abstract state, which means that x > 100 in the concrete
system. Subsequently, the value of the register x in the next
state (x) is x and the values of the predicates x < 200 and
x < 100 in the next state remain unchanged. The value of
register y becomes equal to x (as y’ = x). Since both X’ and
y' range between 100 and 200, X'+ can be greater than or
equal to 200. Thus, the transition 100 — 100 is possible. All
possible abstract transitions are shown explicitly in Fig. 5.

In Fig. 5, consider the abstract transitions from any state
with b, = 0 to any state with b3 = 1. There are four such
transitions, namely 100 — 101, 101 — 101, 000 — 001, and
001 — 001. In these transitions, b = 0 holds in the current
abstract state, which means x > 100 in the concrete system.
Thus, in the next state, ¥’ =y = x holds. At first glance
it seems that ¥’ +y must be greater than or equal to 200
as X' > 100 and y > 100. However, an overflow may occur
during the addition of two 8-bit registers x' and y’ such that
the 8-bit result x' + is less than 200. Thus, the predicate

MODULE main

VAR bl: boolean; // stands for x<200

VAR b2: boolean; // stands for x<100

VAR b3: boolean; // stands for x+y<200

INIT (bl & b2 & b3)

TRANS
( bl & 'b2 & !'b3 & next(bl) & !'next(b2) & !next(b3)) |
(bl & b2 & !b3 & !next(bl) & !next(b2)) |
( bl & b2 & b3 & next (bl) & next (b3)) |
( bl & 'b2 & next(bl) & !next(b2) & next (b3)) |
(!bl & !b2 & !next(bl) & !next(b2)) |
( bl & b3 & next(bl) & !next(b2) & !next (b3))

SPEC G bl

Fig. 4. Abstraction of the Verilog program in Fig. 2 using the

predicates x < 200, x < 100, and x+y < 200. It is in the format
accepted by the SMV model checker.

Q) )
e vl o e
AT z

Fig. 5. Finite state machine for the abstract model in Fig. 4. The
abstract states 010 and 011 are not possible, as this would require
x < 200 to be false and x < 100 to be true at the same time.

X' +y <200 can be true. This explains why b, = 0 and
by =1 in the four abstract transitions mentioned above. Note
that such overflows are allowed by the semantics of hardware
description languages and must be taken into account when
computing the abstraction of hardware designs.

The set of abstract initial states (Eqn. 2) can be enumerated
using a SAT solver in a similar manner as R. The set of abstract
initial states is given by the INIT statement in Fig. 4. There is
only one abstract initial state in which all the Boolean variables
by,by,bs are true.

The property G(x < 200) is abstracted using the Boolean
variable by for the predicate (x < 200). The abstracted property
is given by the SPEC statement in Fig. 4. The abstract model
satisfies the property G b1, as the only states reachable from
the initial abstract state (111) are {111,101,100} (Fig. 5).
Since the property holds on the abstract model, we can
conclude that the property G(x < 200) holds on the Verilog
program in Fig. 2.

IV. PREDICATE CLUSTERING
A. Computing Multiple Abstract Transition Relations

We call the computation of the exact existential abstraction
as described in the previous section the Eager Approach
(Eqn. 4). A single abstract transition relation is computed using
all the available predicates. In the worst case, the number of
satisfying assignments generated from Eqn. 4 is exponential in
the number of predicates. In practice, computing abstractions
using the eager approach can be very slow even for a small
number of predicates.

The abstraction step can be accelerated if we do not aim at
the most precise abstract transition relation. That is, we allow
our abstraction to be an over-approximation of the abstract
transition relation generated by the eager approach. Software
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predicate abstraction tools abstract the individual statements or
basic blocks separately. As only a small number of predicates
are typically affected at each statement or basic block, simple
heuristics can be used to compute the abstraction quickly. The
SLAM toolkit, for example, limits the number of predicates
in each theorem prover query. In contrast, each transition in
an RT-level circuit consists of simultaneous assignments to
all registers. All predicates might change their value in each
transition of the circuit. Thus, more sophisticated techniques
are needed to compute the predicate abstraction of circuits
efficiently.

Our solution to the above problem is as follows: the
set of the predicates and their next-state state versions is
clustered into smaller sets of related predicates. We call
these sets clusters, and denote them by Ci,...,C;, with
Cj C {my,...,m,m},...,m.}. Note that we do not require
the clusters to be disjoint, that is, they can have common
predicates. We abstract the transition system with respect to
each cluster Cy,...,C;. This results in a total of [/ abstract
transition relations Ry, ...,R;, which are conjoined to form R:

R = AR (5)

~

i=1

The equation for abstracting the transition system with
respect to C; is given as follows:

N\ bi e ()

meC)

A R(F,F

) AN\ b ()

n,GC_

Rj:=3r7:

The satisfying assignments to the equation above correspond
to the abstract transition relation R ;. The number of satisfying
assignments is limited by the size of cluster C;, that is, to at
most 2/Cil. Clearly, by limiting the size of C;, we can compute
the abstract transition relations much faster as compared to the
eager approach.

We refer to the above technique of generating smaller
clusters from a given set of predicates, and using these clusters
for computing the abstraction R, as predicate clustering. The
following claim states that R is an over-approximation of the
most precise predicate abstraction.

Proposition 1: If O denotes the abstract transition relation
obtained by using the eager approach (Eqn. 4), and R denotes
the abstract transition relation obtained by predicate clustering
(Eqn. 5), then Q = R or Q C R using set notation.

We present a proof in the appendix. We discuss techniques
for creating predicate clusters next. Let var(e) denote the
set of variables (state elements and inputs) appearing in an
expression e. For example, var(x’ +y < 200) is {x',y'}.
If e contains combinational elements, we replace them by
their definitions in terms of state elements and inputs before
computing var(e).

Clarke et al. [10] call two formulas g; and g, interfering
iff var(gy) Nvar(g2) # 0. The authors use the notion of
interference to partition a set of formulas into various formula
clusters. This technique can be used for clustering the set of
predicates as well. However, our early unreported experiments
indicate that this results in clusters that are too large. Thus, we

make the conditions for keeping the two predicates together
stronger, which leads to a smaller number of predicates per
cluster. We evaluate three different techniques for creating
predicate clusters used in predicate clustering. Two of these
techniques cone clustering and clustering for lazy abstraction
are described below. The third clustering technique semantic
predicate clustering is described in Section V-A.

B. Syntactic Cone Clustering

This technique clusters next-state predicates with current-
state predicates that are related to each other. In order to
identify when a next-state predicate is related to a current-state
predicate we use a cone-of-influence-like computation [12].

Given a formula g’ in terms of next-state variables 7, the
current state variables 7 that affect the value of the variables in
var(g') are denoted by cone(g'). It is defined as follows: The
variables in the next-state functions for the registers mentioned
in g’ form the cone of g’. Recall that the set of registers is
denoted by Q. The next-state function of a particular register

ri € Q is given by fi(F).
cone(g') = U

rievar(g') N reQ

var(fi(F))

The value of g’ in a given state depends on the values of
variables in cone(g’) from the previous state.

Example' Let g’ be d’ < b'. Let the next-state functions for
d,b' be x+b, c, respectively. Here, var(g') := {d',b'} and
cone(g ) :={x,b,c}. Given the values of x,b,c in a state, the
value of the predicate a < b in the next state (that is, the value
of d < b')is x+b < c. We would like to keep the current-
state predicates over the variables {x,b,c} and the next-state
predicate @’ < b’ in the same cluster. This allows the value of
a' < b’ to be tracked precisely in the abstract model.

The clusters of the predicates and their next-state versions
{my,...,m,m),...,m} are created by the following two steps:

1) The next-state predicates that have identical cone sets
are kept in a single cluster. Intuitively, these predicates
depend on exactly the same set of variables from the
previous state and hence, are related to each other.
That is, if cone(n;) = cone(m;'), then m;/ and m;’ are
kept in the same cluster. Let Cj,...,C] be the clusters
of {m,...,m} obtained after this step. Since all the
predicates in a given cluster C; have the same cone, we
define cone(C!) as the cone of any element in C].

2) The final set of clusters is given by {Ci,...,C;}. Each
C; contains all the next-state predicates from C/ and
the current-state predicates that mention variables in the
cone of Cl’». Formally, C; is defined as follows:

C; = Cj U {n; | var(n;) C cone(C})}

Example: Let the transition relation R(x,y,z,x',y,7') be X' =
yAY =xA7 =x. Let the set of predicates be {x =2,y =
1,z>3,x' =2,y = 1,7 > 3}. The cone sets for the next-state
predicates X' =2,y = 1,7/ > 3 are {y},{x},{x}, respectively.
After the first step of the clustering, the clusters are Cj :=
{x¥ =2} and C, :={)y/ = 1,7 > 3}. Even though y' =1 and
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7/ >3 do not share a common set of variables they are kept
in the same cluster, as they have the identical cone set {x}.

Since cone(Cy) := {y} and cone(C}) := {x}, the clusters
obtained after the second step of the clustering are C; := {y =
1, =2} and G, := {x =2,y = 1,7 > 3}. Observe how the
predicates in a given cluster affect each other. For example, in
C,, if x =2 is true, then we know that y =1 and 7/ > 3 will
be false (as y' and 7’ equal x). If x =2 is false, then y’ =1 can
be either true or false and 7/ > 3 can be either true or false.
However, both y = 1 and 7’ > 3 cannot be true together.

Since cone clustering attempts to keep all related predicates
together, the abstractions produced are not much coarser than
those produced by the eager approach. However, in general
there is no bound on the number of predicates in a given
cluster. In the worst case there might be a cluster containing
most of the current-state and next-state predicates.

C. Syntactic Clustering for Lazy Abstraction

The idea of lazy abstraction [25] is to start with a coarse
initial abstract model, which is refined on-demand as required
by a spurious counterexample. Since a coarse abstract model
is computed, the abstraction step is usually very fast. This
prevents the abstraction step from becoming a bottleneck when
computing the abstraction of large circuits or when a large
number of predicates are in use.

A completely lazy abstraction corresponds to using no
predicate clusters. Thus, the initial abstract transition relation
is simply true (allows all abstract transitions). We follow
a variant of this technique: all current-state predicates that
contain the same set of variables are kept in the same cluster.
That is, if var(m;) = var(n;), then 7; and 7; are kept in the
same cluster. This is useful if the given set of predicates
contains many mutually exclusive (or related) predicates such
as x = 1,x = 2,x > 2. Keeping these predicates together in a
cluster eliminates a large number of abstract states that do
not correspond to any concrete states, also known as spurious
abstract states. For example, an abstract state in which both
predicates x =1 and x = 2 are true is spurious.

The next-state predicates are not used in the clusters. Thus,
the abstraction produced only contains predicate relationships
that hold in each abstract state (not between states). If
needed, the relationships between current-state and next-state
predicates are discovered lazily using refinement techniques.

Example: Let the set of current-state predicates be {x < 2,x=
1,y=1,z> 1}. The clusters produced for lazy abstraction are
Cri={x<2,x=1},C:={y=1}, and G3:={z > 1}.

Loss of precision: In the above example let the next-state
function of y be equal to x (that is y' = x). The predicates
involving x and y’ are not present together in any cluster. Thus,
the abstract model generated using lazy abstraction allows an
abstract transition from a state where x =1 to a state where
y # 1. This is a spurious transition because the value of y in
the next state must be equal to the value of x in the previous
state. This spurious transition will not occur in the abstraction
computed using cone clustering, as the predicates x = 1 and
y' =1 will be in the same cluster.

The abstract transition relation for a predicate cluster de-
pends on the predicates contained in that cluster. Clusters of
small size speed up the abstraction computation at the cost
of making the abstraction less precise. If needed, the abstract
model obtained can be made more precise by using refinement
techniques. The loss in precision due to clustering is beneficial
as long as the cost of potential refinement steps is smaller than
the cost of computing the most precise abstraction.

Once the abstraction of the concrete system is obtained,
we model check it using a model checker for finite state
systems like SMV [18], [35]. Fig. 4 shows an abstract model.
If the abstract model satisfies the property, the property also
holds on the original, concrete circuit. If model checking of
the abstraction fails, we obtain a counterexample from the
model checker. In order to check if an abstract counterexample
corresponds to a concrete counterexample, a simulation step
is performed. If the counterexample cannot be simulated on
the concrete model, it is called a spurious counterexample.
The elimination of spurious counterexamples from the abstract
model is described in the next section.

V. ABSTRACTION REFINEMENT

When refining the abstract model, we distinguish between
two cases of spurious behavior, as done in [16]:

1) Spurious transitions are abstract transitions that do
not have any corresponding concrete transitions. By
definition, spurious transitions cannot appear in the most
precise abstraction, which is computed by the eager
approach. However, as we noted earlier, computing the
most precise abstract model is expensive and thus, we
make use of various predicate clustering techniques. This
can result in many spurious transitions.

2) Spurious prefixes are prefixes of the abstract coun-
terexample that do not have a corresponding concrete
path. This happens when the set of predicates is not rich
enough to capture the relevant behaviors of the concrete
system, even for the most precise abstraction.

Given a spurious counterexample we first check if any
transition in the counterexample is spurious. If a spurious
transition is found, it is eliminated from the abstract model by
adding a constraint to the abstract model. If no transition in the
counterexample is spurious, then new predicates are generated
in order to eliminate a spurious prefix in the counterexample.
We treat the entire spurious counterexample as a spurious
prefix and do not find the shortest spurious prefix.

An abstract counterexample of length / is a sequence of
abstract states §(0),...,5(/), where each abstract state 5(j)
corresponds to a valuation of the k predicates Ty, ...,T;. The
value of ; in a state § is denoted by §;. Given an abstract
state §, let B(5) denote the conjunction of predicates (or their
negation) depending upon their values in 5. For example, let
§ be an abstract state in which the predicate x < 2 is true and
the predicate x =y is false. Then B(5) =x <2 A =(x=y).

k
B(3) == /\ni <8
i=1

We write B(5,7) to denote that the variables in B(5) refer to
the concrete variables 7.
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A. Detecting and Removing Spurious Transitions

An abstract transition from § to 7 is a spurious transition iff
there are no concrete states 7,7 such that 7 is abstracted to
§, ¥ is abstracted to 7, and there is a transition from 7 to 7.
Formally, the abstract transition from § to 7 is spurious iff the
following formula is unsatisfiable:

B(5,7) A R(F,7) A B(E,7)

We use a CNF SAT solver to check the satisfiability of
the above formula. If the formula is satisfiable, the abstract
transition can be simulated on the concrete model. Otherwise,
the abstract transition is spurious. In this case, the spurious
transition is removed from the abstract model by adding a
constraint to the abstract model.

When generating the CNF instance for the simulation of
the abstract transition § to 7, we store the mapping of each
predicate m;, m, to the corresponding literal /;,I/ in the CNF
instance. If the abstract transition is spurious, the CNF in-
stance is unsatisfiable. In this case, we extract an unsatisfiable
core [42] from the given CNF instance. An unsatisfiable core
of a CNF instance is a subset of the original set of clauses
that is also unsatisfiable. Current state-of-the-art SAT-solvers
are quite effective at producing small unsatisfiable cores, if
they exist.

Let us denote the set of current-state predicates whose
corresponding CNF literal /; appears in the unsatisfiable core
by X. We have a similar set for the next-state predicates, which
we call Y. Intuitively, the predicates in X and Y taken together
are sufficient to prove that the abstract transition from § to 7
is spurious. All the abstract transitions where the predicates
in X and Y have the same truth value as given by the states
§ and 7, respectively, are spurious. These spurious transitions
are eliminated by adding a constraint to the abstract model.
Let b; and b; be the variables used for the predicates m; and
. in the abstract model. The constraint added to the abstract
model is as follows:

- /\b,’<:>§i/\/\b;<:>t_i

mieX ey

Proposition 2: Every abstract transition from #& to v such the
predicates in X have the same value in # and §, and the
predicates in Y have the same value in v and 7, is spurious.
The constraint above removes all of these spurious transitions
from the abstract model.

Example: Let the set of current-state predicates be {x < 2,x=
1,y=1,z> 1}. Consider the abstract transition from §= {b; =
1,by=1,b3=1,by=1}toi={b,=0,b, =0,b; =0,b, =0},
where by, by, b3, and by correspond to the predicates x < 2,
x=1,y=1, z> 1, respectively. Let the next-state function of y
be x, i.e., y/ = x. Observe that in the state §, x = 1. This implies
that y =1 in 7 (as y) =x). However, b} is false in 7 and thus,
the abstract transition from § to 7 is spurious. As described
in section IV-C, the abstract transition from § to 7 can arise
when using lazy abstraction. This spurious transition can be
eliminated by adding the following constraint to the abstract
model [191: = (b1 Aby Ab3 Abg A=y A=y A —=by A—=b)y).

However, the constraint above removes just one spurious
transition. By examining an unsatisfiable core, we can
make the constraint more general, thereby eliminating many
spurious transitions at the same time. In this example, the
cause of the spurious behavior is b, = 1, and bg = 0. The
unsatisfiable core technique described above is capable of
discovering this fact. This allows us to eliminate the abstract
transition from § to 7 and 63 more spurious transitions
by adding the following constraint to the abstract model:
=(by AD%). Tt is very important to remove as many spurious
transitions as possible in order to make the CEGAR loop
terminate quickly.

Semantic Predicate Clustering: The predicates responsible
for making an abstract transition spurious can be treated
as a predicate cluster C, which can be used during the
abstraction step. Suppose an abstract transition from § to 7 is
spurious. Let C denote the set of current-state and next-state
predicates responsible for this spurious transition as identified
by an unsatisfiable core. As described above, the predicates
appearing in C are used to remove the spurious transition from
§ to 7. In semantic predicate clustering, C is also added to the
existing set of predicate clusters and is used to compute the
abstraction (Eqn. 5) in the subsequent iterations. Intuitively,
the predicates occurring in C are semantically related because
a particular assignment of truth values to the predicates in C
(as given by §, f) can make an abstract transition spurious.
Thus, by computing all possible relationships between the
predicates in C (during abstraction), we remove all abstract
transitions that are spurious due to the predicates in C.

Example: For the spurious transition in the example above,
we obtain C:= {x=1,y’ = 1}. The predicates in C are used to
eliminate multiple spurious transitions by adding the constraint
=(by A DY) However, even after adding this constraint the
abstract model allows another spurious transition from a state
i where =(x=1) to a state ¥ where y =1 (that is, y =1). In
semantic predicate clustering C is added as a predicate cluster.
The abstraction step will discover that b, <> b} using C. Thus,
the spurious transition from i to v cannot arise.

B. Detecting and Removing Spurious Prefixes

An abstract counterexample §(0),...,5(/) of length / is a
spurious prefix iff there is no concrete execution of / transitions
such that at each step the concrete state is consistent with
the corresponding abstract state. More formally, let 7y,...,7
denote the concrete state variables at each of the /4 1 states.
The initial state of the concrete system is denoted as (7).

The abstract counterexample §(0),...,5(/) is a spurious
prefix iff the following formula is unsatisfiable:

-1 I
I(R)) N ARG, Fip1) A A\BG(),F)
i=0 i=0
The above formula is unsatisfiable iff there is no sequence
of concrete states 7y, ..., 7; such that 7y is an initial state, there
is a transition from 7; to 71 for 0 <i </, and the predicate
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values in each concrete state 7; exactly match the predicate
values given by the abstract state §(j) for 0 < j <.

In [16], spurious prefixes are eliminated by adding a bit-
level predicate. This predicate is called a separating predicate
and is computed by using a SAT-based conflict dependency
analysis. In contrast, we make use of weakest preconditions
as done in software verification. We generate new word-level
predicates by computing the weakest precondition of the given
property with respect to the transition function given by the
RT-level circuit.

Weakest Preconditions: In software verification, the weakest
precondition wp(st,y) of a predicate Y is usually defined with
respect to a statement st (e.g., an assignment). It is the weakest
formula whose truth before the execution of st entails the
truth of y after st terminates. In case of hardware, each state
transition can be viewed as a statement where the registers
are assigned values according to their next-state functions and
external inputs are assigned new non-deterministic values.

Recall that the set of registers is denoted by Q. The next-
state function for register r; € Q is given by f;(F). We use f to
denote the vector of the next-state functions for the registers
in Q. We use the expression ¢[7/ f] to denote the simultaneous
substitution of each variable r; € Q by its corresponding next
state function f;(F).

The weakest precondition of the property y(7) with respect
to one concrete transition is defined as follows:

wpi(F (7)) = () [F/f]

The weakest precondition with respect to i consecutive
concrete transitions is defined inductively as follows (we write
v(7) as vy for short):

Wpi(f_7 ’Y) = Wp](f_a Wpi*](f_’ Y)) (l> 1)

In order to refine a spurious prefix of length [ > 0, we
compute wp;(f,T) for each 1 <i <[, where 7T is the safety
property we are interested in checking. Intuitively, T holds
after i transitions iff wp;(f,T) holds before i transitions.
Refinement corresponds to adding the Boolean expressions
occurring in each wp;(f,T) to the existing set of predicates.

Proposition 3: The most precise abstraction (Eqn. 4), created
with respect to the new set of predicates {wp;(f,T)}, does not
contain the given spurious prefix'. Furthermore, all spurious
prefixes of length / are removed.

Propositions 2 and 3 taken together guarantee that the
progress is made with each refinement iteration. In case of
circuits, the weakest precondition is always computed with
respect to the same transition function vector f and thus, we
may omit it as an argument in wp;(f,Y).

Example: Let the property be x < 200. Let the next state
functions for the registers x and y be ((x < 100)?(x+y) : x)

'In order to provide this guarantee, inputs in a formula need to be replaced
by fresh identifiers every time the weakest precondition is computed. The
new identifiers can be left as it is in the predicates. They will be existentially
quantified during the decision procedure queries. A heuristic that works well
in practice is to leave the input variables unchanged during the weakest
precondition computation.

/I Input: a formula g
// Input: an abstract state 7 assigning values to {m;,...,m}
/I Output: g is simplified (modified in-place)

simplify(g,7) |
1: for all operands 4 in g
2: simplify(h,i); // recursive simplification
3: Remove the constant conditionals from g
/I For example, replace (02x:y) by y
4:if In;.(m; = g) then // syntactic equality of expressions
50 g=ij /I replace g by value of 7; in 7

}

Fig. 6. Simplification of a formula using an abstract state.

and x, respectively. Suppose we obtain a spurious prefix of
length 1. The weakest precondition is computed as follows:

wpy(x <200) = (((x < 100) ? (x+y) : x) < 200)

We add the Boolean conditions occurring in wpy
to our set of predicates. Thus, we add x < 100 and
(((x < 100) ? (x+y) : x )< 200) as the new predicates.

Simplifying the Weakest Preconditions: When the spurious
counterexample is long, the weakest precondition computation
becomes expensive and the predicates generated can become
very complex (see wp; above). This adversely affects the ab-
straction refinement loop. In software verification, this problem
is solved by computing the weakest precondition with respect
to the statements appearing in the spurious trace only. This
is not directly applicable to a synchronous circuit because the
statements occurring in the spurious trace correspond to the
next-state functions. The next-state functions usually contain
many conditional statements. Thus, simply substituting the
next-state functions as done above leads to a blowup in the
size of weakest preconditions.

Instead, we apply a syntactic simplification to the weakest
preconditions at each step. The simplification uses data from
the abstract error trace. We exploit the fact that many of the
control flow guards in the Verilog code are also present in
the current set of predicates. The abstract trace assigns truth
values to these predicates in each abstract state. In order to
simplify the weakest preconditions, we substitute the guards in
the weakest preconditions with their truth values. Furthermore,
we only add the atomic predicates occurring in the weakest
preconditions as new predicates.

In order to formalize the simplification of weakest
preconditions we define a procedure simplify in Fig. 6. Let
the current set of predicates be {mi,...,7x}. The simplify
procedure takes as input a formula g(7) (written as g for
short) and an abstract state 7. It replaces all occurrences of
predicates {m;,..., T} in g by their truth values in 7.

Example: Suppose our current set of predicates is {x <2,x <
1}. Let 7 be an abstract state in which x < 2 is true and x < 1 is
true. Let g(x,y) be the formula (((x < 1) ? (x+y) : x) < 2).
After calling simplify with g and 7 as arguments, g becomes:

(1?7 (x+y) 1 x)<2) = x+y<2
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Spurious prefix of length /

()

swpi(Y) swpi-i( swpi(Y swpi (Y

Fig. 7. Simplified weakest precondition computation.
Let h(x,y) be the formula ((x =y)?y:x) =y. After calling
simplify with h and f as arguments, /4 remains unchanged.

Definition of Simplified Weakest Precondition: Let the spu-
rious prefix be #(0),...,7(I) with [ > 1 and the property be 7.
The weakest precondition wp; is a formula that should hold
before i concrete transitions for ¥ to hold after i transitions.

As motivated earlier we want to simplify wp; using the
predicate values from the spurious prefix. We denote the
simplified weakest precondition (swp) for i steps by swp;. The
abstract state 7(/ —i) provides the truth values of the predicates
just before the i transitions leading to the end of spurious
prefix. Thus, swp;(y) is simplified using the predicate values
from the abstract state 7(I —i). Fig. 7 shows the correspondence
between the abstract states and swp;. Formally, swp; is defined
as follows (wp; was defined earlier and [ is the length of
spurious prefix):

(l1-1))

simplify(wpi (swpi—1(Y)),

swpi(y) = simplify(wp1(Y),
swpi(y) =

i(l—1))

The new set of predicates for refinement is obtained from
swpi,...,swp;. This is done by taking only the atomic
predicates occurring in the simplified weakest preconditions.
After the addition of new predicates we re-compute the
predicate clusters.

(I<i<l)

Example: We continue our example in Fig. 2. We want to prove
that x < 200 is an invariant. In Fig. 4, an abstraction of this
program using three predicates x < 200,x < 100,x+y < 200
is presented. The property G(x < 200) is proved by means
of this abstraction. We now describe how these predicates are
discovered automatically.

We take the set of predicates occurring in the property itself
as the initial set of predicates. Thus, our initial abstraction
is created with respect to the predicate x < 200. Model
checking the abstract model produces a counterexample with
one transition from a state in which x < 200 to a state in which
—(x < 200). This counterexample is a spurious prefix (not a
spurious transition). The simplified weakest precondition swp1
of x <200 is:

swpi(x <200) := (((x<100) ? (x+y) : x )< 200)

The only new predicate obtained from swp;(x < 200) is x <
100. Note that we do not take the entire weakest precondition
as a new predicate as it is not atomic. The new set of predicates
is {x <200,x < 100}. Once again, the abstraction and model
checking steps are performed. This time, we obtain another
spurious prefix 7(0), 7(1) of length one. We also obtain the
truth value of the predicate x < 100 in the abstract states 7(0)

and 7(1). Since x is equal to one in the initial state of the
system, it turns out that the predicate x < 100 is true in 7(0).
The simplified weakest precondition is given as follows:

swpi(x <200) = ((1? (x+y) : x ) <200) =x+y <200

Thus, swp(x < 200) yields a new predicate x +y < 200.
Using the new set of predicates {x < 200,x < 100,x+y <
200}, we obtain the abstraction shown earlier in Fig. 4. The
abstract property holds on this abstraction and thus, G(x <
200) holds on the concrete program in Fig. 2.

The use of simplification invalidates the progress guarantee:
the predicates in the simplified weakest precondition of the
given property are not always sufficient to ensure that the
spurious prefix is eliminated from the abstract model. For
example, we may need the weakest precondition of the guard
x < 100 in the example above, which is not computed if we
substitute x < 100 by a Boolean value during simplification.

In order to guarantee progress, we identify a subset of the
existing predicates such that computing the weakest precondi-
tion of these predicates is sufficient for removing the spurious
behavior. As in [26], this is done by using the unsatisfiable
core of the SAT instance used for simulating the prefix. This
approach identifies a subset of the existing predicates that is
responsible for the spurious behavior. If a copy of predicate
p in cycle k appears in the unsatisfiable core, we compute
the (simplified) weakest precondition of p for k steps (k <1/).
In addition we compute the weakest precondition for each
predicate used during the simplification (Fig. 6, Line 4).

VI. EXPERIMENTAL RESULTS

The experiments are performed on a 1.86 GHz Intel Xeon
(R) machine with 4 GB of memory running Linux. The
techniques described in this paper have been implemented in
a tool called VCEGAR [38]. Our implementation is available
for experimentation by other researchers. We use the MiniSat
SAT solver [32] as our decision procedure. The abstractions
are model checked using a publicly available version of the
Cadence SMV model checker [18]. We perform two sets of
experiments:

1) We compare the performance of VCEGAR with the
performance of localization reduction technique imple-
mented in Cadence SMV. The Cadence SMV tool is a
netlist based model checker. It implements localization
reduction using BDDs and SAT checkers. The results
are reported in Section VI-A.

2) We compare three different predicate clustering algo-
rithms: syntactic cone clustering, clustering for lazy ab-
straction described in Section IV, and semantic predicate
clustering (Section V-A). These results are reported in
Section VI-B.

In all our experiments we compute the initial abstraction using
the atomic predicates appearing in the property. The remaining
predicates are discovered automatically using refinement.

A. Comparison with Localization Reduction

The results are summarized in Table I. The column
“Latches” contains the total number of latches in the design.
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TABLE I
EXPERIMENTAL RESULTS: ALL RUNTIMES ARE IN SECONDS
(ROUNDED TO NEAREST INTEGER). A DASH “-” INDICATES A
TIMEOUT OF 2 HOURS. A STAR “*” INDICATES THAT THE MODEL
CHECKER TERMINATED AND REPORTED A TOO LARGE NUMBER
OF BDD VARIABLES

Bench- Predicate Abstraction CSMV
mark Latches Time Abs MC Ref| P I Time
USB1 545 42 1 2 29 17 62/0 149
USB2 545 599 47 147 386 | 116 | 146/22 | 1349
USB3 545 446 46 73 317 | 114 | 123/20 | 2594
ETHO 359 44 2 3 30 | 21 55/0 -
ETH1 359 127 8 8 102 | 93 49/2 -
ETH2 359 161 8 16 127 | 94 | 109/2 21
M2KB 16427 5 0 0 5 3 2/0 28
M8KB 65694 28 0 0 28 3 2/0 *
M16KB 131117 34 0 0 34 3 2/0 *
N2KB 16427 93 0 0 93 11 9/0 *
N8KB 65694 | 490 0 0 490 | 11 9/0 *
N16KB 131117 | 790 0 0 789 | 11 9/0 *
AR200 400 1 0 0 1 3 3/2 672
AR3000 6000 12 0 0 12 3 32 -
AR4000 8000 17 0 0 16 3 3/2 -

=
AN

M EM_WRl]——[ M EM_WRzJ M EM_RDlJ

Fig. 8. State machine for the DMA in the USB 2.0 Function core.

The columns marked with “Predicate Abstraction” contain
the results of applying the techniques discussed in this paper.
The “Time”, “Abs”, “MC”, and “Ref” columns contain
the total time, followed by the time taken by abstraction,
model checking, and refinement including simulation. The
time spent before the start of the CEGAR loop is given by
Time-(Abs+MC+Ref). We use lazy abstraction and rely on
refinement to do most of the work in these benchmarks.
The “P” column contains the final number of predicates.
The “I” column gives two numbers separated by a slash: 1)
Number of refinement steps in which spurious transitions
are removed, and 2) number of refinement steps in which
new predicates are added. The sum of these two numbers
is the total number of refinement iterations. The results of
running Cadence SMV are given in the “CSMV” column. We
report the total time taken by Cadence SMV when running
with the counterexample-based abstraction refinement option
—absref3.

Benchmarks: The USB benchmark was used for experimental
evaluation of the EverLost tool [20]. It is derived from a
USB 2.0 Function core [36] and contains approximately 4000
lines of RTL Verilog. We checked three properties. The first
property USB1 checks that the implementation of the internal
DMA module simulates the state transition diagram shown

Fig. 9. State machine for the Transmit module in the Ethernet MAC.

in Fig. 8. The property holds and all the predicates required
for the proof are present in the property itself. The second
property USB2 encodes the following: if the abort signal is
true in any state of Fig. 8, then the next state will be IDLE.
This property does not hold because the transition from the
MEM_WR2 state to the IDLE state is not guaranteed by the
abort signal. The third property USB3 excludes the state
MEM_WR2 from the USB2 property. This property holds on
the design. The properties USB2 and USB3 contain three and
four atomic predicates, respectively. The remaining predicates
are discovered through refinement.

The ETH benchmark was also used in [20]. It is the design
of a 10/100 Mbps Ethernet MAC [36] and contains approxi-
mately 5000 lines of RTL Verilog. The transmit module of the
design contains a state machine with ten states (see Fig. 9).
The property ETHO checks that the implementation obeys the
state machine description given in Fig. 9. All the predicates
required for proving the property are present in the property
itself. The property ETH1 checks the outgoing transitions from
the state BackOff. The property ETH2 checks the outgoing
transitions from the state Jam. Both ETHI and ETH2 hold
on the design. When checking ETH1 and ETH2 most of the
predicates are discovered through refinement.

The ICRAM benchmark is taken from the Instruction Cache
RAM unit of the Sun PicoJava II microprocessor [37]. It
maintains a RAM of size 16KB (organized as 2048 entries
of 64 bits each). If the writing signal wenO is enabled the
value of data input (din) is written to the lower 32 bits of the
location addressed by the input address (addr). Otherwise, if
the writing signal wenl is enabled, the value din is written
to the higher 32 bits of the location addressed by addr.
This functionality of the ICRAM is encoded in form of eight
safety properties using the current-state and next-state of the
variables. We use P.x to denote the value of a register or
input x in the previous state. Each property compares eight
bits in P.din and corresponding bits in ICRAM. A sample
property is given below:

P.wen0— (ram[{P.addr,3’b001}1=P.din[23:16])

The above property depends on the contents of the RAM.
Thus, even after applying techniques such as localization
reduction, the system has 16KB (16 x 1024 x 8) latches. We
verified the above property by varying the size of RAM from
2KB to 16KB. These benchmarks start with a prefix “M” in
Table I. We also combined all the eight properties for the
ICRAM benchmark into a single property. These benchmarks



This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

start with a prefix “N” in Table I. For both “M” and “N”
benchmarks the property is proved using only the predicates
occurring in the property. No new predicates are discovered.
The benchmarks with names starting with “AR” perform
arithmetic operations on two registers x and y as shown in
Fig. 2. We verify the invariant x < 200. In the ARi benchmark
the size of both x,y is i and total number of latches is 2 x i. As
described in the previous section, this property is proved using
the predicates x < 200, x < 100, x+y < 200. The predicate x <
200 is obtained from the property and the predicates x < 100,
x4y < 200 are discovered using refinement.
Summary: VCEGAR has a better performance on all but
one benchmark reported in Table I. Cadence SMV times out
on the ETHO, ETH1, AR3000, AR4000 benchmarks, while
the predicate abstraction method is able to complete these
benchmarks with better runtimes. Some of the inferences
drawn from Table I are as follows:

« The runtime of localization reduction grows exponentially
with each newly added latch. This trend is evident in the
AR benchmark series. On these benchmarks, localization
reduction is not able to reduce the number of latches in
the abstract model created.

« When using predicate abstraction, the size of the abstract
model remains constant even when the number of latches
is increased. For many properties, the number of word-
level predicates needed for the proof does not grow as the
width of the registers is increased. This trend is visible
in the M* N* and AR* benchmarks. Thus, the model
checking (MC) time is similar across these benchmarks.

A plot of the total time needed by predicate abstraction
compared to the number of latches is given in Fig. 10(a) and
Fig. 10(b) for the N* and the AR* benchmarks, respectively.
These graphs show that the predicate abstraction technique
scales well with the increase in the number of latches.

B. Comparing Predicate Clustering Techniques

We report the performance of the CEGAR loop using
three different predicate clustering techniques described in
Section IV and Section V-A. The benchmark characteristics
are given in Table II. We report the number of lines of
code, the total number of latches, the total number of Verilog
combinational elements and inputs (“CE+I” column), and the
total number of properties checked for each benchmark. The
benchmarks USB 2.0 and Ethernet MAC were described in
the previous section. Other benchmarks are taken from the
Texas97 and VIS [39] benchmark suites.

The results are summarized in Table III. The columns
labeled with “Cone” contain the results of using syntactic
cone clustering in the CEGAR loop. The performance of
the CEGAR loop when using clustering for lazy abstraction
is summarized in the columns labeled with “Lazy”. The
“Semantic” column presents the results of using semantic
predicate clustering (Section V-A).

For each predicate clustering technique, the “Total”, “Abs”,
“MC”, and “Ref” columns contain the total verification time,
followed by the time taken by abstraction, model checking, and
refinement including simulation. The “Preds” column contains

TABLE I
BENCHMARK CHARACTERISTICS

Benchmark Lines | Latches | CE+I | Properties
mpeg 1215 599 234 2
SDLX 898 41 40 1
Miim 841 83 173 1
ethernet (enet) 610 91 156 2
itc99-bl2 (bl2) 558 151 723 1
usb-phy (uphy) 1054 44 25 1
USB 2.0 (USB) 4000 545 1686 3
Ethernet MAC (ETH) | 5000 359 2363 3

two numbers separated by a slash: 1) The total number of pred-
icates in the last iteration of the CEGAR loop. This includes
only the current-state predicates. 2) The maximum number
of predicates present in any predicate cluster generated by
the predicate clustering technique. The number of refinement
iterations is reported in the “I” column. The “Res” column
contains T (true) if the property holds, else it contains F
(false), followed by the length of the counterexample. In these
benchmarks (expect USB1, ETHO) most of the predicates are
discovered automatically during refinement phase. Below, we
compare the three instantiations of the CEGAR loop, which
are “Cone”, “Lazy”, and “Semantic”.

“Cone” versus “Lazy”: The “Lazy” technique is able to
handle all benchmarks within the timeout, and thus, it is
more robust than the “Cone” technique (which timeouts on
five problems). When using the “Cone” technique, the SAT-
based abstraction becomes the bottleneck. Model checking of
abstract models also becomes expensive (see Miim row). This
happens because the abstract models created in the “Cone”
technique are more detailed and thus harder. However, the
properties can usually be checked using coarse (less precise)
abstractions created by the “Lazy” technique.

“Semantic” versus “Lazy”: In the “Semantic” technique
(Section V-A), new predicate clusters are generated as follows:
When a spurious transition is found, we identify a set of
predicates responsible for spurious behavior. These predicates
are treated as a new predicate cluster. In our experiments this
cluster is used during abstraction computation only if it has
< 6 predicates. In addition, we use the same predicate clusters
as for the “Lazy” technique.

The “Semantic” technique consistently requires fewer re-
finement iterations than the “Lazy” technique. This shows that
computing all possible abstract transitions for the predicates
responsible for a spurious transition also rules out other spuri-
ous transitions. The runtime of both techniques is comparable.

The abstraction computation or abstraction model checking
can become a bottleneck when using the “Cone” technique,
while a large number of refinement iterations can hurt the per-
formance when using the “Lazy” technique. The “Semantic”
technique tries to balance the bottlenecks of both “Cone” and
“Lazy” techniques, and thus, seems to be the most scalable.

VII. CONCLUSION AND FUTURE WORK

We apply the idea of predicate abstraction from software
verification to verify hardware designs at a higher level of ab-
straction. We show how to reduce the abstraction computation
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Fig. 10. Runtime of the CEGAR loop with respect to number of latches: (a) N* benchmarks (b) AR* benchmarks.

TABLE III
COMPARING THREE CEGAR LOOPS EACH EMPLOYING A DIFFERENT PREDICATE CLUSTERING METHOD. ALL TIMES ARE REPORTED IN SECONDS
(ROUNDED TO NEAREST INTEGER). A DASH “-” INDICATES A TIMEOUT OF 2 HOURS

Bench- Cone Lazy Semantic
mark Time Abs MC Ref Preds 1 | Time Abs MC Ref Preds 1 Time Abs MC Ref Preds 1 Res
mpegl 44 25 1 18 31/33 7 41 3 1 37 31722 24 46 10 1 35 30/22 22 T
mpeg2 51 26 1 23 31/32 9 47 4 1 43 30/22 26 54 11 1 43 31/22 24 T
SDLX 8 4 1 2 32/13 23 14 1 5 8 32/6 83 13 3 3 6 32/6 64 T
Miim 170 49 119 2 23/19 19 8 1 2 6 23/4 55 8 2 1 4 23/6 40 T
enetl - - - - - - 45 2 20 22 48/4 129 45 6 17 21 48/6 121 F(6)
enet?2 38 6 5 27 37/11 36 69 2 20 47 37/3 117 66 6 19 41 37/6 99 T
bl2 310 181 69 57 5024 29| 132 3 24 103 38/8 148 | 131 17 13 98 48/8 94 | F(14)
uphy 13 1 3 8 42/18 29 24 0 10 13 42/7 100 23 1 10 11 42/7 87 | F(36)
USB1 12 1 0 0 17/17 0 42 1 2 29 17/8 62 51 19 1 20 17/8 40 T
USB2 - - - - - - 599 47 147 386 116/15 168 | 547 109 87 333 116/15 139 | F(14)
USB3 - - - - - - 446 46 73 317 114/15 143 | 459 97 70 282 114/15 120 T
ETHO 49 15 4 19 21/11 31 44 2 3 30 21/0 55 57 14 3 30 21/6 53 T
ETH1 - - - - - - 127 8 8 102 93/0 51 177 48 13 107 93/6 54 T
ETH2 - - - - - - 161 8 16 127 94/0 111 172 48 14 100 94/6 95 T
overhead in presence of a large number of predicates. This is APPENDIX

done by dividing the set of predicates into clusters of related
predicates and the abstraction is computed separately for each
cluster. In lazy abstraction the expensive task of program
abstraction is deferred until a spurious counterexample is
found. We show the benefit of lazy abstraction in the context
of hardware verification.

We use unsatisfiable cores in order to eliminate multiple
spurious transitions. The spurious trace may also be caused
by insufficient predicates. In the software domain, tools typi-
cally use weakest preconditions or strongest postconditions to
compute new predicates that eliminate the spurious behavior.
This technique has previously not been applied to hardware,
despite of the fact that high-level RTL models closely resemble
programs written in languages like ANSI-C. Our experimental
results show that this technique is effective in discovering new
word-level predicates for refinement.

Future research will focus on the use of interpolants [24]
for deriving new predicates. Memory abstraction techniques
[21], [29] can be combined with our technique to handle large
memories efficiently. We would also like to experiment with
new decision procedures for bit-vector arithmetic [6], [29].

Proof of Proposition 1: Let the set of predicates be Pr. O
denotes the abstraction with respect to Pr. From Eqn. 5, R =
/\l,lR j» where R denotes the abstraction with respect to a
cluster C;and C; C Pr. The proposmon is proved by showing
that for a11 1<j<l, 0= R or O C R using set notation.
We will treat 0 and R; as sets of abstract tfansmons and show
that O C R;. We rewrite the definitions of Q and R; as follows:

Q = {(Ba];/) ‘ 3’7)’:/ : 8(f7f/’B’B/’Pr)}
Ry = {B.B) |37

where 8(7,7,b,b',Z) relates concrete states 7,7, and abstract
states b, b’ with respect to a set of predicates Z.

(7,7 ,b,b0,2) N\ bi=m(F)AR(FF)N )\ b =mi(7)
mEeZ ez
If Z, C 7, then &(F,7,b,b',Zy) is equivalent to

S(7, I b v ,Zo) NO(F,F 7 b v Zl\Zz) Thus, if (7, 7/,15,1_7/,21),
then 8(r7r ,b,b'.7) holds. If an abstract transition (a,a’) €
0, then there exist two concrete states X% such that
d(x, % ,a,a Pr) holds. Since C; C Pr, it follows from the above
that S(x ¥,a,d,C;) holds. Thus, J7,7 :Aﬁ(f,j”,a",d’,Cj) holds
and (a,a’) €R. .ThlS shows QCR;. AsQCR;forall 1 <j<!
and R =(;R;, it follows that 0 C R. [J
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